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Animal- and human-made motors vary widely in size and shape, are
constructed of vastly different materials, use different mechanisms,
and produce an enormous range of mass-specific power. Despite
these differences, there is remarkable consistency in the maximum
net force produced by broad classes of animal- and human-made
motors. Motors that use force production to accomplish steady
translational motion of a load (myosin, kinesin, dynein, and RNA
polymerase molecules, muscle cells, whole muscles, winches, linear
actuators, and rockets) have maximal force outputs that scale as the
two-thirds power of mass, i.e., with cross-sectional area. Motors that
use cyclical motion to generate force and are more subject to mul-
tiaxial stress and vibration have maximal force outputs that scale as
a single isometric function of motor mass with mass-specific net force
output averaging 57 N�kg�1 (SD � 14). Examples of this class of
motors includes flying birds, bats, and insects, swimming fish, various
taxa of running animals, piston engines, electric motors, and all types
of jets. Dependence of force production and stress resistance on
cross-sectional area is well known, but the isometric scaling and
common upper limit of mass-specific force production by cyclical
motion motors has not been recognized previously and is not ex-
plained by an existing body of theory. Remarkably, this finding
indicates that most of the motors used by humans and animals for
transportation have a common upper limit of mass-specific net force
output that is independent of materials and mechanisms.

Organisms and machines move by exerting forces on their
external environment, and the upper limit of force output

affects performance variables such as acceleration and maxi-
mum load. The product of force and velocity is power, and motor
performance often is thought of in terms of power output rather
than force output. Here we concentrate strictly on force output
to reveal universal characteristics of motors that are obscured by
differences in power.

Force output is accomplished by a specialized structure (a
motor), the mass of which generally constitutes a significant portion
of the total device mass. The amount of force that a motor produces
in relation to its mass (specific force) affects material costs for
construction, energy efficiency, and the amount of payload that can
be transported. Other criteria such as procurement costs, fuel
consumption, maximum speed, noise, and emissions certainly affect
design and selection of a motor for a given application (1); however,
one theoretical ideal is a very small motor that produces a very high
force. This ideal is particularly apparent in applications such as
flight, where weight is critical. Improving motor ‘‘thrust-to-weight’’
ratio is an ongoing quest for designers of aircraft engines (1, †) and
presumably is a target of natural selection in flying animals, which
show tradeoffs between the size of the flight motor and important
payload such as ovaries (2). Thus, both human design and organic
evolution are attempting continually to make motors that produce
higher specific force.

Increasing the specific force output of a motor requires lighter
materials, greater stresses on component parts, and�or more opti-
mized mechanics. Engineers and biologists have devoted consid-
erable effort to studying the stresses experienced within the mate-
rials and component parts of motors (e.g., refs. 1 and 3–5, †), with
engineers looking for ways to improve durability and�or perfor-
mance and biologists seeking to understand the function and

evolution of natural design. For both animate and inanimate
motors, these efforts have included dimensional analyses of the
scaling of stresses within motor components (4, 5, ‡), but there has
been little effort to examine the scaling trends of net force output.
One notable exception is a wide-ranging review of the maximum
forces generated by animals (6), but that study contains a mixture
of peak instantaneous and time-averaged forces, and it addresses
the scaling of forces in relation to body mass rather than to motor
mass (the latter is true also for a more narrowly focused study of
forces generated by beetles (7). As a result, neither engineers nor
biologists have a well formed view of how net force output varies
according to motor mass. Here we perform such an analysis and
demonstrate striking similarities in the mass scaling and magnitude
of force output for broad classes of motors.

Methods
We accumulated data for the maximal net force output and
motor mass of a wide variety of animal- and human-made
devices. We sought a sample that is representative of the widest
range of sizes and design varieties including the most modern and
high-performance motors. In cases where the time course of
force output was reported (i.e., traces of instantaneous forces),
we have taken the time-averaged force over a single complete
cycle. Our data set includes the following.

Force Outputs by Animate Motors.

1. Forces generated by single myosin (8), kinesin (9), dynein
(10), and RNA polymerase (11) molecules producing static
tension.

2. Forces produced by molecular motors: a bacterial f lagellar
motor (12), the F0F1-ATPase ion pump (13), mammalian
sperm, the flagellum of which beats with a helical wave
motion (14), and the helical spasmoneme spring of the
protozoan Vorticella (15).

3. Tension produced by muscle cells or whole muscles while
maximally stimulated and clamped at constant length (refs.
16–24; all these measures are for the muscle only; forces are
parallel to the axis of strain, and there are no external levers).
This sample includes muscles of mollusks, insects, fish, frogs,
and mammals.

4. Net force output by flying insects, birds, and bats as deter-
mined from the maximum load lifted during takeoff from the
ground in still air (25–27). These data encompass a wide range
of taxa, body forms, and flight styles.

5. Mean ground reaction forces (resultant of vertical, fore-aft,
and lateral force vectors in cases where all three were
measured) from single or paired legs during running or
hopping by cockroaches (28), iguanas (29), kangaroo rats
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(30), and dogs (31), along with forces calculated from accel-
eration of the body center of mass for running humans (32).

6. Forces calculated from maximum whole-body acceleration
during bursts of swimming by crayfish (33) and fish (34).

Force Outputs by Inanimate Motors.

1. Maximal thrust at sea level by jet engines (see www.aircraft-
enginedesign.com, www.geae.com, and www.bairdtech.com�
bmt�BMT80.htm; these include data from thrust augmenta-
tion by afterburning in military jets).

2. Takeoff thrust of rockets (see www.bestofcolumbus.com�
Braeunig�space�specs.htm and www.thrustcurve.com; these
include data from a mixture of solid and liquid fuel propulsion
systems).

3. Maximalforceoutputofpistonengines(ref.35andwww.ferrari.
com, www.honda-engines.com, www.lycoming.textron.com,
www.hobby-lobby.com, www.hobbypeople.net�prodinfo�
magnum�magxl.htm, www.cummins.com, www.caterpillar.
com, and www.manbw.dk). These measures were obtained by
dividing maximum crankshaft torque by crankshaft radius
(half of piston-stroke length), or if maximum torque was not
reported we used data for maximum power, cycle frequency
at maximum power, and crankshaft radius (power �
2��freq�torque). We have included from ref. 35 only motors
of mass greater than 2 kg, because cycle frequency and net
force output of smaller engines (model airplane applications)
vary widely depending on the propeller that is used. The
estimation of maximum thrust (i.e., at low forward speed) for
a sample of contemporary small model airplane engines fitted
with specific propellers was performed for us by Landing
Products, the manufacturer of APC propellers (www.
apcprop.com).

4. Maximum sustainable force output by linear and rotary
electrical induction motors (see www.lineardrives.com�
technical_specifications.htm, www.calinear.com, www.thrust-
tube.com, www.powertecmotors.com, and www.hobby-
lobby.com). These include data from an artificial human heart
that is powered by a linear induction motor (36) and motors
that use AC or DC power with or without brushes.

5. Maximum force loads for both gas- and electric-powered
winches and hoists (www.pacificwinches.com�pacwinches�
index.htm, www.winchcentral.com, and www.irhoist.com).

6. Maximum static thrust or tensile forces generated by linear
actuators (www.racointernational.com and www.motionsystem.
com) and materials testing machines (www.instron.com).

7. In addition to the sources listed above, we obtained force
outputs for a piston engine and a jet engine that were
produced recently by the National Aeronautics and Space
Administration General Aviation Propulsion program (per-
sonal communication with L. A. Burkardt, National Aero-
nautics and Space Administration General Aviation Propul-
sion program manager, and K. Chatten, Senior Project
Engineer, Teledyne), the goals of which included increasing
the thrust-to-weight ratio of motors used for aviation. We also
obtained data for two other recent experimental microturbine
motors‡ (www.m-dot.com) that are part of military research
projects, the aims of which require minimizing motor size and
weight. We highlight these to emphasize that our sample
includes the most recent and sophisticated designs.

Motor Mass. Measures of motor mass for flying animals consist of
the total mass of the flight musculature and wings. Motor mass
for swimming fish is the total mass of myotome musculature used
in swimming. Motor mass for running animals was not reported
in the original studies, thus it is approximated here as 10% of
body mass per leg except for cockroaches, for which we use the
reported 2% of body mass per leg. Measures of motor mass for

machines are the mass of the motor exclusive of external support
structures and fuel. Measures of motor mass for rockets are the
sum of the rocket dry mass and propellant mass at takeoff (for
rockets the motor is the fuel, which is why fuel mass is included
here but not for other devices). The mass of single molecules was
obtained by dividing molecular weight by Avagadro’s number.
The mass of molecular motors was calculated from the molecular
weight and number of all component molecules (F0F1-ATPase)
or from estimates based on motor dimensions and density. The
mass of linear induction motors (LIMs) is variable, because they
can be equipped with a thrust rod of any length. Aside from the
LIM-driven artificial heart that has fixed dimensions, we calcu-
lated mass of LIMs by using a thrust-rod length that is twice the
length of the stator, because the result would be about the
minimum thrust-rod length to provide a generally useful range
of motion.

Results
Maximal force output of motors tends to scale either isometrically
(mass1.0) or allometrically according to cross-sectional area
(mass2�3). This tendency can be seen in Table 1, which identifies two
major groups that show similar regression coefficients for the mass
scaling of maximum force output. Group 1 consists of motors that
use force production to accomplish steady translational motion of
a load (single molecules, muscles, winches, linear actuators, and
rockets). For Group 1 motors, one scaling equation [force �
887�mass0.667 (units are N and kg); r2 � 0.994; Fig. 1] describes force
output over a range of 27 orders of magnitude of motor mass from
myosin molecules to the solid fuel booster rocket of the space
shuttle.

A second group of motors is clearly distinguishable (Table 1)
by scaling relationships in which force varies in a nearly isometric
fashion with motor mass. These are the motors of flying birds,
bats, and insects, swimming fish, running animals, piston en-
gines, linear and rotary electric motors, and all types of jets. The
distinguishing characteristic of these Group 2 motors is that they
use repetitive or cyclical motion to generate nonsteady force and
presumably are more subject to multiaxial stress and vibration
(at a given specific force output) than the motors in Group 1.
When we lump all the Group 2 motors together (Fig. 2), their
maximal force output scales as a single isometric function of
motor mass [55�mass0.999 (units are N and kg); r2 � 0.999], with
mass-specific net force output averaging 57 N�kg�1 (SD � 14; see
Fig. 2 Inset).

The only motors that do not adhere to these two general
scaling trends are the small group of molecular motors (mam-
malian sperm, a bacterial f lagellar motor, and the helical spas-
moneme spring of Vorticella), which fall between the two lines in
Figs. 1 and 2. The kinematics of these molecular motors feature
large lateral motions and presumably a higher level of multiaxial
stress than molecules such as myosin or kinesin that produce
translational motion and scale with Group 1. This result suggests
that small Reynold’s numbers and force regimes dominated by
viscosity rather than inertia can change the scaling of specific
force output for motors that would otherwise be expected to
scale with Group 2. This result also suggests that inertia is an
important feature of whatever mechanical phenomena unite the
mass-specific force outputs of Group 2 motors.

Although they produce surprisingly invariant-specific force out-
puts, Group 2 motors vary widely in their specific power outputs.
Two grams of hummingbird flight muscle (37) produce �0.65 W,
whereas the Massachusetts Institute of Technology microjet‡ of the
same mass produces �10 W. Because their specific force outputs do
not vary, these differences in specific power come primarily from
changes in the velocity of oscillating or rotating components (i.e.,
the 32-Hz oscillation frequency of 8-cm hummingbird wings versus
the 20-kHz rotation frequency of the 1-cm microjet turbine).
Making the comparison across a large size range reveals an even
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greater range of specific power output. The thoracic musculature
and wings of a fruit fly (27) generate �80 W�kg�1, whereas jet
engines can produce power outputs in excess of 10,000 W�kg�1.
Consistent specific force output over an enormous range of specific

power clearly indicates that force production rather than power
production is the limiting factor for motor performance across
divergent types of motors. This is not to say that power output
cannot be a limiting factor within specific types of motors or is
generally unimportant, for on the contrary, power output has much
to do with speed, economy, noise, emissions, heat production, and
so forth. Our point is simply that specific power output varies much
more so than does specific force output.

An interesting feature of the two distinct scaling relationships
shown in Figs. 1 and 2 is that they intersect at a mass of �4,400
kg. If the force output of Group 2 motors were to continue to
increase isometrically at motor masses greater than 4,400 kg,
they would need to produce more force per cross-sectional area
than do Group 1 motors. This seems unlikely, because the force
output of Group 1 motors presumably is limited by an upper
bound of uniaxial stress. Thus, the scaling of force production by
Group 2 motors should change from isometric to allometric at
motor masses greater than 4,400 kg. We tested this prediction by
examining data for piston engines that were not included in Fig.
1 and thus are independent of our scaling equations. Fig. 3a
shows net force output as a function of mass for piston engines
ranging in size from 0.17 to 1,901,000 kg (model airplanes to oil
tankers). The isometric equation for Group 2 motors fits pre-
cisely the sample of piston engines less than 4,400 kg, whereas the
allometric equation for Group 1 motors fits the upper bound of
force output for piston engines greater than 4,400 kg. Analysis
of covariance shows that separate regression lines fit to these
data for motors above and below 4,400 kg have significantly
different slopes (P � 0.0001). This inflection point at 4,400 kg
is even more pronounced for geometric data (Fig. 3b). A tight
relationship that describes the mass scaling of the ratio of total
piston cross-sectional area to stroke length (chosen because this
index captures two geometric variables) across 4 orders of
magnitude, up to a mass of 4,400 kg, does not apply for larger
engines, which show a great diversification in their design.
Because the scaling relationships in Figs. 1 and 2 were not known
previously, it is likely that this sharp transition in piston engine
geometry is primarily the outcome of trial and error rather than

Table 1. Fitting terms from least-squares linear regressions of log10 maximum force output (N) as a function of log10 motor mass (kg)
for different types of motors

Motor type Intercept Slope r2 N SE slope Minimum mass Maximum mass

Group 1
Muscles 2.995 0.677 0.997 16 0.010 4.8 � 10�22 0.014
Rockets 2.737 0.719 0.988 19 0.019 0.0079 5.87 � 105

Winches 3.251 0.736 0.852 6 0.154 14.5 1,361
Linear actuators 3.048 0.612 0.656 9 0.167 0.34 2,587
Mean 3.008 0.686

Group 2
Running animals 1.703 0.949 0.998 5 0.023 0.00004 32.7
Swimming animals 1.672 0.924 0.992 8 0.033 0.0009 0.04
Flying birds 1.555 0.959 0.993 11 0.026 0.002 0.37
Flying bats 1.862 1.082 0.994 7 0.037 0.002 0.013
Flying insects 1.583 0.959 0.982 149 0.011 3.7 � 10�7 0.008
Turbines 1.811 0.963 0.993 21 0.018 0.002 4,264
Turbofans 1.793 0.986 0.934 30 0.049 64 6,804
Electric rotary motors 1.739 1.078 0.999 10 0.013 0.04 558
Linear induction motors 1.825 0.854 0.940 7 0.096 1.9 32.6
Piston engines 1.719 1.016 0.988 31 0.021 0.165 2,744
Mean 1.726 0.977

The slope of these log-log regressions is b in the equation y � axb; the inverse log of the intercept is a. N shows the sample size within each category of motor;
SE is the standard error of the least-squares regression slope. Minimum and maximum motor masses (kg) are shown for each category. The data are separated
into two groups that are distinguished by slope and intercept. Single molecules that create translational motion (myosin, kinesin, and dynein) are included here
with muscle cells and whole muscles (treating muscles alone yields a nearly identical scaling equation). Piston engines greater than 4,400 kg mass are excluded,
because they scale differently than smaller piston engines (see text and Fig. 3).

Fig. 1. Maximum net force output as a function of motor mass for transla-
tional motors (Group 1 motors). The solid line is the least-squares regression
equation fit to the log-transformed data. This linear regression equation is
log10 force � 2.95 � 0.667 log10 mass (units are N and kg; r2 � 0.994; SE of the
slope � 0.007). The dashed line is the isometric scaling equation for the Group
2 motors shown in Fig. 2. Molecular motors (circular symbols) were excluded
from the regression fit; they operate in a viscous rather than an inertial regime
and conform to neither of the two scaling equations that describe net force
output of all other types of motors.
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an understanding that there is a fundamental change in factors
that limit engine performance above and below a certain mass.

Discussion
Allometric scaling of force output according to cross-sectional
area (mass2�3) is an expected result for Group 1 motors. These
motors are built to move loads in a translational fashion in such
a way that stresses are developed gradually and predictably, with
maximum force output occurring at or near the static breaking

stress of critically loaded parts. More surprising is the similarity
of the intercepts of the Group 1 scaling equations (Table 1) and
the adherence of all Group 1 motors to a single scaling equation
(Fig. 1) rather than a series of parallel equations. Mass-specific
ability of materials to resist static uniaxial stress is given by the
ratio of elastic modulus to density (3), which increases by a factor
of 16 between muscle and steel, yet the ratio of the scaling
constants for muscles versus machines (reverse-transformed
intercepts from Table 1) is close to unity. Thus, regression

Fig. 2. Maximum net force output as a function of motor mass for Group 2 motors. The solid line is the least-squares regression equation fit to the
log-transformed data. This linear regression equation is log10 force � 1.74 � 0.999 log10 mass (units are N and kg; r2 � 0.999; SE of the slope � 0.002). The dashed
line is the allometric scaling equation for translational Group 1 motors shown in Fig. 1. (Inset) Frequency distribution of specific force outputs for all Group 2
motors.

Fig. 3. (A) Maximum net force output as a function of motor mass for piston engines. Older engines are represented by open symbols (many date from the
1930s and 1940s; ref. 35); contemporary piston engines are represented by solid symbols. The solid line is the scaling equation derived from the data in Fig. 2;
the dashed line is the scaling equation derived from the data in Fig. 1. (B) The relationship between motor mass and the ratio of piston total cross-sectional area
to piston stroke length. The solid line is the least-squares regression equation fit to the log-transformed data for motors less than 4,400 kg in mass (log10 piston
area�stroke length � �160 � 0.617 log10 mass; units are m and kg).
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equations describing the mass dependence of force output of
these devices are much more similar than would be expected
based on static material properties.

Log-log plots tend to deemphasize important variation, and
that is certainly the case for the Group 1 motors in our sample.
The average absolute deviation from the regression line in Fig.
1 is 0.28 log units, and the data tend to fall within a band that
is �1 logarithmic unit in height (i.e., force output of Group 1
motors at a given mass can vary by as much as a 10:1 ratio). These
differences undoubtedly are functionally significant.

Force outputs of Group 2 motors are considerably less variable
than Group 1 (average absolute deviation from the regression line
in Fig. 2 is 0.07 log units), and their conformance to a single
isometric scaling relationship (Fig. 2 and Table 1) cannot be
explained readily. All the devices in this group use rotary or
oscillatory motion with cycle frequencies that scale inversely with
length (i.e., as l�1 or mass�1�3). Accordingly, dimensional analysis
for the mass scaling of force output (using F � mass r�, where r is
the rotor radius, and � is the angular acceleration) predicts that
force should be proportional to l3�l1�l�2, which would result in force
output scaling with length2 or mass2�3, just as occurs in Group 1
motors. Engineers have emphasized the desirability of maintaining
system dynamic performance (i.e., dynamic similarity) when de-
signing differently sized devices such as robots.§ This design con-
straint entails invariant accelerations for equivalent structural ele-
ments and therefore forces that scale with mass rather than area.
Likewise, the limbs of running animals have been shown to be
similar dynamically (38). Thus, isometric scaling of force output of
Group 2 motors is in agreement with the principle of dynamic
similarity, but that is hardly a satisfying result, because it leaves
unanswered the question of why one scaling equation describes all
Group 2 motors (Fig. 2) rather than a series of parallel equations
with different elevations or why the variation around the Group 2
scaling equation is less than the variation seen in Group 1 motors.
It also fails to explain why a motor such as the Massachusetts
Institute of Technology mircrojet‡ that was designed de novo using
materials and mechanisms different from any previous turbine
generates a specific force of 55 N�kg�1, which is almost exactly the
mean value for all other animate and inanimate Group 2 motors.
What enforces such strict adherence to maximum force output in
the neighborhood of �60 N�kg�1 for devices and organisms that
seem so fundamentally different? This is a question that we cannot
answer. Perhaps there is a simple explanation that we have over-
looked, or perhaps it will become another example (39) of scale
invariance and universality that resists mechanistic explanation.

An interesting aspect of the two different scaling relationships is
that some of the motors in one group are components of motors in
the other group. For example, winch motors are included in our
sample of electrical motors, the force output of which scales
isometrically with mass, yet the force output of whole winches scales
allometrically with other Group 1 motors that move loads in a
steady translational fashion. A reverse example is that of muscles
and animal motors. Individual myosin molecules, muscle cells, and
individual muscles have force outputs that scale allometrically
(Group 1), yet they are major components of the animal motor
systems, the force outputs of which scale isometrically (Group 2). In
both winches and animal limbs there are lever systems that either
increase force at the cost of speed (winches) or increase speed at the
cost of force (animal limbs). Apparently, lever systems that produce
steady translational motion can produce forces that are limited
ultimately by a critical cross-sectional area, whereas lever systems
involved in more complex motion and time-varying forces are
constrained to producing forces that scale isometrically with mass.
These results suggest that there are as yet poorly understood
relationships between stress regimes and device mass that unite the

mass-specific performance of motors in ways that are not affected
greatly by higher-level variables (i.e., materials and mechanisms)
other than the ability to switch between allometric versus isometric
scaling depending on the complexity of the stress regime.

One mechanism that changes allometric scaling of muscle force
to isometric scaling of whole-motor force in animal lever systems
has to do with departures from geometric similarity and the
allometric scaling of mechanical advantage. For any lever, the
product of force and length on one side of the fulcrum is equal to
the product of force and length on the other side of the fulcrum.
Thus, the ratio of muscle force to whole-limb force is equal to the
ratio of the lever-arm lengths between the muscle and the joint and
between the joint and the end of the limb. Ratios of lever arms
(mechanical advantage) in the legs of mammals have been shown
to scale allometrically. One result of this departure from geometric
similarity is that peak stresses in bones, muscles, and tendons are
mass-independent across wide ranges of animal size (4, 5). This
result has been interpreted as a design constraint that is necessary
to accommodate the different scaling of body weight and cross-
sectional area. Although this argument remains valid, the data
presented here suggest that the story is more general, because
isometric scaling of mass-specific force output occurs in fish, the
locomotor apparatus of which does not support body weight. There
seems to be a more fundamental reason why motor geometry needs
to be arranged to conserve mass-specific force output per se without
reference to weight or conservation of stress.

A consequence of the allometric scaling of force output by
motors exceeding 4,400 kg (Fig. 3) is that they start to become
restricted in the types of functions that they are suitable to
perform. The very large motors used to power trains and ships
and to generate electricity have specific force outputs that render
them unsuitable for applications that are particularly weight-
sensitive. For example, the Burmeister and Wain K98MC-C
engine (mass � 1,900,000 kg) used to propel oil tankers produces
a specific force output of less than 3 N�kg�1. The largest jet
engines (6,800 and 4,200 kg used on Boeing 777 and 747 jets,
respectively) and the largest piston engine ever built for aircraft
(the 2,700-kg Lycoming XR-7755) are near or slightly above the
size at which specific force of Group 2 motors begins to scale
allometrically rather than isometrically. Based on these data, it
seems that aircraft engines show little potential for size increases
substantially beyond the largest engines that exist already. For
applications involving very large aircraft, the use of multiple
engines at or below the size of the largest extant engines should
be more viable than attempting to build larger engines.

The results of our study point out the need for an improved
theoretical understanding of the principles that impose mecha-
nism- and material-independent limits on the specific force
output of motors. Improved knowledge in this area may not
make it possible to extend the present upper bound of specific
force (keep in mind that animals and evolution have been unable
to do so), but it would at least sharpen our view of what is
attainable. As an example of how such knowledge would be
helpful, consider the field of aerospace engineering, in which
there is a general lack of consensus regarding the recent
progress, future, or scalability of thrust-to-weight ratios for jets.
Designers of the Massachusetts Institute of Technology microjet
(40) predicted that ‘‘a millimeter-size engine would have a
thrust-to-weight ratio of about 100:1, compared with 10:1 for the
best modern aircraft engines.’’ As discussed above, it has turned
out that their microjet produces a 5.5:1 thrust-to-weight ratio
(thrust to mass � 55 N�kg�1). A prominent text (see page 357 of
ref. 1) states that thrust-to-weight ratios of jets have been
improving steadily since 1965 and ‘‘are expected to continue for
some time,’’ whereas a recent review† that plots the maximum
thrust-to-weight ratios of jets introduced since 1955 shows that
this metric has remained nearly constant since 1970 and con-
cludes that ‘‘it is clear that we are approaching a limit in our§Pollard,N.S.&Hodgins,J.K.,YaleWorkshoponAdaptiveandLearningSystems,June10–12,1998.
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ability to improve performance with existing technology.’’ The
next generation of U.S. fighter jet engine, the F119, presently
under development by Pratt & Whitney, has a goal of achieving
a specific thrust of 100 N�kg�1 without using afterburners. This
would place it within the upper tail of the distribution of specific
force for Group 2 motors (Fig. 2 Inset) and therefore presumably
near a universal failure mode. The turbine of a prototype F119
failed during a test fire and was subsequently redesigned, making
it 68 kg more massive (personal communication from Lt. Col.
A. K. Mitchell, U.S. Air Force). Both the mass and realized
thrust of this engine remain classified. As this engine evolves and
accumulates a record of field service, it will be interesting to see
whether it can attain its target thrust-to-weight specification
without making tradeoffs in areas such as durability. We high-
light these examples to illustrate the lack of previous recognition
of general scaling relationships and universal upper limits of
motor force output, to show that the most current designs have
not significantly exceeded the maximum force outputs indicated
by our data set, and to establish the need for theoretical
exploration.

Achieving a theoretical understanding of general factors
that ultimately limit the ability of Group 2 motors to produce
forces and withstand complex stress regimes is a considerable
challenge that probably will require decades of research. In the
meantime, we perhaps can only marvel that millions of years
of natural selection on animals and a few centuries of exper-
imentation with machines have resulted in an empirical and
evolutionary solution to the problem; Group 2 motors have
converged on a common upper limit of force output per unit
mass, and this occurs in a manner that is surprisingly inde-
pendent of mechanisms or material composition. Understand-
ing why this is so may hold the key to further advances in motor
performance or, alternatively, to the conclusion that an upper
limit has been reached already.
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