
MAE 280B – Linear Control Design

Final (Winter 2010)

Instructions:

• Due on 03/17/2010 in my office EBU I 1602 by 5:00 PM;

• Use Matlab;

• You get marks for clarity;

• You loose marks for obscurantism;

• Good luck!
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is a simplified trim model of a Boeing 747 during cruise flight. The four states are

x1: side-slip angle,

x2: yaw rate,

x3: roll rate, and

x4: bank angle.

The two inputs are

u1: rudder deflection, and

u2: aileron deflection.

All angles and angular velocities are in radians and radians/sec. This is one of the demos
of the Matlab Control Toolbox, so check it out before you answer the next questions!

a) [6 marks] Design an LQG controller that measures the yaw rate and feeds back rudder
deflections that achieves the following two objectives: damping coefficient ζ > 0.35,
with natural frequency ωn < 1.0 rad/sec for the most lightly damped closed loop
pole. Here you will have to augment the system with noisy inputs and outputs in
order to define a cost function and effectively solve the problem. You’re free to do
it in any way that you think can solve the proposed problem! On your answer show
me the following:

1. The final arrangement of your augmented system, with noisy inputs w and con-
trolled output z and the corresponding system matrices;

2. Write down the Riccati equations that you used to compute the state feedback
and state estimation gains and their computed values;
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3. The controller transfer function that results from your calculation, both the state
space realization as well as the controller transfer function;

4. The closed loop poles, indicating whether you were able to achieve the specifica-
tions or how close were you;

5. How does the controller affects the aileron to bank angle behavior? Compare
the impulse response of the open-loop system with the closed-loop system in the
first 20 s. Compare also the open loop and closed loop impulse responses from
rudder to yaw rate.

b) [4 marks] If you follow the discussion in the Matlab demo, you will see that the
controller ends up being augmented with a washout filter. Here we will let LQG
achieve the same effect for you. In order to do that you will have to show the
following:

1. The important part of the washout filter is the zero at zero. So first show how you
can modify the system you used to solve question a) so that ẋ2 is the output to
be used by the controller without increasing the number of states of the system!
Explain why is this equivalent to having a zero at zero at the controller?

2. The resulting system will not be strictly proper. So, like in the midterm, you will
have to modify your system in order to be able to design an LQG controller. Let
y = Cyx + Duu + Dyww be the measured output you obtain using item b.1). In
the midterm you showed that C(s) = [I + C̃(s)]−1C̃(s) would be an admissible
controller to the original system if C̃(s) were an admissible controller for the
system with output ỹ = Cyx + Dyww = y −Duu. I want you to show now that if
C̃(s) = Cc(sI − Ac)

−1Bc then

C(s) = [I + C̃(s)]−1C̃(s) = Cc[sI − (Ac − BcDuCc)]
−1Bc.

3. The controller you obtained now needs to be augmented with the zero, which was
placed at the plant in order to facilitate the design of the controller in item b.1).
You will need to compute the realization of the controller K(s) = sC(s), where
C(s) = Cc[sI − (Ac −BcDuCc)]

−1Bc. Substitute now the values of (Ac, Bc, Cc) for
an LQG controller and K(s) will be your final controller.
Hint: This is the same you did in item b.1) this time applied on the controller!

c) [6 marks] Use what you learned in item b) to redo item a), to design an LQG controller
that has a zero at zero and satisfy the specifications.

d) [2 bonus marks] What is the impact of the zero on the controller on the overall closed
loop performance? Explain how the zero works in this problem.
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P2. Consider the LTI system with N controlled outputs

ẋ = Ax + Buu + Bww, x(0) = 0, x ∈ R
n

z0 = Cz0x + Dzu0u,

z1 = Cz1x + Dzu1u,

...

zN = CzNx + DzuNu,

where w(t) is zero mean Gaussian white-noise vector with variance W ≻ 0. Derive a
semidefinite program (SDP) that solves the problem of computing the state feedback
control

u = Kx,

which minimizes the cost function

J0 = lim
t→∞

E{z0(t)
T z0(t)}

subject to the constraints

J1 < µ1, · · · JN < µN ,

where µi are given and
Ji = lim

t→∞

E
{

zi(t)
T zi(t)

}

.

for i = 1, . . . , N .

Follow the steps:

a) [4 marks] Show how the cost function and the constraints can be computed in terms
of the observability and controllability Gramians.

b) [4 marks] Show that only one of the Gramians leads to LMIs which include

[

Zi CziX + DzuiL
XCz

T
i + LT Dzu

T
i X

]

≻ 0, i = 1, . . . , N,

AX + XAT + BuL + LT BT
u + BwWBT

w ≺ 0

after relaxing equations into inequalities and performing a change-of-variables. Ex-
plain why the other Gramian cannot produce similar LMIs.
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P3. Consider the following mass-and-spring system with two masses:

x1 x2

m1 m2

k1 k2

f1 f2

where m1 = m2 = 1 and k1 = k2 = 1, x1 and x2 represent the displacement of masses
m1 and m2, and f1 and f2 are forces applied at the center of each mass. Assume zero
friction at the contact.

a) [2 marks] Write state space dynamic equations for this system.

b) [6 marks] Suppose that you can use both f1 and f2 as control inputs, i.e.

u(t) =

[

f1(t)
f2(t)

]

,

and that a zero-mean Gaussian white-noise disturbance with unitary variance is ap-
plied at the mass m2. Show how the semidefinite program that you derived in P2 can
be used to compute the state feedback control which minimizes limt→∞

E{u(t)T u(t)}
subject to the performance constraints

lim
t→∞

E{x1(t)
2} < µ2 and lim

t→∞

E{x2(t)
2} < µ2

where µ = 1/2 is given. Solve the SDP and compute the resulting controller.

c) [2 marks] What is the structure of the control law you obtained as a result to ques-
tion b)? Can you implement it using only springs and dampers?

d) [6 marks] Explain how the SDP you derived in question b) can be modified to provide
a control law that could be implemented as a spring-damper system between mass
m1 and the wall and another spring-damper system between mass m1 and m2. Solve
the resulting SDP problem and find a state feedback controller that satisfies this
structural constraint.
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