P1. Consider the following modification of the LQR problem discussed in class, where we seek to determine a state feedback controller \(u(t) = Kx(t) \) that stabilizes the system

\[
\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0.
\]

while minimizing the following cost function

\[
J := \int_0^\infty e^{2\alpha t} [x(t)^TQx(t) + u(t)^TRu(t)] \, dt
\]

where \(\alpha > 0 \) is a given constant. As for the standard LQR problem, assume that \(Q \succeq 0 \) and \(R \succ 0 \) and that \((A, B) \) stabilizable, and answer the following questions:

a) [1 mark] What is the impact of the exponential term in the integrand? How does it compare with the standard LQR cost? (Hint: Provide a qualitative discussion)

b) [2 marks] Show that the auxiliary state and control vectors

\[
\tilde{x}(t) = e^{\alpha t} x(t), \quad \tilde{u}(t) = e^{\alpha t} u(t)
\]

satisfy the differential equation

\[
\dot{\tilde{x}}(t) = (A + \alpha I)\tilde{x}(t) + B\tilde{u}(t), \quad \tilde{x}(0) = x_0
\]

and that

\[
J := \int_0^\infty \tilde{x}(t)^TQ\tilde{x}(t) + \tilde{u}(t)^TR\tilde{u} \, dt
\]

c) [4 marks] Using item b) and what you know about the LQR problem show how to compute the optimal state feedback controller \(\tilde{u}(t) = \tilde{K}\tilde{x}(t) \). You do not have to prove anything, but you should list all steps and the assumptions you used in each step.
d) [2 marks] Show how you can use the optimal controller in item c) to produce an optimal controller \(u(t) = Kx(t) \) that solves the original problem.

e) [1 mark] What is the impact of \(\alpha > 0 \) on the original assumptions? Did you need to modify them in any way?

P2. When analyzing the LQR problem we have assumed at the onset that a stabilizing solution was sought. However, the stabilizing solution will not always be an optimal solution. This problem will help you understand that. In the following items assume that \(x(0) = x_0 \).

a) [2 marks] Without stability as a requirement, what is the optimal solution to the following control problem

\[
\min_K \left\{ \int_0^\infty u(t)^T u(t) \, dt : \quad \dot{x}(t) = Ax(t) + Bu(t), \quad u(t) = Kx(t) \right\}
\]

(Hint: you do not need any fancy calculations to solve this!)

b) [2 marks] When \(A \) is Hurwitz, then the optimal solution is also stabilizing. To see that compute the stabilizing solution to the Riccati equation and the associated gain \(K \) for \(A = -1, B = 1 \).

c) [4 marks] When \(A \) is not Hurwitz, then the optimal solution is not stabilizing. To see that compute the stabilizing solution to the Riccati equation and the associated gain \(K \) for \(A = 1, B = 1 \). Compute also the “non-stabilizing” solution to the Riccati equation and the associated gain \(K \). Which one is optimal?

d) [4 marks] In order to make peace with our stability assumption compute the optimal solution to the LQR problem

\[
\min_K \left\{ \int_0^\infty \epsilon x(t)^T x(t) + u(t)^T u(t) \, dt : \quad \dot{x}(t) = Ax(t) + Bu(t), \quad u(t) = Kx(t) \right\}
\]

when \(A = 1, B = 1 \) and \(\epsilon > 0 \). Do that symbolically as a function of \(\epsilon \). Is this solution stabilizing? Compute the limit of this solution as \(\epsilon \to 0 \). Compare the answer with the solution to part c).

P3. Consider the LTI system associated with the transfer function

\[
H(s) = \frac{s - 1}{s - 3}.
\]

a) [5 marks] Using any “classical” control technique (root-locus, bode diagram, Nyquist criterion, etc) find a controller that can stabilize \(H(s) \). What is the order of the controller you found? Is the controller itself stable?

(Hint #1: Do not cancel zeros on the right hand side of the complex plane!)

(Hint #2: I can do it with a single pole!)

b) [2 marks] Compute a state space representation \((A, B_u, C_y, D_u)\) for \(H(s) \).
c) [2 bonus marks] Show that if you compute a controller $\tilde{C}(s)$ that stabilizes the strictly proper system

$$\dot{x} = Ax + B_u u,$$
$$\tilde{y} = C_y x$$

then the controller $C(s) = [I + \tilde{C}(s)D_u]^{-1}\tilde{C}(s)$ stabilizes the original system with transfer function $H(s)$.

d) [5 marks] With the above item in mind, let the input $u(t)$ of the system be perturbed by $w(t)$ and the measurement output $\tilde{y}(t)$ be perturbed by $v(t)$ in the form

$$\dot{x} = Ax + B_u(u + w)$$
$$\tilde{y} = C_y x + v.$$

Assuming that $w(t)$ and $v(t)$ are independent Gaussian zero-mean white-noise with unitary variance, find observer-based optimal controllers that minimize the cost function

$$J = \lim_{t \to \infty} E[z(t)^T z(t)]$$

where

$$z = \begin{pmatrix} \tilde{y} - v \\ \rho u \end{pmatrix}$$

for choices of $\rho = \{10^{-6}, 10^{-3}, 1, 10^{3}, 10^{6}\}$.

e) [5 marks] What is the impact of the different choices of ρ on the cost function, the closed loop eigenvalues, the controller poles, the controller zeros? Is any of these controllers stable? Do you think you can find a stable stabilizing controller? Why?

IMPORTANT: Answer the items related to the controller with respect to $C(s)$, that is the controller of the original system with transfer function $H(s)$, not $\tilde{C}(s)$!

f) [5 marks] Solve the problem again for

$$H(s) = \frac{s + 1}{s - 3}$$

What makes this problem easier or harder than the previous one? Could you find a stable controller using classical techniques? How does it compare with the LQG controllers?