
1 Controllability and Observability

1.1 Linear Time-Invariant (LTI) Systems

State-space:

ẋ = Ax + Bu, x(0) = x0,

y = Cx + Du.

Dimensions:

x ∈ R
n, u ∈ R

m, y ∈ R
p.

Notation [
A B

C D

]

Transfer function:

H(s) = C(sI − A)−1B + D

Note that H(s) is always proper!

Similarity transformation:

[
T−1AT T−1B

CT D

]

∼

[
A B

C D

]

Similarity does not change transfer function

H(s) = CT (sI − T−1AT )−1T−1B + D = C(sI − A)−1B + D

System response:

Y (s) = H(s)U(s)
︸ ︷︷ ︸

+ C(sI − A)−1x(0)
︸ ︷︷ ︸

Input Initial conditions

MIMO comes for free!
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1.2 Concepts from MAE 280 A

Controllability Matrix:

C(A, B) =
[
B AB · · · An−1B

]
.

Controllability Gramian:

X(t) =

∫ t

0

eAξBBTeAT ξdξ.

Observability Matrix:

O(A, C) =








C
CA
...

CAn−1








.

Observability Gramian:

Y (t) =

∫ t

0

eAT ξCTCeAξdξ.

MAE 280 B 6 Mauŕıcio de Oliveira



1.3 Controllability

Problem: Given x(0) = 0 and any x̄, can one compute u(t) such that x(t̄) = x̄
for some t̄ > 0?

Theorem: The following are equivalent

a) The pair (A, B) is controllable;

b) The Controllability Matrix C(A, B) has full-row rank;

c) There exists no z 6= 0 such that z∗A = λz∗, z∗B = 0;

d) The Controllability Gramian X(t) is positive definite for some t ≥ 0.

1.4 Observability

Problem: Given y(t) over t ∈ [0, t̄] with t̄ > 0 can one compute x(t) for all

t ∈ [0, t̄]?

Theorem: The following are equivalent

a) The pair (A, C) is observable;

b) The Observability Matrix O(A, C) has full-column rank;

c) There exists no x 6= 0 such that Ax = λx, Cx = 0;

d) The Observability Gramian Y = Y (t) is positive definite for some t ≥ 0.

1.5 Things you should already know

1. Why a) and b) are equivalent.

2. Why can we stop C(A, B) at An−1B and O(A, C) at CAn−1?

3. Kalman canonical forms. E.g. if (A, C) is not observable then

[
A B

C 0

]

∼





Ao 0

Aōo Aō

Bo

Bō

Co 0 0





where Ao ∈ Rr×r and (Ao, Co) is observable.
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1.6 The Popov-Belevitch-Hautus Test

Theorem: The pair (A, C) is observable if and only if there exists no x 6= 0

such that
Ax = λx, Cx = 0. (1)

Proof:

Sufficiency: Assume there exists x 6= 0 such that (1) holds. Then

CAx = λCx = 0,

CA2x = λCAx = 0,
...

CAn−1x = λCAn−2x = 0

so that

O(A, C)x = 0,

which implies that the pair (A, C) is not observable.

Necessity: Assume that (A, C) is not observable. Then transform it into the
equivalent non observable realization where

Ā =

[
Ao 0

Aōo Aō

]

, C̄ =
[
Co 0

]
.

Chose x 6= 0 such that

Aōx = λx.

Then
[

Ao 0

Aōo Aō

](
0

x

)

= λ

(
0

x

)

,
[
Co 0

]
(

0

x

)

= 0.

MAE 280 B 8 Mauŕıcio de Oliveira



1.7 Controllability Gramian

Problem: Given x(0) = 0 and any x̄, compute u(t) such that x(t̄) = x̄ for

some t̄ > 0.

Solution: We know that

x̄ = x(t̄) =

∫ t̄

0

eA(t̄−τ)Bu(τ)dτ.

If we limit our search to controls u of the form

u(t) = BTeAT (t̄−t)z̄

we have

x̄ =

∫ t̄

0

eA(t̄−τ)BBTeAT (t̄−τ)z̄dτ,

=

(
∫ t̄

0

eA(t̄−τ)BBT eAT (t̄−τ)dτ

)

z̄, ξ = t̄ − τ

=

(
∫ t̄

0

eAξBBTeAT ξdξ

)

z̄,

and

z̄ =

(
∫ t̄

0

eAξBBTeAT ξdξ

)−1

x̄,

⇒ u(t) = BT eAT (t̄−t)

(
∫ t̄

0

eAξBBTeAT ξdξ

)−1

x̄

The symmetric matrix

X(t) :=

∫ t

0

eAξBBTeAT ξdξ

is the Controllability Gramian.
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1.8 Stabilizability

Problem: Given any x(0) = x̄ can one compute u(t) such that x(t̄) = 0 for

some t̄ > 0?

Theorem: The following are equivalent

a) The pair (A, B) is stabilizable;

b) There exists no z 6= 0 and λ such that z∗A = λz∗, z∗B = 0 with
λ + λ∗ ≥ 0.

1.9 Detectability

Problem: Given y(t) over t ∈ [0, t̄] with t̄ > 0 can one compute x(t̄)?

Theorem: The following are equivalent

a) The pair (A, C) is detectable;

b) There exists no x 6= 0 and λ such that Ax = λx, Cx = 0 with
λ + λ∗ ≥ 0.
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1.10 Example: satellite in circular orbit
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e

u1

u2

m
r

θ

Satellite of mass m with thrust in the radial direction u1 and in the
tangential direction u2. From Skelton, DSC, p. 101.

Newton’s law

m~̈r = ~u1 + ~u2 + ~fg,

where ~fg is the gravitational force

~fg = −
km

r2

~r

r
.

Using cylindrical coordinates

~e1 =

(
cos θ
sin θ

)

, ~e2 =

(
− sin θ
cos θ

)

,

we have

~r = r~e1, ~u1 = u1~e1, ~u2 = u2~e2, ~fg = −
km

r2
~e1.
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We need to compute

~̈r =
d2

dt2
(r~e1) =

d

dt
(ṙ~e1 + r~̇e1) = r̈~e1 + 2ṙ~̇e1 + r~̈e1,

where

~̇e1 = θ̇

(
− sin θ
cos θ

)

= θ̇~e2,

~̈e1 = θ̈

(
− sin θ
cos θ

)

+ θ̇2

(
− cos θ
− sin θ

)

= θ̈~e2 − θ̇2~e1.

That is

~̈r = (r̈ − rθ̇2)~e1 + (2ṙθ̇ + rθ̈)~e2,

so that Newton’s law can be rewritten as

m(r̈ − rθ̇2)~e1 + m(2ṙθ̇ + rθ̈)~e2 = u1~e1 + u2~e2 −
km

r2
~e1,

or, equivalently, as the two scalar differential equations

m(r̈ − rθ̇2) = u1 −
km

r2
,

m(2ṙθ̇ + rθ̈) = u2.

In state space

x =







r
θ

ṙ

θ̇







, ẋ =







ṙ

θ̇
r̈

θ̈







=







x3

x4

x1x
2
4 − k/x2

1

−2x3x4/x1







+







0 0

0 0
1/m 0

0 1/(mx1)







(
u1

u2

)

.

This is a nonlinear system and we look for equilibrium (r̈ = θ̈ = 0) when
u1 = u2 = 0. This can be stated as

x1x
2
4 − k/x2

1 = 0, −2x3x4/x1 = 0.

The second condition implies x3 = ṙ and/or x4 = θ̇ must be zero. We
choose x3 = ṙ = 0 which implies x1 = r = r̄ constant and

x4 = θ̇ =

√

k

x3
1

=

√

k

r̄3
= ω̄ ⇒ k = r̄3ω̄2.

Note also that x2 = θ = ω̄t.
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This nonlinear system is in the form

ẋ = f(x, t) + g(x)u.

We will linearize f(x, t) and g(x)u around the equilibrium point (x̄, ū) to
obtain the linearized system

ẋ = (∇fx)
T [x(t) − x̄(t)] + (∇gx)

T [x(t) − x̄(t)]ū + g(x̄)u.

For this problem

x̄(t) =







r̄
ω̄t

0
ω̄







, ū = 0, f(x, t) =







x3

x4

x1x
2
4 − k/x2

1

−2x3x4/x1







, g(x) =







0 0
0 0

1/m 0
0 1/(mx1)







,

and

(∇fx)
T =







0 0 1 0
0 0 0 1

2 k/r̄3 + ω̄2 0 0 2 r̄ω̄

0 0 −2 ω̄/r̄ 0







=







0 0 1 0
0 0 0 1

3 ω̄2 0 0 2 r̄ω̄

0 0 −2 ω̄/r̄ 0







.

This produces the linearized system

ẋ =







0 0 1 0

0 0 0 1
3 ω̄2 0 0 2 r̄ω̄

0 0 −2 ω̄/r̄ 0







x +







0 0

0 0
1/m 0

0 1/(mr̄)







(
u1

u2

)

.

If we looking at the satellite (from the earth) we can say that we can
observe r and θ̇ (how?), that is

y =

[
1 0 0 0
0 0 0 1

]

x.

Questions:

1) Can we estimate the state of the satellite is by measuring only r?

2) Can we estimate the state of the satellite is by measuring only θ̇?

3) Can we estimate the state of the satellite by measuring r and θ̇?

4) Can the system be controlled to remain in circular orbit using radial
thrusting (u1) alone?

5) Can the system be controlled using tangential thrusting (u2) alone?
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Question: Can we estimate the state of the satellite by measuring only r?

Answer: Is the system observable when C =
[
1 0 0 0

]
? Compute the

observability matrix

O(A, C) =







C
CA
CA2

CA3







,

=







1 0 0 0

0 0 1 0

3ω̄2 0 0 2r̄ω̄

0 0 −ω̄2 0







Physical interpretation: measuring r does not give any information on θ or θ̄!

Note that if we that know the satellite is in equilibrium and “measure” k then

θ̇ = ω̄ =

√

k

r̄3
.

But we still do not know θ since

θ(t) = θ(0) + ωt,

and we do not know θ(0)!
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Question: Can we estimate the state of the satellite by observing θ̇ only?

Answer: Is the system observable when C =
[
0 0 0 1

]
? Compute the

observability matrix

O(A, C) =







C
CA

CA2

CA3







,

=







0 0 0 1

0 0 −2ω̄/r̄ 0

−6ω̄3/r̄ 0 0 −4ω̄2

0 0 2ω̄3/r̄ 0







Physical interpretation: again, if we try to reconstruct θ from θ̇ we still need

to know θ at some t̄! From that point on

θ = θ(t̄) +

∫ t

t̄

θ̇(τ)dτ.
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Question: Can we estimate the state of the satellite by measuring r and θ̇?

Answer: Is the system observable when C =

[
1 0 0 0

0 0 0 1

]

? Compute the

observability matrix

O(A, C) =







C
CA

CA2

CA3







,

=
















1 0 0 0
0 0 0 1

0 0 1 0
0 0 −2ω̄/r̄ 0

3ω̄2 0 0 2r̄ω̄
−6ω̄3/r̄ 0 0 −4ω̄2

0 0 −ω̄2 0

0 0 2ω̄3/r̄ 0
















Physical interpretation: can we estimate θ at all?
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Question: Can the system be controlled to remain in circular orbit using
radial thrusting (u1) alone?

Answer: Is the system controllable when B =







0

0
1/m

0







? Compute the

controllability matrix

O(A, C) =
[
B AB A2B A3B

]
,

=
1

m







0 1 0 −ω̄2

0 0 −2ω̄/r̄ 0
1 0 −ω̄2 0

0 −2ω̄/r̄ 0 2ω̄3/r̄







Note that

−ω̄2







1
0

0
−2ω̄/r̄







=







−ω̄2

0

0
2ω̄3/r̄







which implies that the system is not controllable from u1!

Physical interpretation: there must be a change in the angular velocity θ̇ if

one changes the radius!
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Question: Can the system be controlled using tangential thrusting (u2)
alone?

Answer: Is the system controllable when B =







0

0
0

1/(mr̄)







? Compute the

controllability matrix

O(A, C) =
[
B AB A2B A3B

]
,

=
1

mr̄







0 0 2r̄ω̄ 0

0 1 0 −4ω̄2

0 2r̄ω̄ 0 −2r̄ω̄3

1 0 −4ω̄2 0







The above matrix has full rank, so the system is controllable from u2!

Physical interpretation: we can change the radius by changing the angular
velocity!
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1.11 More on Gramians

Theorem: The Controllability Gramian

X(t) =

∫ t

0

eAξBBTeAT ξdξ,

is the solution to the differential equation

d

dt
X(t) = AX(t) + X(t)AT + BBT .

If X = limt→∞ X(t) exists then

AX + XAT + BBT = 0.

Theorem: The Observability Gramian

Y (t) =

∫ t

0

eAT ξCTCeAξdξ,

is the solution to the differential equation

d

dt
Y (t) = ATY (t) + Y (t)A + CTC.

If Y = limt→∞ X(t) exists then

ATY + Y A + CTC = 0.
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Proof (Controllability): For the first part, compute

d

dt
X(t) =

d

dt

∫ t

0

eAξBBTeAT ξdξ =
d

dt

∫ t

0

eA(t−τ)BBTeAT (t−τ)dτ,

=

∫ t

0

d

dt
eA(t−τ)BBTeAT (t−τ) + eA(t−τ)BBT eAT (t−τ)

∣
∣
∣
τ=t

,

= A

(∫ t

0

eA(t−τ)BBTeAT (t−τ)dτ

)

+

(∫ t

0

eA(t−τ)BBTeAT (t−τ)dτ

)

AT + BBT ,

= AX(t) + X(t)AT + BBT .

For the second part, use the fact that X(t) is smooth and therefore

lim
t→∞

X(t) = X ⇒ lim
t→∞

d

dt
X(t) = 0.
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Lemma: Consider the Lyapunov Equation

ATX + XA + CTC = 0

where A ∈ Cn×n and C ∈ Cm×n.

1. A solution X ∈ C
n×n exists and is unique if and only if λj(A) + λ∗

i (A) 6= 0
for all i, j = 1, . . . , n. Furthermore X is symmetric.

2. If A is Hurwitz then X is positive semidefinite.

3. If (A, C) is detectable and X is positive semidefinite then A is Hurwitz.

4. If (A, C) is observable and A is Hurwitz then X is positive definite.

Proof:

Item 1. The Lyapunov Equation is a linear equation and it has a unique solution
if and only if the homogeneous equation associated with the Lyapunov equation

admits only the trivial solution. Assume it does not, that is, there X̄ 6= 0 such
that

ATX̄ + X̄A = 0

Then, multiplication of the above on the right by x∗
i 6= 0, the ith eigenvector of

A and on the right by x∗
j 6= 0 yields

0 = x∗
iA

T X̄xj + x∗
i X̄Axj = [λj(A) + λ∗

i (A)] x∗
i X̄xj.

Since λi(A) + λj(B) 6= 0 by hypothesis we must have x∗
i X̄xj = 0 for all i, j.

One can show that this indeed implies X̄ = 0, establishing a contradiction.

That X is symmetric follows from uniqueness since

0 = (ATX + XA + CTC)T − (ATX + XA + CTC)

= AT (XT − X) + (XT − X)A

so that XT − X = 0.

Item 2. If A is Hurwitz then limt→∞ eAt = 0. But

X =

∫ ∞

0

eAT tCTCeAt dt � 0

and

ATX + XA = lim
t→∞

∫ ∞

0

d

dt
eAT tCTCeAt dt = eAT tCTCeAt

∣
∣
∣

∞

0
= −CTC.
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Item 3. Assume (A, C) is detectable, X � 0 and that A is not Hurwitz. Then
there exists λ and x 6= 0 such that Ax = λx with λ + λ∗ ≥ 0. But if X solves

the Lyapunov equation

−x∗CTCx = x∗ATXx + x∗XAx = (λ + λ∗) x∗Xx ≥ 0

which implies Cx = 0, hence (A, C) not detectable.

Item 4. Assume that (A, C) is observable and A is Hurwitz. From Item 2.
X � 0. Assume X is not positive definite, that is, there exists x̄ 6= 0 such that

Xx̄ = 0. It follows that

0 = x̄∗Xx̄ =

∫ ∞

0

x̄∗eAT tCTCeAtx̄ dt =

∫ ∞

0

y∗(t)y(t) dt

which implies that response y(t) = CeAtx̄ = 0 to a non null initial condition

x(0) = x̄ is null, which contradicts the hypothesis that (A, C) is observable.
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