2 The Linear Quadratic Regulator (LQR)

Problem:

Compute a state feedback controller

$$
u(t)=K x(t)
$$

that stabilizes the closed loop system and minimizes

$$
J:=\int_{0}^{\infty} x(t)^{T} Q x(t)+u(t)^{T} R u(t) d t
$$

where x and u are the state and control of the LTI system

$$
\dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0} .
$$

Assumptions:
a) $Q \succeq 0, R \succ 0$;
b) (A, B) stabilizable;

A first step toward a solution:
The closed loop cost is

$$
J=\int_{0}^{\infty} x(t)^{T}\left(Q+K^{T} R K\right) x(t) d t
$$

and the closed loop system is

$$
\dot{x}=(A+B K) x, \quad x(0)=x_{0} .
$$

But for a given K and x_{0}

$$
x(t)=e^{(A+B K) t} x_{0} .
$$

Hence

$$
\begin{aligned}
J & =\int_{0}^{\infty} x_{0}^{T} e^{(A+B K)^{T} t}\left(Q+K^{T} R K\right) e^{(A+B K) t} x_{0} d t \\
& =x_{0}^{T}\left(\int_{0}^{\infty} e^{(A+B K)^{T} t}\left(Q+K^{T} R K\right) e^{(A+B K) t} d t\right) x_{0}
\end{aligned}
$$

This means that J can be computed as

$$
J=x_{0}^{T} X x_{0}
$$

where X is the solution to the Lyapunov equation

$$
(A+B K)^{T} X+X(A+B K)+Q+K^{T} R K=0 .
$$

Before proceeding we need to learn how to solve the above Lyapunov equation in X and K. This is not always possible. In this case, because $R \succ 0$, we can complete the squares, rewriting the above equation in the form

$$
A^{T} X+X A-X B R^{-1} B^{T} X+Q+\left(X B R^{-1}+K^{T}\right) R\left(R^{-1} B^{T} X+K\right)=0
$$

Note that K is confined to the term

$$
\left(X B R^{-1}+K^{T}\right) R\left(R^{-1} B^{T} X+K\right) \succeq 0
$$

and that for

$$
K=-R^{-1} B^{T} X
$$

we have

$$
Q+\left(X B R^{-1}+K^{T}\right) R\left(R^{-1} B^{T} X+K\right)=Q
$$

This reduces the above equation to

$$
A^{T} X+X A-X B R^{-1} B^{T} X+Q=0
$$

This is an Algebraic Riccati Equation (ARE) in X.
As we learn more about AREs we shall prove that the above choice of K and X is so that
a) $A+B K$ is Hurwitz (asymptotically stable);
b) X is "minimum" in a certain sense;
c) The associated J is minimized.

2.1 Comparison Lemma

If $S \succeq 0$ and

$$
Q_{2} \succeq Q_{1} \succeq 0
$$

then X_{1} and X_{2}, solutions to the Riccati equations

$$
\begin{aligned}
& A^{T} X_{1}+X_{1} A-X_{1} S X_{1}+Q_{1}=0 \\
& A^{T} X_{2}+X_{2} A-X_{2} S X_{2}+Q_{2}=0
\end{aligned}
$$

are such that

$$
X_{2} \succeq X_{1}
$$

if $A-S X_{2}$ is asymptotically stable.
Proof: Note that

$$
\begin{aligned}
& A^{T} X_{1}+X_{1} A-X_{1} S X_{1}+Q_{1} \\
& \quad=\left(A-S X_{2}\right)^{T} X_{1}+X_{1}\left(A-S X_{2}\right)+X_{2} S X_{2}+Q_{1}-\left(X_{1}-X_{2}\right) S\left(X_{1}-X_{2}\right)
\end{aligned}
$$

and

$$
A^{T} X_{2}+X_{2} A-X_{2} S X_{2}+Q_{2}=\left(A-S X_{2}\right)^{T} X_{2}+X_{2}\left(A-S X_{2}\right)+X_{2} S X_{2}+Q_{2}
$$

Now subtract the above equations to obtain the Lyapunov equation

$$
\left(A-S X_{2}\right)^{T} \bar{X}+\bar{X}\left(A-S X_{2}\right)+\bar{Q}=0
$$

where

$$
\bar{X}:=X_{2}-X_{1}, \quad \bar{Q}:=\left(Q_{2}-Q_{1}\right)+\left(X_{1}-X_{2}\right) S\left(X_{1}-X_{2}\right) \succeq 0 .
$$

Therefore, if $A-S X_{2}$ is Hurwitz we conclude that $\bar{X}=X_{2}-X_{1} \succeq 0$, that is $X_{2} \succeq X_{1}$.

We can now use the comparison lemma to compare the two AREs

$$
A^{T} X_{2}+X_{2} A-X_{2} B R^{-1} B^{T} X_{2}+Q_{2}=0
$$

and

$$
A^{T} X_{1}+X_{1} A-X_{1} B R^{-1} B^{T} X_{1}+Q_{1}=0
$$

where

$$
S=B R^{-1} B^{T} \succeq 0
$$

and

$$
Q_{1}=Q, \quad Q_{2}=Q+\left(X_{2} B R^{-1}+K^{T}\right) R\left(R^{-1} B^{T} X_{2}+K\right)
$$

Note that for any X_{2} and stabilizing K that

$$
Q_{2}=Q+\left(X_{2} B R^{-1}+K^{T}\right) R\left(R^{-1} B^{T} X_{2}+K\right) \succeq Q=Q_{1}
$$

because $R \succ 0$. Therefore, for any choice of

$$
K \neq-R^{-1} B^{T} X_{1}
$$

we shall have

$$
X_{2} \succeq X_{1} .
$$

This proves that X_{1} is "minimum". Of course this also implies that

$$
J_{2}=x_{0}^{T} X_{2} x_{0} \geq x_{0}^{T} X_{1} x_{0}=J_{1}
$$

so that J is also being minimized.

2.2 More on AREs

Warning: In this section we consider Riccati equations of the form

$$
A^{T} X+X A+X Z X+Q=0
$$

Lemma 1: Consider the Hamiltonian matrix

$$
H:=\left[\begin{array}{cc}
A & Z \\
-Q & -A^{T}
\end{array}\right] .
$$

where $A, Z=Z^{T}$ and $Q=Q^{T} \in \mathbb{R}^{n \times n}$.

1. λ is an eigenvalue of H if and only if $-\lambda$ is an eigenvalue of H.
2. If H has no eigenvalues on the imaginary axis then there exists a matrix $W \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
H V_{1}=V_{1} W \tag{2}
\end{equation*}
$$

where W is Hurwitz.

Proof:

Item 1. H has eigenvalues pairs which are symmetric w.r.t the imaginary axis because

$$
J^{-1} H J=-J H J=-H^{T}, \quad J:=\left[\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right], \quad J^{-1}=-J
$$

Item 2. Let H_{J} be the Jordan form of matrix H so that

$$
H V=V H_{J}
$$

where $V \in \mathbb{R}^{2 n \times 2 n}$ is a matrix whose columns are the (generalized) eigenvectors of H. Since the eigenvalues of H are symmetric with respect to the imaginary axis and there are no eigenvalues on the imaginary axis, there exists at least two distinct Jordan blocks

$$
H\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]=\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]\left[\begin{array}{cc}
H_{J_{-}} & 0 \\
0 & H_{J_{+}}
\end{array}\right]
$$

where all n eigenvalues of $H_{J_{-}}$have negative real part, i.e., $H_{J_{-}}$is Hurwitz. The first columns of the above equation are in the form (2) with $W=H_{J_{-}}$Hurwitz.

Lemma 2: Consider the Algebraic Riccati Equation (ARE)

$$
A^{T} X+X A+X Z X+Q=0
$$

where $A, Z=Z^{T}$ and $Q=Q^{T} \in \mathbb{R}^{n \times n}$ and the associated Hamiltonian matrix

$$
H:=\left[\begin{array}{cc}
A & Z \\
-Q & -A^{T}
\end{array}\right]
$$

which is assumed to have no eigenvalue on the imaginary axis.

1. Let

$$
V_{1}=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \in \mathbb{C}^{2 n \times n}
$$

be (generalized) eigenvectors of H associated with all n eigenvalues with negative real part. If X_{1} is nonsingular then $X=X_{2} X_{1}^{-1}$ solves the ARE.
2. The solution obtained in item 1. is
(a) real,
(b) symmetric,
(c) unique stabilizing $(A+Z X$ is Hurwitz).
3. If $Z \succeq 0$ (or $Z \preceq 0$) then X_{1} is invertible if and only if (A, Z) is stabilizable.

Proof:
Item 1. From Item 2. of Lemma 1 there exists a Hurwitz matrix W such that

$$
H V_{1}=V_{1} W
$$

Then, multiplying the above by X_{1}^{-1} on the right and by $\left[\begin{array}{ll}X & -I\end{array}\right]$ on the left we get

$$
\left[\begin{array}{ll}
X & -I
\end{array}\right] H\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{ll}
X & -I
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right] X_{1} W X_{1}^{-1}=0
$$

Note that

$$
\left[\begin{array}{ll}
X & -I
\end{array}\right] H\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{ll}
X & -I
\end{array}\right]\left[\begin{array}{cc}
A & Z \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right]=A^{T} X+X A+X Z X+Q
$$

Item 2. (a) Since H is real, the columns of V_{1} can be chosen complex conjugates in pairs so that

$$
\bar{V}_{1}=\left[\begin{array}{l}
\bar{X}_{1} \\
\bar{X}_{2}
\end{array}\right]=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] P=\left[\begin{array}{l}
X_{1} P \\
X_{2} P
\end{array}\right]
$$

where P is some permutation matrix and

$$
\bar{X}=\bar{X}_{2} \bar{X}_{1}^{-1}=X_{2} P P^{-1} X_{1}^{-1}=X_{2} X_{1}^{-1}=X
$$

that is X is real.

Item 2. (b) X is symmetric if

$$
X=X_{2} X_{1}^{-1}=\left(X_{1}^{-1}\right)^{*} X_{2}^{*}=X^{*}
$$

or in other words

$$
T=X_{2}^{*} X_{1}-X_{1}^{*} X_{2}=0
$$

Now note that

$$
T=V_{1}^{*} J V_{1}=\left[\begin{array}{ll}
X_{1}^{*} & X_{2}^{*}
\end{array}\right]\left[\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

Since $J H J=H^{T}, H$ and J satisfy the Lyapunov equation

$$
J H+H^{T} J=0
$$

Multiplying the above equation by V_{1}^{*} on the left and V_{1} on the right and using (2)

$$
\begin{aligned}
0 & =V_{1}^{*} J H V_{1}+V_{1}^{*} H^{T} J V_{1} \\
& =V_{1}^{*} J V_{1} W+W^{*} V_{1}^{*} J V_{1} \\
& =T W+W^{*} T .
\end{aligned}
$$

Because W is Hurwitz $T=0$.

Item 2. (c) Multiply (2) by X_{1}^{-1} on the right and by $\left[\begin{array}{ll}I & 0\end{array}\right]$ on the left to obtain

$$
\left[\begin{array}{ll}
I & 0
\end{array}\right] H\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{ll}
I & 0
\end{array}\right]\left[\begin{array}{cc}
A & Z \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right]=A+Z X=X_{1} W X_{1}^{-1} .
$$

Therefore, $A+Z X$ is stable because it is similar to a stable matrix. For uniqueness assume \tilde{X} is also a stabilizing solution to the ARE. Therefore subtracting the two AREs

$$
\begin{aligned}
0 & =\left(A^{T} X+X A+X Z X+Q\right)-\left(A^{T} \tilde{X}+\tilde{X} A+\tilde{X} Z \tilde{X}+Q\right) \\
& =A^{T}(X-\tilde{X})+(X-\tilde{X}) A+X Z X-\tilde{X} Z \tilde{X} \\
& =A^{T}(X-\tilde{X})+(X-\tilde{X}) A+X Z X-\tilde{X} Z \tilde{X}-X Z \tilde{X}+X Z \tilde{X} \\
& =A^{T}(X-\tilde{X})+(X-\tilde{X}) A+X Z(X-\tilde{X})+(X-\tilde{X}) Z \tilde{X} \\
& =(A+Z X)^{T}(X-\tilde{X})+(X-\tilde{X})(A+Z \tilde{X})
\end{aligned}
$$

The last equation can be seen as a Sylvester equation in $(X-\tilde{X})$ and since $A+Z X$ and $A+Z \tilde{X}$ are both Hurwitz $\lambda_{i}(A+Z X)+\lambda_{j}(A+Z \tilde{X})<0$ so that it admits only the trivial solution, that is, $X-\tilde{X}=0$.

Item 3. To prove sufficiency note that if X_{1} is invertible then $A+Z X$ is stable such that (A, Z) is stabilizable.
The proof of necessity is more complicated. Assume that $Z \succeq 0$ (or $Z \preceq 0$), (A, Z) is stabilizable and that X_{1} is singular, such that there exists $x \neq 0$ such that $X_{1} x=0$. Multiply (2) by $\left[\begin{array}{ll}I & 0\end{array}\right]$ on the left to obtain

$$
\left[\begin{array}{ll}
I & 0
\end{array}\right] H\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=A X_{1}+Z X_{2}=X_{1} W
$$

Multiply on the left by $x^{*} X_{2}^{*}$ and on the right by x

$$
x^{*} X_{2}^{*} A X_{1} x+x^{*} X_{2}^{*} Z X_{2} x=x^{*} X_{2}^{*} X_{1} W x=x^{*} X_{1}^{*} X_{2} W x
$$

and use the fact that $X_{1} x=0$ to obtain

$$
x^{*} X_{2}^{*} Z X_{2} x=0
$$

which implies $Z X_{2} x=0$ because $Z \succeq 0$ (or $Z \preceq 0$). Note that this also implies

$$
X_{1} W x=0 .
$$

Auxiliary lemma: Assume W is Hurwitz. There exists $x \neq 0$ such that $X_{1} x=X_{1} W x=0$ if and only if there exists $\tilde{x} \neq 0$ such that

$$
X_{1} \tilde{x}=0, \quad W \tilde{x}=\tilde{\lambda} \tilde{x}, \quad \tilde{\lambda}+\tilde{\lambda}^{*}<0 .
$$

Proof (Auxiliary lemma): Sufficiency is immediate since

$$
X_{1} W \tilde{x}=\tilde{\lambda} X_{1} \tilde{x}=0
$$

Necessity follows by contradiction. If X_{1} is singular and

$$
\nexists \tilde{x}: X_{1} \tilde{x}=0, \quad W \tilde{x}=\tilde{\lambda} \tilde{x}, \quad \tilde{\lambda}+\tilde{\lambda}^{*}<0
$$

then

$$
X_{1} W \tilde{x}=\tilde{\lambda} X_{1} \tilde{x} \neq 0
$$

for any eigenvalue/eigenvector pair $(\tilde{\lambda}, \tilde{x})$. Because W is nonsingular this must be true for n linearly independent vectors, which implies that X_{1} is not singular.
\square (Auxiliary lemma)
Now multiply (2) by $\left[\begin{array}{ll}0 & I\end{array}\right]$ on the left to obtain

$$
\left[\begin{array}{ll}
0 & I
\end{array}\right] H\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=-Q X_{1}-A^{*} X_{2}=X_{2} W
$$

and multiply by \tilde{x} such that $X_{1} \tilde{x}=0$ on the right

$$
\begin{aligned}
0 & =\left(A^{*} X_{2}+X_{2} W\right) \tilde{x} \\
& =\left(A^{*}-\lambda I\right) X_{2} \tilde{x}, \quad \lambda=-\tilde{\lambda}, \quad \lambda+\lambda^{*}>0 .
\end{aligned}
$$

Since $Z X_{2} \tilde{x}=0$, this implies that (A, Z) is not stabilizable, which is a contradiction.

We now use Lemma 2 to prove that $A+B K$ is Hurwitz. It amounts to apply item 3 of Lemma 2 to the ARE

$$
A^{T} X+X A-X B R^{-1} B^{T} X+Q=0
$$

For that notice that

$$
Z=-B R^{-1} B^{T} \preceq 0
$$

because $R \succ 0$ then $B R^{-1} B^{T} \succeq 0$. Therefore, if $(A, Z)=\left(A,-B R^{-1} B^{T}\right)$ is stabilizable then X_{1} in Lemma 2 should be invertible and the solution X should be unique, symmetric and stabilizing.
With that in mind suppose that (A, B) is stabilizable but that $\left(A,-B R^{-1} B^{T}\right)$ is not, so that there exists $z \neq 0$ such that

$$
z^{*} A=\lambda z^{*}, \quad \quad z^{*} B R^{-1} B^{T}=0, \quad \lambda+\lambda^{*} \geq 0
$$

Therefore

$$
z^{*} B R^{-1} B^{T} z=0
$$

Because $R^{-1} \succ 0$ this can only be true if $z^{*} B=0$, which contradicts the hypothesis that (A, B) is stabilizable, proving that $\left(A,-B R^{-1} B^{T}\right)$ is stabilizable and

$$
A+B K=A+B\left(-R^{-1} B^{T} X\right)=A-B R^{-1} B^{T} X=A+Z X
$$

is Hurwitz.
Warning: The optimal control gain K is independent from the initial condition! However, the optimal cost is not!

