7 Stability

7.1 Linear Systems Stability

Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system

$$
\begin{equation*}
\dot{x}(t)=A x(t), \quad x(0)=x_{0}, \quad A \in \mathbb{R}^{n \times n}, \quad x_{0} \in \mathbb{R}^{n} \tag{14}
\end{equation*}
$$

The origin $x=0$ is a globally asymptotically stable equilibrium point of system (14) if

$$
\lim _{t \rightarrow \infty} x(t)=0, \quad \text { for all } x_{0} \neq 0
$$

Lyapunov's second method. Consider a differentiable function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$
a) $V(x) \geq 0$ for all $x \in \mathbb{R}^{n}$;
b) $V(x)=0$ iff $x=0$.

If

$$
\dot{V}(x(t))<0, \quad \text { for all } x(t) \text { satisfying (14) with } x_{0} \neq 0
$$

then $x=0$ is a globally asymptotically stable equilibrium point of system (14).
Any such V is a Lyapunov function.

Theorem [Lyapunov]: The following statements regarding system (14) are equivalent:
a) $x=0$ is a globally asymptotically stable equilibrium;
b) there exists a quadratic Lyapunov function $V(x)=x^{T} P x, P \in \mathbb{R}^{n \times n}$.

7.2 Lyapunov Stability Test

Problem: Given system (14), find if there exists a matrix $P \in \mathbb{R}^{n \times n}$ such that
a) $V(x)=x^{T} P x>0, \quad$ for all $x \neq 0$
b) $\dot{V}(x)<0, \quad$ for all $\dot{x}=A x, \quad x \neq 0$.

Remarks: only the "symmetric part" of P matters:
First

$$
V(x)=x^{T} P x=\frac{1}{2} x^{T}\left(P+P^{T}\right) x>0, \text { for all } x \neq 0 \quad \Longleftrightarrow \quad P+P^{T} \succ 0
$$

Second

$$
\dot{V}(x)=\langle\nabla V(x), \dot{x}\rangle
$$

In order to compute ∇f we use (Gateaux differential)

$$
\langle\nabla f, h\rangle=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon h)-f(x)}{\epsilon}
$$

For $V=x^{T} P x$

$$
\begin{aligned}
V(x+\epsilon h) & =(x+\epsilon h)^{T} P(x+\epsilon h), \\
& =x^{T} P x+\epsilon\left(h^{T} P x+x^{T} P h\right)+\mathcal{O}\left(\epsilon^{2}\right), \\
& =V(x)+\epsilon\left\langle\left(P+P^{T}\right) x, h\right\rangle+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

hence

$$
\lim _{\epsilon \rightarrow 0} \frac{V(x+\epsilon h)-V(x)}{\epsilon}=\left\langle\left(P+P^{T}\right) x, h\right\rangle \quad \Longrightarrow \nabla V(x)=\left(P+P^{T}\right) x,
$$

so one can assume $P \in \mathbb{S}^{n}$ without loss of generality.

Problem: Given system (14), find if there exists a matrix $P \in \mathbb{S}^{n}$ such that
a) $V(x)=x^{T} P x>0, \quad$ for all $x \neq 0$
b) $\dot{V}(x)<0, \quad$ for all $\dot{x}=A x, \quad x \neq 0$.

Solution:
Condition a)

$$
V(x)=x^{T} P x>0, \quad \text { for all } x \neq 0 \quad \Longleftrightarrow \quad P \succ 0
$$

Condition b) For all $x \neq 0$

$$
\begin{aligned}
0>\dot{V}(x) & =\langle\nabla V(x), \dot{x}\rangle \\
& =2\langle P x, A x\rangle \\
& =2 x^{T} P A x \\
& =x^{T}\left(A^{T} P+P A\right) x
\end{aligned}
$$

which is equivalent to

$$
A^{T} P+P A \prec 0 .
$$

Lyapunov Stability Test: Given system (14), find if there exists a matrix $P \in \mathbb{S}^{n}$ such that the LMI

$$
P \succ 0
$$

$$
A^{T} P+P A \prec 0
$$

is feasible.

7.3 Relation with Lyapunov Equations

Lyapunov's First Method. Consider the general nonlinear system

$$
\begin{equation*}
\dot{x}=f(x), \tag{15}
\end{equation*}
$$

and the linearized system at the equilibrium point

$$
\dot{x}=A x, \quad A=\nabla^{T} f(0) .
$$

Theorem [Lyapunov]: The origin $x=0$ is a locally asymptotically stable equilibrium point of system (15) if and only if the matrix $P \in \mathbb{S}^{n}$ that solves the Lyapunov equation

$$
\begin{equation*}
A^{T} P+P A+Q=0 \tag{16}
\end{equation*}
$$

is positive definite, i.e., $P \succ 0$, for some matrix $Q \succ 0$.
Remarks:
a) For linear systems, local becomes global.
b) With what we know about Lyapunov equations if $Q \succ 0$ then (A, Q) is observable and $P \succ 0$ if and only if A is Hurwitz.
c) Furthermore, if A is Hurwitz then $P \succ 0$ for any matrix $Q \succ 0$.

7.3.1 From Lyapunov Equation to Lyapunov Inequality

Since $Q \succ 0$ the Lyapunov equation (16) provides $P \succ 0$ and

$$
A^{T} P+P A=-Q \prec 0
$$

7.3.2 From Lyapunov Inequality to Lyapunov Equation

If there exists $P \succ 0$ such that

$$
A^{T} P+P A \prec 0
$$

then there exists also $Q \succ 0$ such that $A^{T} P+P A+Q=0$.

7.4 Discrete-Time Systems

Consider the Discrete-Time (DT) Linear Time-Invariant (LTI) system

$$
\begin{equation*}
x(k+1)=A x(k), \quad x(0)=x_{0}, \quad A \in \mathbb{R}^{n \times n}, \quad x_{0} \in \mathbb{R}^{n} . \tag{17}
\end{equation*}
$$

The origin $x=0$ is a globally asymptotically stable equilibrium point of system (14) if

$$
\lim _{k \rightarrow \infty} x(k)=0, \quad \text { for all } x_{0} \neq 0
$$

Lyapunov's second method. Consider a differentiable function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$
a) $V(x) \geq 0$ for all $x \in \mathbb{R}^{n}$;
b) $V(x)=0$ iff $x=0$.

If

$$
V(x(k+1))-V(x(k))<0, \quad \text { for all } x(k) \text { satisfying (17) with } x_{0} \neq 0
$$

then $x=0$ is a globally asymptotically stable equilibrium point of system (17).
Any such V is a Lyapunov function.

Theorem [Lyapunov]: The following statements regarding system (17) are equivalent:
a) $x=0$ is a globally asymptotically stable equilibrium;
b) there exists a quadratic Lyapunov function $V(x)=x^{T} P x, P \in \mathbb{S}^{n}$.

Problem: Given system (17), find if there exists a matrix $P \in \mathbb{S}^{n}$ such that
a) $V(x)=x^{T} P x>0, \quad$ for all $x \neq 0$
b) $V(x(k+1))-V(x(k))<0, \quad$ for all $x(k+1)=A x(x), \quad x(k) \neq 0$.

Solution:
Condition a). $P \succ 0$.
Condition b). $V(x(k+1))=x(k+1)^{T} P x(k+1)=x(k)^{T} A^{T} P A x(k)$ so that for all $x(k) \neq 0$

$$
\begin{aligned}
0>V(x(k+1))-V(x(k)) & =x(k)^{T} A^{T} P A x(k)-x(k)^{T} P x(k) \\
& =x(k)^{T}\left(A^{T} P A-P\right) x(k)
\end{aligned}
$$

which is equivalent to

$$
A^{T} P A-P \prec 0
$$

Lyapunov Stability Test: Given system (17), find if there exists a matrix $P \in \mathbb{S}^{n}$ such that the LMI

$$
P \succ 0, \quad A^{T} P A-P \prec 0,
$$

is feasible.

Schur complement provides the equivalent alternative form.
Lyapunov Stability Test: Given system (17), find if there exists a matrix $P \in \mathbb{S}^{n}$ such that the LMI

$$
\left[\begin{array}{cc}
P & A^{T} P \\
P A & P
\end{array}\right] \succ 0
$$

is feasible.

7.4.1 Summary for linear discrete-time systems

The following statements are equivalent:
a) $x=0$ is a globally asymptotically stable equilibrium of system (17);
b) there exists a quadratic Lyapunov function $V(x)=x^{T} P x, P \in \mathbb{S}^{n}$;
c) there exists a matrix $P \in \mathbb{S}^{n}$ such that

$$
P \succ 0, \quad A^{T} P A-P \prec 0 .
$$

d) there exists a matrix $P \in \mathbb{S}^{n}$ such that

$$
\left[\begin{array}{cc}
P & A^{T} P \\
P A & P
\end{array}\right] \succ 0
$$

e) matrix $P \in \mathbb{S}^{n}$ that solves the Stein equation

$$
A^{T} P A-P+Q=0
$$

is positive definite, i.e., $P \succ 0$, for some matrix $Q \succ 0$.
f) matrix A is $\operatorname{Schur}\left(\max _{i}\left|\lambda_{i}(A)\right|<1\right)$;

