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Abstract

An analysis of the Gibbs conditions of stable thermodynamic equi-
librium, based on the constrained minimization of the four fundamen-
tal thermodynamic potentials, is presented with a particular attention
given to the previously unexplored connections between the second-
order variations of thermodynamic potentials. These connections are
used to establish the convexity properties of all potentials in relation to
each other, which systematically deliver thermodynamic relationships
between the specific heats, and the isentropic and isothermal bulk mod-
uli and compressibilities. The comparison with the classical derivation
is then given.
Keywords: Gibbs conditions, internal energy, second-order variations,
specific heats, thermodynamic potentials

1 Introduction

The Gibbs conditions of thermodynamic equilibrium are of great importance in
the analysis of the equilibrium and stability of homogeneous and heterogeneous
thermodynamic systems [1]. The system is in a thermodynamic equilibrium if
its state variables do not spontaneously change with time. As a consequence
of the second law of thermodynamics, the equilibrium state of an isolated sys-
tem at constant volume and internal energy is the state with the maximum
value of the total entropy. Alternatively, among all neighboring states with the
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same volume and total entropy, the equilibrium state is one with the lowest
total internal energy. Further equilibrium conditions can be stated in terms of
other thermodynamic potentials (Helmholtz free energy, enthalpy, and Gibbs
energy), which apply under different types of thermomechanical constraints.
For example, among all neighboring states at the same temperature and pres-
sure, the equilibrium state is one with the lowest Gibbs energy. A detailed
analysis of these equilibrium conditions, with their applications, can be found
in the standard texts on thermodynamics, such as [2-7].

The objective of this paper is to derive simple, previously unnoticed and un-
explored, relationships between the second-order variations of thermodynamic
potentials, which are then used to establish the relationships between the con-
vexity and concavity properties of all thermodynamic potentials in terms of
the convexity property of the internal energy function. Based on this, the fun-
damental thermodynamic connections between the specific heats, and between
the isentropic and isothermal bulk moduli and compressibilities, are derived.
The analysis is more general, yet simpler than the other analysis commonly
used in the literature, which is based on the formal change of the independent
state variables [4-6].

2 Internal energy

Consider a uniform body of current volume V and mass density ρ = m/V ,
which is in thermodynamic equilibrium at temperature T and pressure p.1 Let
ϑ = 1/ρ be the specific volume, and let u = U/m and s = S/m be the uniform
specific internal energy and entropy (per unit mass), respectively. The pressure
p is a conjugate variable to volume V , and the temperature T is a conjugate
variable to entropy S. The Gibbs condition of thermodynamic equilibrium
states that any small (spatially nonuniform) virtual variations (δs, δϑ) from a
uniform stable equilibrium state, prescribed under the constraints of constant
total entropy S and constant total volume V , give rise to an increase of the
internal energy U . Thus,

∆U =

∫

V

ρ∆u(s, ϑ) dV > 0 , (1)

1Solid materials with a nonlinear pressure–volume relation under purely compressive
loading are of primary concern here [8], although the analysis also applies to thermodynamics
of fluid systems at rest [9].
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subjected to the constraints2

∆S =

∫

V

ρδs dV = 0 , ∆V =

∫

V

ρδϑ dV = 0 . (2)

The conservation of mass implies that δ(ρ dV ) = 0. The change of the specific
internal energy ∆u, due to nonuniform variations δs and δϑ, is

∆u =
∞∑

k=1

1

k!
δku , δku =

(
δs

∂

∂s
+ δϑ

∂

∂ϑ

)k

u . (3)

In particular, the first-order variation of u is

δu = Tδs− pδϑ , (4)

where T = ∂u/∂s is the temperature, and p = −∂u/∂ϑ is the pressure. The
second-order variation of u is likewise

δ2u =
∂2u

∂s2
(δs)2 + 2

∂2u

∂s∂ϑ
δsδϑ +

∂2u

∂ϑ2
(δϑ)2 . (5)

In view of the constraint conditions (2), from (1) it follows that

∆U =
∞∑

k=2

1

k!

∫

V

ρδku dV =
1

2

∫

V

ρδ2u dV + · · · > 0 . (6)

This must hold for any admissible virtual variations δs and δϑ, subjected to
(2), which is assured by the requirement that u = u(s, ϑ) is a convex function
of its arguments. A sufficient condition for this is that the Hessian matrix
of u is positive-definite, δ2u > 0.3 When expressed in terms of the extensive
properties, this is

∂2U

∂S2
(δS)2 + 2

∂2U

∂S∂V
δSδV +

∂2U

∂V 2
(δV )2 > 0 . (7)

The well-known consequences are that the specific heats and the isentropic
and isothermal compressibilities are positive quantities [2-6].

2More commonly the considerations are made in the literature by imagining that the
system is subdivided into two equal parts that are given opposite virtual disturbances
(∆S/2,∆V/2) and −(∆S/2,∆V/2); [4–6]. See also [10] for the microcanonical thermo-
dynamics and phase transitions in small systems.

3If δ2u = 0, higher-order variations need to be considered, i.e., for the stability of equi-
librium the first nonvanishing variation δku (k > 1) must be positive and the corresponding
k has to be even.
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3 Helmholtz free energy

The total Helmholtz free energy of a stable equilibrium state,

F =

∫

V

ρu(s, ϑ) dV − T

∫

V

ρs dV , (8)

is at minimum with respect to small virtual variations (δs, δϑ) at constant
temperature T and constant volume V . Thus,

∆F =

∫

V

ρ∆u(s, ϑ) dV − T

∫

V

ρδs dV > 0. (9)

In view of the Gibbs relation δu = −pδϑ+Tδs, and the total volume constraint,
this gives

∆F =
1

2

∫

V

ρδ2u dV + · · · > 0 , (10)

where δ2u is given by (5). A sufficient condition for ∆F to be positive is that
δ2u > 0.

Next, by considering

F =

∫

V

ρf(T, ϑ) dV , (11)

it follows that, at constant T and V ,

∆F =
1

2

∫

V

ρ
∂2f

∂ϑ2
(δϑ)2 dV + · · · > 0 . (12)

A sufficient condition for this positive-definiteness is that ∂2f/∂ϑ2 > 0, i.e.,

∂2F

∂V 2
> 0 . (13)

3.1 Relationships among the second-order variations of
F and U

The internal energy and the Helmholtz free energy are related by the Legendre
transform

F (T, V ) = U(S, V )− TS . (14)

Consider a small variation of state (δS, δV ), which obeys the energy equation,
and denote by δT the corresponding temperature variation. Then,

F (T + δT, V + δV ) = U(S + δS, V + δV )− (T + δT )(S + δS) . (15)
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Upon the Taylor expansion and collection of the same-order terms, there fol-
lows

δF = δU − TδS − SδT = −pδV − SδT ,

δ2F = δ2U − 2δTδS , (16)

δkF = δkU , k ≥ 3 .

Since

T =
∂U

∂S
⇒ δT =

∂2U

∂S2
δS +

∂2U

∂S∂V
δV , (17)

S = −∂F

∂T
⇒ δS = −∂2F

∂T 2
δT − ∂2F

∂T∂V
δV , (18)

the substitution into (16) yields

∂2F

∂T 2
(δT )2 + 2

∂2F

∂T∂V
δTδV +

∂2F

∂V 2
(δV )2 =

− ∂2U

∂S2
(δS)2 +

∂2U

∂V 2
(δV )2 ,

(19)

∂2U

∂S2
(δS)2 + 2

∂2U

∂S∂V
δSδV +

∂2U

∂V 2
(δV )2 =

− ∂2F

∂T 2
(δT )2 +

∂2F

∂V 2
(δV )2 .

(20)

Both of these imply that, for δV = 0,

∂2F

∂T 2
(δT )2 = −∂2U

∂S2
(δS)2 .

Thus, at the state where the internal energy U is a convex function of S, the
Helmholtz free energy F is a concave function of T , i.e.,

∂2U

∂S2
> 0 ⇒ ∂2F

∂T 2
< 0 . (21)

Furthermore, by considering isothermal variations of volume, (20) confirms
(13), at any state where δ2U , given by the left-hand side of (20), is a positive-
definite quadratic form. It is also noted that (19) implies that δ2F itself is
a positive-definite quadratic form for any isentropic variation of volume and
temperature, at any state where U is a convex function of V , with ∂2U/∂V 2 >
0. In retrospect, it is commonly assumed that that entropy is a monotonically
increasing function of temperature, so that ∂S/∂T = −∂2F/∂T 2 > 0, which is
in accord with (21).
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4 The enthalpy function

The total enthalpy,

H =

∫

V

ρu(s, ϑ) dV + p

∫

V

ρϑ dV , (22)

of a stable equilibrium state is at minimum with respect to small virtual varia-
tions (δs, δϑ) at constant pressure and subjected to the constraint of constant
total entropy (

∫
V

ρδs dV = 0). The change of enthalpy is

∆H =

∫

V

ρδu(s, ϑ) dV + p

∫

V

ρδϑ dV . (23)

In view of the Gibbs relation, and the total entropy constraint, the minimum
condition requires that

∆H =
1

2

∫

V

ρδ2u dV + · · · > 0 , (24)

where δ2u is given by (5). A sufficient condition for ∆H to be positive is that
δ2u > 0.

Furthermore, by considering

H =

∫

V

ρh(s, p) dV , (25)

it follows that, at constant p and S,

∆H =
1

2

∫

V

ρ
∂2h

∂s2
(δs)2 dV + · · · > 0 . (26)

A sufficient condition for this positive-definiteness is that ∂2h/∂s2 > 0, i.e.,

∂2H

∂S2
> 0 , (27)

so that the enthalpy is a convex function of the entropy. This is in accord with
the common assumption that the temperature T = ∂H/∂S is a monotonically
increasing function of the entropy.
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4.1 Relationships among the second-order variations of
H and U

The enthalpy and internal energy are related by the Legendre transform

H(S, p) = U(S, V ) + pV . (28)

Consider a small variation of state (δS, δV ), which obeys the energy equation,
and denote by δp the corresponding pressure variation. Then,

H(S + δS, p + δp) = U(S + δS, V + δV ) + (p + δp)(V + δV ) . (29)

Upon the Taylor expansion and collection of the same-order terms, there fol-
lows

δH = δU + pδV + V δp = TδS + V δp ,

δ2H = δ2U + 2δpδV , (30)

δkH = δkU , k ≥ 3 .

Since

p = −∂U

∂V
⇒ δp = −∂2U

∂V 2
δV − ∂2U

∂S∂V
δS , (31)

V =
∂H

∂p
⇒ δV =

∂2H

∂p2
δp +

∂2H

∂S∂p
δS , (32)

the substitution into (30) yields

∂2H

∂S2
(δS)2 + 2

∂2H

∂S∂p
δSδp +

∂2H

∂p2
(δp)2 =

∂2U

∂S2
(δS)2 − ∂2U

∂V 2
(δV )2 ,

(33)

∂2U

∂S2
(δs)2 + 2

∂2U

∂S∂V
δSδV +

∂2U

∂V 2
(δV )2 =

∂2H

∂S2
(δS)2 − ∂2H

∂p2
(δp)2 .

(34)

Both of these imply that, for δS = 0,

∂2H

∂p2
(δp)2 = −∂2U

∂V 2
(δV )2 .

Thus, at the state where U is a convex function of volume, H is a concave
function of pressure, i.e.,

∂2U

∂V 2
> 0 ⇒ ∂2H

∂p2
< 0 . (35)
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4.2 Relationships among the second-order variations of
H and F

The enthalpy and the Helmholtz free energy are related by the Legendre trans-
form

H(S, p) = F (T, V ) + TS + pV . (36)

Consider a small variation of state (δT, δV ), with the the corresponding vari-
ations of the onjugate variables (δS, δp). Then,

H(S + δS, p + δp) = F (T + δT, V + δV ) + (T + δT )(S + δS)

+ (p + δp)(V + δV ) .
(37)

Upon the Taylor expansion and collection of the same-order terms, there fol-
lows

δH = δF + TδS + SδT + pδV + V δp = TδS + V δp ,

δ2H = δ2F + 2δTδS + 2δpδV , (38)

δkH = δkF , k ≥ 3 .

Since

p = −∂F

∂V
⇒ δp = −∂2F

∂V 2
δV − ∂2F

∂T∂V
δT , (39)

T =
∂H

∂S
⇒ δT =

∂2H

∂S2
δS +

∂2H

∂S∂p
δp , (40)

the substitution into (38) yields δ2H = −δ2F , i.e.,

∂2H

∂S2
(δS)2 + 2

∂2H

∂S∂p
δSδp +

∂2H

∂p2
(δp)2 =

−
[
∂2F

∂T 2
(δT )2 + 2

∂2F

∂T∂V
δTδV +

∂2F

∂V 2
(δV )2

]
.

(41)

Both of these are indefinite quadratic forms; at the state where F is a concave
function of temperature and convex function of volume, H is a convex function
of entropy and a concave function of pressure.

5 Gibbs energy

The Gibbs energy,

G =

∫

V

ρu(s, ϑ) dV − T

∫

V

ρs dV + p

∫

V

ρϑ dV , (42)
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of a stable equilibrium state is at minimum with respect to any virtual vari-
ations (δs, δϑ), applied at constant pressure and temperature (δp = 0 and
δT = 0). The change of G, at constant pressure and temperature, is

∆G =

∫

V

ρ∆u(s, ϑ) dV − T

∫

V

ρδs dV + p

∫

V

ρδϑ dV . (43)

In view of the Gibbs relation, ∆G becomes

∆G =
1

2

∫

V

ρδ2u dV + · · · , (44)

where δ2u is defined by (5). An obviously sufficient condition for ∆G to be
positive is that δ2u > 0.

Alternatively, the total Gibbs energy of the deformed body is

G =

∫

V

ρ[f(T, ϑ) dV + pϑ] dV , (45)

with its change, at constant pressure and temperature,

∆G =

∫

V

ρ[∆f(T, ϑ) + pδϑ] dV . (46)

Since, under isothermal condition,

∆f =
∂f

∂ϑ
δϑ +

1

2

∂2f

∂ϑ2
(δϑ)2 + · · · , (47)

and p = −∂f/∂ϑ, the change of Gibbs energy in (46) becomes

∆G =
1

2

∫

V

ρ
∂2f

∂ϑ2
(δϑ)2 dV + · · · . (48)

A sufficient condition for this to be positive is that the second derivative
∂2f/∂ϑ2 of the elastic strain energy is positive at the considered equilibrium
state.

5.1 Relationships among second-order variations of G

and U

The Gibbs energy and internal energy densities are related by the Legendre
transform

G(T, p) = U(S, V )− TS + pV . (49)
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Consider a variation of state (δS, δV ), in compliance with the energy equa-
tion, and denote by δT and δp the corresponding temperature and pressure
variations. Then,

G(T + δT, p + δp) = U(S + δS, V + δV )− (T + δT )(S + δS)

+ (p + δp)(V + δV ) .
(50)

Upon the Taylor expansion and collection of the same-order terms, there fol-
lows

δG = δU − TδS − SδT + pδV + V δp = −SδT + V δp ,

δ2G = δ2U − 2δTδS + 2δpδV , (51)

δkG = δkU , k ≥ 3 .

Since

V =
∂G

∂p
⇒ δV =

∂2G

∂p∂T
δT +

∂2G

∂p2
δp , (52)

S = −∂G

∂T
⇒ δS = −∂2G

∂T 2
δT − ∂2G

∂T∂p
δp , (53)

the substitution into (51) yields

δ2G = −δ2U , (54)

or, in the expanded form,

∂2G

∂T 2
(δT )2 + 2

∂2G

∂T∂p
δTδp +

∂2G

∂p2
(δp)2 =

−
[
∂2U

∂S2
(δS)2 + 2

∂2U

∂S∂V
δSδV +

∂2U

∂V 2
(δV )2

]
.

(55)

Thus, at the state where δ2U is a positive-definite quadratic form in δS and
δV , δ2G is a negative-definite quadratic form in δT and δp. While the internal
energy U is a convex function of the entropy and volume, the Gibbs energy
G is a concave function of the temperature and pressure. This proof of the
concavity of G with respect to p and T is appealing because it is simpler than,
for example, a recent proof presented in [11]; see also [12].

5.2 Relationships among second-order variations of G

and F

The Gibbs energy and the Helmholtz free energy are related by the Legendre
transform

G(T, p) = F (T, V ) + pV . (56)
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Consider an arbitrary virtual variation of state (δT, δV ), and denote by δp the
corresponding stress variation. Then,

G(T + δT, p + δp) = f(T + δT, V + δV ) + (p + δp)(V + δV ) . (57)

Upon the Taylor expansion and collection of the same-order terms, there fol-
lows

δG = δF + pδV + V δp = −SδT + V δp ,

δ2G = δ2F + 2δpδV , (58)

δkG = δkF , k ≥ 3 .

The substitution of (39) and (52) into (58) yields

∂2G

∂T 2
(δT )2 + 2

∂2G

∂T∂p
δTδp +

∂2G

∂p2
(δp)2 =

∂2F

∂T 2
(δT )2 − ∂2F

∂V 2
(δV )2 ,

(59)

∂2F

∂T 2
(δT )2 + 2

∂2F

∂T∂V
δTδV +

∂2F

∂V 2
(δV )2 =

∂2G

∂T 2
(δT )2 − ∂2G

∂p2
(δp)2 .

(60)

Both of these imply that, for δT = 0,

∂2G

∂p2
(δp)2 = −∂2F

∂V 2
(δV )2 .

Thus, since at the state where F is a convex function of volume, G is a concave
function of pressure, and vice versa, i.e.,

∂2F

∂V 2
> 0 ⇔ ∂2G

∂p2
< 0 . (61)

5.3 Relationships among second-order variations of G

and H

The Gibbs energy and enthalpy are related by the Legendre transform

G(T, p) = H(S, p)− TS . (62)

Consider a variation of state (δT, δp), and denote by δS be the corresponding
entropy variation. Then,

G(T + δT, p + δp) = H(S + δS, p + δp)− (T + δT )(S + δS) . (63)
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Upon the Taylor expansion and collection of the same-order terms, there fol-
lows

δG = δH − TδS − SδT = V δp− SδT ,

δ2G = δ2H − 2δTδS , (64)

δkG = δkH , k ≥ 3 .

In view of (40), and

S = −∂G

∂T
⇒ δS = −∂2G

∂T 2
δT − ∂2G

∂T∂p
δp ,

the substitution into (64) yields

∂2G

∂T 2
(δT )2 + 2

∂2G

∂T∂p
δTδp +

∂2G

∂p2
(δp)2 =

− ∂2H

∂S2
(δS)2 +

∂2H

∂p
(δp)2 ,

(65)

∂2H

∂S2
(δS)2 + 2

∂2H

∂S∂p
δSδp +

∂2H

∂p2
(δp)2 =

− ∂2G

∂T 2
(δT )2 +

∂2G

∂p2
(δp)2 .

(66)

Both of these imply that, for δp = 0,

∂2G

∂T 2
(δT )2 = −∂2H

∂S2
(δS)2 .

Thus, at the state where G is a concave function of temperature, H is a convex
function of entropy, and vice versa, i.e.,

∂2G

∂T 2
< 0 ⇔ ∂2H

∂S2
> 0 . (67)

5.4 Convexity of u by minimization of g

Consider a small portion (of unit mass) of the body at uniform temperature
T and pressure p. The remaining part of the body may be regarded as an
external medium to this small part [13]. Then, any small deviation from the
equilibrium state of the considered part, caused by local virtual variations of
entropy and volume (δs, δϑ), at constant T and p, must increase the Gibbs
energy g = u(s, ϑ)− Ts + pϑ, i.e.,

∆g = ∆u(s, ϑ)− Tδs + pδϑ > 0 . (68)
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The change of the internal energy is

∆u =
∂u

∂s
δs +

∂u

∂ϑ
δϑ +

1

2
δ2u + · · · . (69)

Since T = ∂u/∂s and p = −∂u/∂ϑ, the substitution of (69) into (68) gives

∆g =
1

2
δ2u + · · · > 0 . (70)

This must hold for any small virtual variations δs and δϑ, which is assured
by the requirement that the Hessian matrix of u = u(s, ϑ) is positive-definite
(sufficient condition for the convexity of u in a near neighborhood of the equi-
librium state).

6 Relationships among thermodynamic prop-

erties

We apply in this subsection the relationships between the second-order vari-
ations of thermodynamic potentials to deduce the classical thermodynamic
connections between the specific heats at constant pressure and volume, and
between the isentropic and isothermal bulk muduli and compressibilities. The
Hessian matrices of the four thermodynamic potentials, with respect to their
natural independent variables, are [6]

[
USS USV

UV S UV V

]
=




T

cV

− lV

cV

− lV

cV

1

V βS




,

[
FTT FTV

FV T FV V

]
=




−cV

T
− lV

T

− lV

T

1

V βT




,

[
HSS HSp

HpS Hpp

]
=




T

cp

− lp

cp

− lp

cp

−V βS




,

[
GTT GTp

GpT Fpp

]
=




−cp

T
− lp

T

− lp

T
−V βT


 .

The convexity of the internal energy U = U(S, V ) implies that

USS > 0 ⇒ cV > 0 ; UV V > 0 ⇒ βS > 0 , (71)
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and

USSUV V − U2
SV > 0 ⇒ l2V <

TcV

V βS

. (72)

Similarly, the concavity of the Gibbs energy G = G(T, p) yields

GTT < 0 ⇒ cp > 0 ; Gpp < 0 ⇒ βT > 0 , (73)

and
GTT Gpp −G2

Tp > 0 ⇒ l2p < V TcpβT . (74)

Since

lV =
αT

βT

, lp = −V Tα = −βT V lV , (75)

from either (72) or (74) we also identify the upper bound on the square of the
coefficient of volumetric thermal expansion, which is

α2 <
cpβT

V T
. (76)

By dividing (59) with (δT )2 at V = const., we next obtain

GTT + 2GTp

(
∂p

∂T

)

V

+ Gpp

(
∂p

∂T

)2

V

= FTT . (77)

Since

lV = T

(
∂S

∂V

)

T

= T

(
∂p

∂T

)

V

, (78)

and in view of the expressions for FTT , GTT , GTp, and Gpp, equation (77) yields
the relationship between the specific heats,

cp − cV = − lplV
T

=
α2V T

βT

. (79)

By dividing (20) with (δV )2 at T = const., we obtain

USS

(
∂S

∂V

)2

T

+ 2USV

(
∂S

∂V

)

T

+ UV V = FV V . (80)

In view of (78), and the expressions for USS, USV , UV V , and FV V , equation (80)
delivers the relationship between the isentropic and isothermal bulk moduli,

1

βS

− 1

βT

=
V l2V
TcV

. (81)
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Finally, by dividing (66) with (δp)2 at T = const., we have

HSS

(
∂S

∂p

)2

T

+ 2HSp

(
∂S

∂p

)

T

+ Hpp = Gpp . (82)

Recalling that

lp = T

(
∂S

∂p

)

T

= −T

(
∂V

∂T

)

p

, (83)

and in view of the expressions for HSS, HSp, Hpp, and Gpp, equation (82) de-
livers the relationship between the isentropic and isothermal compressibilities,

βT − βS =
l2p

V Tcp

. (84)

Clearly, from either (81) or (84), βT > βS.
If (79) is divided by cp, and (84) by βT , there follows

1− cV

cp

= − lplV
cpT

, 1− βS

βT

=
l2p

V TcpβT

.

The right-hand side of these expressions are equal to each other, because lp =
−βT V lV , by (75). Thus, the well-known connection [2-6]

βS

βT

=
cV

cp

. (85)

To compare the with the classical derivation, we recall that a commonly
used route to derive the relationship (81) is based on the transition p =
p[V, T (S, V )] and the chain-rule partial differentiation

(
∂p

∂V

)

S

=

(
∂p

∂V

)

T

+

(
∂p

∂T

)

V

(
∂T

∂V

)

S

. (86)

Since

(
∂T

∂V

)

S

= −

(
∂S

∂V

)

T(
∂S

∂T

)

V

= − lV

cV

, (87)

and in view of the thermodynamic definitions of the isothermal and isentropic
bulk moduli

1

βT

= −V

(
∂p

∂V

)

T

,
1

βS

= −V

(
∂p

∂V

)

S

, (88)
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and the definition of the latent heat lV in (78), equation (86) reproduces (81).
Similarly, the relationship (79) can be derived from S = S[V (T, p), T ], and

(
∂S

∂T

)

p

=

(
∂S

∂T

)

V

+

(
∂S

∂V

)

T

(
∂V

∂T

)

p

. (89)

The multiplication of (89) by T and the use of the defining expressions for the
specific and latent heats (cp, cV , lp, and lV ) yields (79). Finally, the relationship
(84) follows from V = V [p, T (S, p)], and

(
∂V

∂p

)

S

=

(
∂V

∂p

)

T

+

(
∂V

∂T

)

p

(
∂T

∂p

)

S

, (90)

because

(
∂T

∂p

)

S

= −

(
∂S

∂p

)

T(
∂S

∂T

)

p

= − lp

cp

. (91)

7 Constrained entropy maximization

In a dual analysis to that presented for internal energy in Section 2, the entropy
maximization can be pursued as follows. Any spatially nonuniform virtual
variations of the internal energy density and the specific volume (δu, δϑ) from
a state of stable equilibrium, under the constraints of constant total internal
energy U and constant total volume V , give rise to a decrease of the total
entropy S. Thus,

∆S =

∫

V

ρ∆s(u, ϑ) dV < 0 , S =

∫

V

ρs(u, ϑ) dV , (92)

subjected to the constraints

∆U =

∫

V

ρδu dV = 0 , ∆V =

∫

V

ρδϑ dV = 0 . (93)

The change of the specific entropy ∆s, due to nonuniform variations δu and
δϑ, is

∆s =
∞∑

k=1

1

k!
δks , δks =

(
δu

∂

∂u
+ δϑ

∂

∂ϑ

)k

s . (94)
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The first-order variation of s is

δs =
1

T
δu +

p

T
δϑ , (95)

where T−1 = ∂s/∂u, and p = T∂s/∂ϑ. The second-order variation of s is

δ2s =
∂2s

∂u2
(δu)2 + 2

∂2s

∂u∂ϑ
δuδϑ +

∂2s

∂ϑ2
(δϑ)2 . (96)

In view of the constraint conditions (93), from (92) it follows that

∆S =
∞∑

k=2

1

k!

∫

V

ρδks dV =
1

2

∫

V

ρδ2s dV + higher order terms < 0 . (97)

This must hold for any admissible virtual variations δu and δϑ, subjected
to (93), which is assured by the requirement that s = s(u, ϑ) is a concave
function of u and ϑ. A sufficient condition for this is that the Hessian matrix
of s is negative-definite, δ2s < 0. When expressed in terms of the extensive
properties, this is

∂2S

∂U2
(δU)2 + 2

∂2S

∂U∂V
δUδV +

∂2S

∂V 2
(δV )2 < 0 . (98)

The well-known consequences are that the specific heats and the compress-
ibilities are positive quantities [4-6]. Indeed, the Hessian matrix of S = S(U, V )
is

[
SUU SUV

SV U UV V

]
=




− 1

cV T 2

lV − p

cV T 2

lV − p

cV T 2
− 1

V TβT

− (lV − p)2

cV T 2




.

Thus,

SUU = − 1

cV T 2
< 0 ⇒ cV > 0 ,

SUUSV V − S2
UV =

1

cV T 2

1

V TβT

> 0 ⇒ βT > 0 ,

SV V = − 1

V TβT

− (lV − p)2

cV T 2
< 0 ⇒ cp >

pV

T
(2αT − βT p).
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8 Conclusion

An analysis of the Gibbs conditions of stable thermodynamic equilibrium based
on the constrained minimization of the four fundamental thermodynamic po-
tentials is presented, with a particular attention given to the previously un-
explored connections between the second-order variations of thermodynamic
potentials. These connections are used to establish the convexity or concav-
ity properties of all thermodynamic potentials in relation to each other. The
derivation is more general, yet simpler than that commonly used in the litera-
ture. The connections between the second-order variations of thermodynamic
potentials are used to derive the relationships among the thermodynamic prop-
erties, i.e., between the specific heats at constant pressure and volume, and
between the isentropic and isothermal bulk moduli and compressibilities. The
comparison with the classical derivation, based on the formal change of inde-
pendent variables and the corresponding chain-rule partial differentiation, is
given. Although the analysis is developed by using the pressure and volume
as the conjugate variables, it can be extended to other problems with different
conjugate variables, such as those that appear in the thermodynamic analysis
of the effective continua models and damage evolution [14,15], or in the anal-
ysis of nonlinear thermoelastic materials under arbitrary states of stress and
deformation [16,17]. In the latter case the deformation gradient and the non-
symmetric nominal stress are the conjugate mechanical variables. Due to the
inherent nonuniqueness of the equilibrium state in the finite strain elasticity,
the Gibbs conditions of infinitesimal stability are there considered, relative to
small disturbances in a near neighborhood of the equilibrium state.
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Termodinamička analiza na bazi varijacija drugog reda
termodinamičkih potencijala

U radu je data analiza Gibsovih uslova stabilne termodinamičke ravnoteže
na bazi vezane minimizacije četiri fundamentalna termodinamička potencijala,
uz poseban naglasak na ranije neispitane relacije izmedju varijacija drugog
reda termodinamičkih potencijala. Na bazi njih uspostavljena je veza izmedju
konveksnih i konkavnih svojstava svih potencijala, što na sistematski način
omogućuje uspostavljanje korelacija izmedju termodinamičkih osobina mater-
ijala, kao što su specifične toplote i izotermalni i izentropski moduli kompresi-
bilnosti.

doi:10.2298/TAM0803215L Math.Subj.Class.: 74A15, 74F05, 80A17


