
MAE 280B – Linear Control Design – Winter 2010

Midterm

Instructions:

• Due on 02/12/2010 on my office (EBU I 1602) by 5:00 PM;

• Use Matlab;

• You get marks for clarity;

• You loose marks for obscurantism;

• Good luck!

P1. Consider the following modification of the LQR problem discussed in class, where we
seek to determine a state feedback controller u(t) = Kx(t) that stabilizes the system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

while minimizing the following cost function

J :=

∫ ∞

0

e2αt[x(t)T Qx(t) + u(t)T Ru(t)] dt

where α > 0 is a given constant. As for ths standard LQR problem, assume that Q � 0
and R � 0 and that (A, B) stabilizable, and answer the following questions:

a) [1 mark] What is the impact of the exponential term in the integrand? How does it
compare with the standard LQR cost?
(Hint: Provide a qualitative discussion)

b) [2 marks] Show that the auxiliary state and control vectors

x̃(t) = eαtx(t), ũ(t) = eαtu(t)

satisfy the differential equation

˙̃x(t) = (A + αI)x̃(t) + Bũ(t), x̃(0) = x0

and that

J :=

∫ ∞

0

x̃(t)T Qx̃(t) + ũ(t)T Rũ dt

c) [4 marks] Using item b) and what you know about the LQR problem show how to
compute the optimal state feedback controller ũ(t) = K̃x̃(t). You do not have to
prove anything, but you should list all steps and the assumptions you used in each
step.
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d) [2 marks] Show how you can use the optimal controller in item c) to produce an
optimal controller u(t) = Kx(t) that solves the original problem.

e) [1 mark] What is the impact of α > 0 on the original assumptions? Did you need to
modify them in any way?

P2. When analyzing the LQR problem we have assumed at the onset that a stabilizing
solution was sought. However, the stabilizing solution will not always be an optimal
solution. This problem will help you understand that. In the following items assume
that x(0) = x0.

a) [2 marks] Without stability as a requirement, what is the optimal solution to the
following control problem

min
K

{∫ ∞

0

u(t)T u(t) dt : ẋ(t) = Ax(t) + Bu(t), u(t) = Kx(t)

}
(Hint: you do not need any fancy calculations to solve this!)

b) [2 marks] When A is Hurwitz, then the optimal solution is also stabilizing. To see
that compute the stabilizing solution to the Riccati equation and the associated
gain K for A = −1, B = 1.

c) [4 marks] When A is not Hurwitz, then the optimal solution is not stabilizing. To
see that compute the stabilizing solution to the Riccati equation and the associated
gain K for A = 1, B = 1. Compute also the “non-stabilizing” solution to the Riccati
equation and the associated gain K. Which one is optimal?

d) [4 marks] In order to make peace with our stability assumption compute the optimal
solution to the LQR problem

min
K

{∫ ∞

0

ε x(t)T x(t) + u(t)T u(t) dt : ẋ(t) = Ax(t) + Bu(t), u(t) = Kx(t)

}
when A = 1, B = 1 and ε > 0. Do that symbolically as a function of ε. Is this
solution stabilizing? Compute the limit of this solution as ε → 0. Compare the
answer with the solution to part c).

P3. Consider the LTI system associated with the transfer function

H(s) =
s− 1

s− 3
.

a) [5 marks] Using any “classical” control technique (root-locus, bode diagram, Nyquist
criterion, etc) find a controller that can stabilize H(s). What is the order of the
controller you found? Is the controller itself stable?
(Hint #1: Do not cancel zeros on the right hand side of the complex plane!)
(Hint #2: I can do it with a single pole!)

b) [2 marks] Compute a state space representation (A, Bu, Cy, Du) for H(s).
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c) [2 bonus marks] Show that if you compute a controller C̃(s) that stabilizes the strictly
proper system

ẋ = Ax + Buu,

ỹ = Cyx

then the controller C(s) = [I + C̃(s)Du]
−1C̃(s) stabilizes the original system with

transfer function H(s).

d) [5 marks] With the above item in mind, let the input u(t) of the system be perturbed
by w(t) and the measurement output ỹ(t) be perturbed by v(t) in the form

ẋ = Ax + Bu(u + w)

ỹ = Cyx + v.

Assuming that w(t) and v(t) are independent Gaussian zero-mean white-noise with
unitary variance, find observer-based optimal controllers that minimize the cost func-
tion

J = lim
t→∞

E
[
z(t)T z(t)

]
where

z =

(
ỹ − v
ρu

)
for choices of ρ = {10−6, 10−3, 1, 103, 106}.

e) [5 marks] What is the impact of the different choices of ρ on the cost function, the
closed loop eigenvalues, the controller poles, the controller zeros? Is any of these
controllers stable? Do you think you can find a stable stabilizing controller? Why?
IMPORTANT: Answer the items related to the controller with respect to C(s), that
is the controller of the original system with transfer function H(s), not C̃(s)!

f) [5 marks] Solve the problem again for

H(s) =
s + 1

s− 3

What makes this problem easier or harder than the previous one? Could you find
a stable controller using classical techniques? How does it compare with the LQG
controllers?
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