2 The Linear Quadratic Regulator (LQR)

Problem:
Compute a state feedback controller

\[u(t) = Kx(t) \]

that stabilizes the closed loop system and minimizes

\[J := \int_{0}^{\infty} x(t)^T Q x(t) + u(t)^T R u(t) \, dt \]

where \(x \) and \(u \) are the state and control of the LTI system

\[\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0. \]

Assumptions:
a) \(Q \succeq 0, \ R > 0; \)
b) \((A, B)\) stabilizable;

A first step toward a solution:
The closed loop cost is

\[J = \int_{0}^{\infty} x(t)^T (Q + K^T R K) x(t) \, dt \]

and the closed loop system is

\[\dot{x} = (A + BK)x, \quad x(0) = x_0. \]

But for a given \(K \) and \(x_0 \)

\[x(t) = e^{(A+BK)t} x_0. \]

Hence

\[J = \int_{0}^{\infty} x_0^T e^{(A+BK)t}(Q + K^T R K)e^{(A+BK)t} x_0 \, dt \]

\[= x_0^T \left(\int_{0}^{\infty} e^{(A+BK)t}(Q + K^T R K)e^{(A+BK)t} \, dt \right) x_0. \]
This means that J can be computed as

$$J = x_0^T X x_0$$

where X is the solution to the Lyapunov equation

$$(A + BK)^T X + X(A + BK) + Q + K^T R K = 0.$$

Before proceeding we need to learn how to solve the above Lyapunov equation in X and K. This is not always possible. In this case, because $R \succ 0$, we can complete the squares, rewriting the above equation in the form

$$A^T X + X A - X B R^{-1} B^T X + Q + (X B R^{-1} + K^T) R (R^{-1} B^T X + K) = 0.$$

Note that K is confined to the term

$$(X B R^{-1} + K^T) R (R^{-1} B^T X + K) \succeq 0$$

and that for

$$K = -R^{-1} B^T X.$$

we have

$$Q + (X B R^{-1} + K^T) R (R^{-1} B^T X + K) = Q.$$

This reduces the above equation to

$$A^T X + X A - X B R^{-1} B^T X + Q = 0.$$

This is an Algebraic Riccati Equation (ARE) in X.

As we learn more about AREs we shall prove that the above choice of K and X is so that

a) $A + BK$ is Hurwitz (asymptotically stable);

b) X is “minimum” in a certain sense;

c) The associated J is minimized.
2.1 Comparison Lemma

If $S \succeq 0$ and $Q_2 \succeq Q_1 \succeq 0$ then X_1 and X_2, solutions to the Riccati equations

$$A^T X_1 + X_1 A - X_1 S X_1 + Q_1 = 0,$$
$$A^T X_2 + X_2 A - X_2 S X_2 + Q_2 = 0,$$

are such that

$$X_2 \succeq X_1$$

if $A - S X_2$ is asymptotically stable.

Proof: Note that

$$A^T X_1 + X_1 A - X_1 S X_1 + Q_1 = (A - S X_2)^T X_1 + X_1 (A - S X_2) + X_2 S X_2 + Q_1 - (X_1 - X_2) S (X_1 - X_2),$$

and

$$A^T X_2 + X_2 A - X_2 S X_2 + Q_2 = (A - S X_2)^T X_2 + X_2 (A - S X_2) + X_2 S X_2 + Q_2$$

Now subtract the above equations to obtain the Lyapunov equation

$$(A - S X_2)^T \bar{X} + \bar{X} (A - S X_2) + \bar{Q} = 0$$

where

$$\bar{X} := X_2 - X_1, \quad \bar{Q} := (Q_2 - Q_1) + (X_1 - X_2) S (X_1 - X_2) \succeq 0.$$

Therefore, if $A - S X_2$ is Hurwitz we conclude that $\bar{X} = X_2 - X_1 \succeq 0$, that is $X_2 \succeq X_1$.

We can now use the comparison lemma to compare the two AREs
\[A^T X_2 + X_2 A - X_2 BR^{-1} B^T X_2 + Q_2 = 0 \]
and
\[A^T X_1 + X_1 A - X_1 BR^{-1} B^T X_1 + Q_1 = 0 \]
where
\[S = BR^{-1} B^T \succeq 0, \]
and
\[Q_1 = Q, \quad Q_2 = Q + (X_2 BR^{-1} + K^T) R (R^{-1} B^T X_2 + K). \]
Note that for any \(X_2 \) and stabilizing \(K \) that
\[Q_2 = Q + (X_2 BR^{-1} + K^T) R (R^{-1} B^T X_2 + K) \succeq Q = Q_1 \]
because \(R \succ 0 \). Therefore, for any choice of
\[K \neq -R^{-1} B^T X_1 \]
we shall have
\[X_2 \succeq X_1. \]
This proves that \(X_1 \) is “minimum”. Of course this also implies that
\[J_2 = x_0^T X_2 x_0 \geq x_0^T X_1 x_0 = J_1 \]
so that \(J \) is also being minimized.
2.2 More on AREs

Warning: In this section we consider Riccati equations of the form

\[A^T X + XA + XZX + Q = 0 \]

Lemma 1: Consider the *Hamiltonian matrix*

\[H := \begin{bmatrix} A & Z \\ -Q & -A^T \end{bmatrix}. \]

where \(A, Z = Z^T \) and \(Q = Q^T \in \mathbb{R}^{n \times n} \).

1. \(\lambda \) is an eigenvalue of \(H \) if and only if \(-\lambda \) is an eigenvalue of \(H \).

2. If \(H \) has no eigenvalues on the imaginary axis then there exists a matrix \(W \in \mathbb{R}^{n \times n} \) such that

\[HV_1 = V_1 W \quad (2) \]

where \(W \) is Hurwitz.

Proof:

Item 1. \(H \) has eigenvalues pairs which are symmetric w.r.t the imaginary axis because

\[J^{-1}HJ = -JHJ = -H^T, \quad J := \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}, \quad J^{-1} = -J \]

Item 2. Let \(H_J \) be the Jordan form of matrix \(H \) so that

\[HV = VH_J \]

where \(V \in \mathbb{R}^{2n \times 2n} \) is a matrix whose columns are the (generalized) eigenvectors of \(H \). Since the eigenvalues of \(H \) are symmetric with respect to the imaginary axis and there are no eigenvalues on the imaginary axis, there exists at least two distinct Jordan blocks

\[H \begin{bmatrix} V_1 & V_2 \end{bmatrix} = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} H_{J_-} & 0 \\ 0 & H_{J_+} \end{bmatrix} \]

where all \(n \) eigenvalues of \(H_{J_-} \) have negative real part, i.e., \(H_{J_-} \) is Hurwitz. The first columns of the above equation are in the form \((2) \) with \(W = H_{J_-} \) Hurwitz.
Lemma 2: Consider the Algebraic Riccati Equation (ARE)

\[A^T X + X A + X Z X + Q = 0 \]

where \(A, Z = Z^T \) and \(Q = Q^T \in \mathbb{R}^{n \times n} \) and the associated Hamiltonian matrix

\[
H := \begin{bmatrix}
A & Z \\
-Q & -A^T
\end{bmatrix}.
\]

which is assumed to have no eigenvalue on the imaginary axis.

1. Let

\[
V_1 = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \in \mathbb{C}^{2n \times n}
\]

be (generalized) eigenvectors of \(H \) associated with all \(n \) eigenvalues with negative real part. If \(X_1 \) is nonsingular then \(X = X_2 X_1^{-1} \) solves the ARE.

2. The solution obtained in item 1. is

(a) real,
(b) symmetric,
(c) unique stabilizing \((A + Z X) \) is Hurwitz).

3. If \(Z \succeq 0 \) (or \(Z \preceq 0 \)) then \(X_1 \) is invertible if and only if \((A, Z)\) is stabilizable.

Proof:
Item 1. From Item 2. of Lemma 1 there exists a Hurwitz matrix \(W \) such that

\[
HV_1 = V_1 W
\]

Then, multiplying the above by \(X_1^{-1} \) on the right and by \([X -I]\) on the left we get

\[
[X -I] H \begin{bmatrix} I \\ X \end{bmatrix} = [X -I] \begin{bmatrix} I \\ X \end{bmatrix} X_1 W X_1^{-1} = 0
\]

Note that

\[
[X -I] H \begin{bmatrix} I \\ X \end{bmatrix} = [X -I] \begin{bmatrix} A & Z \\
-Q & -A^T
\end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = A^T X + X A + X Z X + Q
\]
Item 2. (a) Since H is real, the columns of V_1 can be chosen complex conjugates in pairs so that

$$\bar{V}_1 = \begin{bmatrix} \bar{X}_1 \\ \bar{X}_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} P = \begin{bmatrix} X_1 P \\ X_2 P \end{bmatrix}$$

where P is some permutation matrix and

$$\bar{X} = \bar{X}_2 \bar{X}_1^{-1} = X_2 P P^{-1} X_1^{-1} = X_2 X_1^{-1} = X$$

that is X is real.

Item 2. (b) X is symmetric if

$$X = X_2 X_1^{-1} = (X_1^{-1})^* X_2^* = X^*$$

or in other words

$$T = X_2^* X_1 - X_1^* X_2 = 0.$$

Now note that

$$T = V_1^* J V_1 = \begin{bmatrix} X_1^* & X_2^* \end{bmatrix} \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Since $J H J = H^T$, H and J satisfy the Lyapunov equation

$$J H + H^T J = 0$$

Multiplying the above equation by V_1^* on the left and V_1 on the right and using (2)

$$0 = V_1^* J H V_1 + V_1^* H^T J V_1$$

$$= V_1^* J V_1 W + W^* V_1^* J V_1$$

$$= T W + W^* T.$$

Because W is Hurwitz $T = 0$.

MAE 280 B

29

Maurício de Oliveira
Item 2. (c) Multiply (2) by X_1^{-1} on the right and by $[I \ 0]$ on the left to obtain

$$[I \ 0] H \begin{bmatrix} I \\ X \end{bmatrix} = [I \ 0] \begin{bmatrix} A & Z \\ -Q & A^T \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = A + ZX = X_1WX_1^{-1}.$$

Therefore, $A + ZX$ is stable because it is similar to a stable matrix. For uniqueness assume \tilde{X} is also a stabilizing solution to the ARE. Therefore subtracting the two AREs

$$0 = (A^T X + X A + X ZX + Q) - (A^T \tilde{X} + \tilde{X} A + \tilde{X} Z \tilde{X} + Q)$$

$$= A^T (X - \tilde{X}) + (X - \tilde{X}) A + X ZX - \tilde{X} Z \tilde{X}$$

$$= A^T (X - \tilde{X}) + (X - \tilde{X}) A + X ZX - \tilde{X} Z \tilde{X} - XZ \tilde{X} + XZ \tilde{X}$$

$$= A^T (X - \tilde{X}) + (X - \tilde{X}) A + XZ (X - \tilde{X}) + (X - \tilde{X}) Z \tilde{X}$$

$$= (A + ZX)^T (X - \tilde{X}) + (X - \tilde{X}) (A + Z \tilde{X})$$

The last equation can be seen as a Sylvester equation in $(X - \tilde{X})$ and since $A + ZX$ and $A + Z \tilde{X}$ are both Hurwitz $\lambda_i(A + ZX) + \lambda_j(A + Z \tilde{X}) < 0$ so that it admits only the trivial solution, that is, $X - \tilde{X} = 0$.

Item 3. To prove sufficiency note that if X_1 is invertible then $A + ZX$ is stable such that (A, Z) is stabilizable.

The proof of necessity is more complicated. Assume that $Z \succeq 0$ (or $Z \preceq 0$), (A, Z) is stabilizable and that X_1 is singular, such that there exists $x \neq 0$ such that $X_1 x = 0$. Multiply (2) by $[I \ 0]$ on the left to obtain

$$[I \ 0] H \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = AX_1 + ZX_2 = X_1 W$$

Multiply on the left by $x^* X_2^*$ and on the right by x

$$x^* X_2^* A X_1 x + x^* X_2^* ZX_2 x = x^* X_2^* X_1 W x = x^* X_2^* X_1^* X_2 W x$$

and use the fact that $X_1 x = 0$ to obtain

$$x^* X_2^* ZX_2 x = 0$$

which implies $ZX_2 x = 0$ because $Z \succeq 0$ (or $Z \preceq 0$). Note that this also implies

$$X_1 W x = 0.$$
Auxiliary lemma: Assume W is Hurwitz. There exists $x \neq 0$ such that $X_1x = X_1Wx = 0$ if and only if there exists $\tilde{x} \neq 0$ such that

$$X_1\tilde{x} = 0, \quad W\tilde{x} = \tilde{\lambda}\tilde{x}, \quad \tilde{\lambda} + \tilde{\lambda}^* < 0.$$

Proof (Auxiliary lemma): Sufficiency is immediate since

$$X_1W\tilde{x} = \tilde{\lambda}X_1\tilde{x} = 0.$$

Necessity follows by contradiction. If X_1 is singular and

$$\not\exists \tilde{x} : X_1\tilde{x} = 0, \quad W\tilde{x} = \tilde{\lambda}\tilde{x}, \quad \tilde{\lambda} + \tilde{\lambda}^* < 0$$

then

$$X_1W\tilde{x} = \tilde{\lambda}X_1\tilde{x} \neq 0$$

for any eigenvalue/eigenvector pair $(\tilde{\lambda}, \tilde{x})$. Because W is nonsingular this must be true for n linearly independent vectors, which implies that X_1 is not singular. \hfill \Box (Auxiliary lemma)

Now multiply (2) by $[0 \ I]$ on the left to obtain

$$[0 \ I] H \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = -QX_1 - A^*X_2 = X_2W$$

and multiply by \tilde{x} such that $X_1\tilde{x} = 0$ on the right

$$0 = (A^*X_2 + X_2W)\tilde{x}$$

$$= (A^* - \lambda I)X_2\tilde{x}, \quad \lambda = -\tilde{\lambda}, \quad \lambda + \lambda^* > 0.$$

Since $ZX_2\tilde{x} = 0$, this implies that (A, Z) is not stabilizable, which is a contradiction.
We now use Lemma 2 to prove that \(A + BK \) is Hurwitz. It amounts to apply item 3 of Lemma 2 to the ARE

\[
A^T X + X A - X B R^{-1} B^T X + Q = 0.
\]

For that notice that

\[
Z = -B R^{-1} B^T \preceq 0
\]

because \(R \succ 0 \) then \(B R^{-1} B^T \succeq 0 \). Therefore, if \((A, Z) = (A, -B R^{-1} B^T) \) is stabilizable then \(X_1 \) in Lemma 2 should be invertible and the solution \(X \) should be unique, symmetric and stabilizing.

With that in mind suppose that \((A, B) \) is stabilizable but that \((A, -B R^{-1} B^T) \) is not, so that there exists \(z \neq 0 \) such that

\[
z^* A = \lambda z^*, \quad z^* B R^{-1} B^T = 0, \quad \lambda + \lambda^* \geq 0.
\]

Therefore

\[
z^* B R^{-1} B^T z = 0.
\]

Because \(R^{-1} \succ 0 \) this can only be true if \(z^* B = 0 \), which contradicts the hypothesis that \((A, B) \) is stabilizable, proving that \((A, -B R^{-1} B^T) \) is stabilizable and

\[
A + BK = A + B(-R^{-1} B^T X) = A - BR^{-1} B^T X = A + ZX
\]

is Hurwitz.

Warning: The optimal control gain \(K \) is independent from the initial condition! However, the optimal cost is not!