1 Controllability and Observability

LTI system in state space

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t).$$

Observability Matrix:

$$\mathcal{O}(A,C) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}.$$

Controllability Matrix:

$$C(A,B) = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}.$$

1.1 Determining initial conditions for analog simulation

Problem: Given any $y(0), \dot{y}(0), \cdots, y^{(n-1)}(0)$ compute $x(0), \cdots, x_n(0)$.

Use

$$\dot{x}(t) = Ax(t) + Bu(t),
\ddot{x}(t) = A\dot{x}(t) + B\dot{u}(t) = A^2x(t) + ABu(t) + B\dot{u}(t),
\ddot{x}(t) = A\ddot{x}(t) + B\ddot{u}(t) = A^3x(t) + A^2Bu(t) + AB\dot{u}(t) + B\ddot{u}(t),$$

and

$$y(t) = Cx(t),$$

$$\dot{y}(t) = C\dot{x}(t) = CAx(t) + CBu(t),$$

$$\ddot{y}(t) = C\ddot{x}(t) = CA^2x(t) + CABu(t) + CB\dot{u}(t),$$

to write

$$\mathcal{Y}(t) = \mathcal{O}(A, C)x(t) + \mathcal{T}\mathcal{U}(t)$$

where

$$\mathcal{Y}(t) = \begin{pmatrix} y(t) \\ \dot{y}(t) \\ \vdots \\ y^{(n-1)}(t) \end{pmatrix}, \qquad \qquad \mathcal{U}(t) = \begin{pmatrix} u(t) \\ \dot{u}(t) \\ \vdots \\ u^{(n-1)}(t) \end{pmatrix},$$

and

$$\mathcal{T} = \begin{bmatrix} 0 & & & 0 \\ CB & 0 & & \\ \vdots & & \ddots & \\ CA^{n-2}B & \cdots & CB & 0 \end{bmatrix} = \begin{bmatrix} H_0 & & 0 \\ H_1 & H_0 & & \\ \vdots & & \ddots & \\ H_{n-1} & \cdots & H_1 & H_0 \end{bmatrix},$$

where $H_0 = 0$, and H_i , i = 1, ..., n - 1, are the Markov parameters.

Using the fact $\mathcal{U}(0^-)=0$ the initial conditions can be computed by solving

$$\mathcal{Y}(0^{-}) = \mathcal{O}(A, C)x(0^{-}).$$

1.1.1 Solving $\mathcal{Y}(0^-) = \mathcal{O}(A, C)x(0^-)$

From Linear Algebra

* When $\mathcal{Y}(0^-)$ is a linear combination of $\mathcal{O}(A,C)$ a solution $x(0^-)$ always exist!

 \star When $\mathcal{O}(A,C)$ does not have full-column rank there exists $\mathcal{Y}(0^-)$ for which $\mathcal{Y}(0^-) \neq \mathcal{O}(A,C)x(0^-) \Rightarrow \mathsf{NOT}$ OBSERVABLE!

* When $\mathcal{O}(A,C)$ has full-column rank $\mathcal{O}(A,C)^T\mathcal{O}(A,C)$ is not singular.

$$\mathcal{O}(A,C)^{T}\mathcal{Y}(0^{-}) = \mathcal{O}(A,C)^{T}\mathcal{O}(A,C)x(0^{-})$$

$$\Rightarrow x(0^{-}) = \left[\mathcal{O}(A,C)^{T}\mathcal{O}(A,C)\right]^{-1}\mathcal{O}(A,C)^{T}\mathcal{Y}(0^{-})$$

Side-effect: $x(0^-)$ is unique!

Proof by contradiction: Assume there exists $x_1(0^-) \neq x_2(0^-)$ such that $\mathcal{O}(A,C)x_1(0^-) = \mathcal{O}(A,C)x_2(0^-) = \mathcal{Y}(0^-)$. Then

$$\mathcal{O}(A,C)\left[x_1(0^-) - x_2(0^-)\right] = 0$$

which implies $\mathcal{O}(A,C)$ does not have full-column rank!

Theorem: The pair (A, C) is observable if and only if the observability matrix $\mathcal{O}(A, C)$ has full-column rank.

Proof: One missing point. Let

$$\mathcal{O}(A, C, i) := \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{i-1} \end{bmatrix}.$$

Rank of $\mathcal{O}(A,C,m)=\mathcal{O}(A,C,n)$ for all $m\geq n$.

1.2 Setting up initial conditions for analog simulation

Problem: Given x(0)=0 and any $\bar x$, compute u(t) such that $x(\bar t)=\bar x$ for some $\bar t>0$.

Recall that

$$x^{(j)}(t) = A^{j}x(t) + \sum_{i=1}^{j} A^{j-i}Bu^{(i-1)}(t)$$

Successively integrating both sides j times

$$x(t) = \int_0^t \cdots \int_0^{\tau_2} x^{(j)}(\tau_1) d\tau_1 \cdots d\tau_j,$$

$$= \int_0^t \cdots \int_0^{\tau_2} \sum_{i=1}^j A^{j-i} B u^{(i-1)}(\tau_1) d\tau_1 \cdots d\tau_j,$$

$$= \sum_{i=1}^j A^{j-i} B \int_0^t \cdots \int_0^{\tau_2} u^{(i-1)}(\tau_1) d\tau_1 \cdots d\tau_j.$$

so that

$$x(t) = \mathcal{C}(A, B) \int \mathcal{U}(t),$$

where

$$\int \mathcal{U}(t) = \int_0^t \cdots \int_0^{\tau_2} \mathcal{U}(t) \, d\tau_1 \cdots d\tau_n.$$

Given $x(\bar{t}) = \bar{x}...$

1.2.1 Solving $\bar{x} = \mathcal{C}(A, B) \int \mathcal{U}(\bar{t})$

From Linear Algebra

 \star When \bar{x} is a linear combination of $\mathcal{C}(A,B)$ a solution $\int \mathcal{U}(\bar{t})$ always exist!

 \star When $\mathcal{C}(A,B)$ does not have full-row rank there exists \bar{x} for which

 $\bar{x} \neq \mathcal{C}(A,B) \int \mathcal{U}(\bar{t}) \quad \Rightarrow \quad \mathsf{NOT} \; \mathsf{CONTROLLABLE!}$

 \star When $\mathcal{C}(A,B)$ has full-row rank $\mathcal{C}(A,B)\mathcal{C}(A,B)^T$ is not singular.

Searching for

$$\int \mathcal{U}(\bar{t}) = \mathcal{C}(A, B)^T \mathcal{Z},$$

we can find

$$\bar{x} = \mathcal{C}(A, B) \int \mathcal{U}(\bar{t}) = \mathcal{C}(A, B) \mathcal{C}(A, B)^T \mathcal{Z},$$

$$\Rightarrow \quad \mathcal{Z} = \left[\mathcal{C}(A, B) \mathcal{C}(A, B)^T \right]^{-1} \bar{x},$$

$$\Rightarrow \quad \int \mathcal{U}(\bar{t}) = \mathcal{C}(A, B)^T \left[\mathcal{C}(A, B) \mathcal{C}(A, B)^T \right]^{-1} \bar{x}$$

WARNING: In general, $\int \mathcal{U}(\bar{t})$ might not be unique!

Theorem: The pair (A, B) is controllable if and only if the controllability matrix $\mathcal{C}(A, B)$ has full-row rank.

Proof: Two missing points:

- 1) Rank of C(A, B, m) = C(A, B, n) for all $m \ge n$; and
- 2) Can we find u(t) such that $\int \mathcal{U}(\bar{t}) = \mathcal{C}(A,B)^T \left[\mathcal{C}(A,B)\mathcal{C}(A,B)^T \right]^{-1} \bar{x}$?

1.2.2 Solving for u(t)

Let $u(t) = \sum_{i=0}^{n-1} \alpha_i t^i$ so that

$$\mathcal{U}(t) = \begin{pmatrix} u(t) \\ \dot{u}(t) \\ \vdots \\ u^{(n-1)}(t) \end{pmatrix} = \begin{pmatrix} \sum_{i=0}^{n-1} \alpha_i t^i \\ \vdots \\ \sum_{i=j}^{n-1} \frac{i!}{(i-j)!} \alpha_i t^{i-j} \\ \vdots \\ (n-i)! \alpha_{n-i} \end{pmatrix},$$

$$= \begin{pmatrix} 1 & \cdots & t^j & \cdots & t^{n-1} \\ & \ddots & & \vdots \\ & j! & \frac{(n-1)!}{(n-j-1)!} t^{n-j-1} \\ & \ddots & \vdots \\ 0 & & (n-1)! \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \vdots \\ \alpha_j \\ \vdots \\ \alpha_{n-i} \end{pmatrix},$$

$$\mathbf{T}(t) \qquad \alpha$$

Fact: T(t) is non singular for all t (why?) and

$$\int \mathbf{T}(t) = \int_{0}^{t} \cdots \int_{0}^{\tau_{2}} \begin{bmatrix} 1 & \cdots & \tau_{1}^{j} & \cdots & \tau_{1}^{n-1} \\ & \ddots & & \vdots \\ & & j! & \frac{(n-1)!}{(n-j-1)!} \tau_{1}^{n-j-1} \\ & & \ddots & \vdots \\ & & & (n-1)! \end{bmatrix} d\tau_{1} \cdots d\tau_{n}$$

$$= \begin{bmatrix} \frac{1}{n!} t^{n} & \cdots & \star & \cdots & \star \\ & \ddots & & \vdots \\ & & \frac{j!}{n!} t^{n} & & \star \\ & & \ddots & \vdots \\ & & & \ddots & \vdots \\ & & & & & & \ddots & \vdots \\ & & & & & \ddots & \vdots \\ & & & & & \ddots & \vdots \\ & & & & & \ddots & \vdots \\ & & & & & \ddots & \vdots \\ & & & & & \ddots & \vdots \\ & & & & & \ddots & \vdots \\ & & & & & & \ddots & \vdots \\ & & & & & \ddots & \vdots \\ & & & & & \ddots & \vdots \\ & & & & & \ddots & \vdots \\ & & & & & \ddots & \vdots \\ & & & & & \ddots & \ddots & \vdots \\ & & & & & \ddots & \ddots & \vdots \\ & & & & & \ddots & \ddots & \vdots \\ & & & & & \ddots & \ddots & \vdots \\ & & & & & \ddots & \ddots & \vdots \\ & & & & & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \ddots & \vdots \\ & & & & & & \ddots & \ddots & \ddots & \vdots \\ & & & & & & \ddots &$$

is non singular for all t>0 (why?). Therefore, for any $\bar{t}>0$

$$\int \mathcal{U}(\bar{t}) = \left(\int \mathbf{T}(\bar{t}) \right) \, \alpha$$

and

$$\alpha = \left(\int \mathbf{T}(\bar{t})\right)^{-1} \int \mathcal{U}(\bar{t}) = \left(\int \mathbf{T}(\bar{t})\right)^{-1} \mathcal{C}(A, B)^T \left[\mathcal{C}(A, B)\mathcal{C}(A, B)^T\right]^{-1} \bar{x}.$$

1.3 The Cayley-Hamilton Theorem

Theorem: Let $d_A(s)$ be the characteristic polynomial of A. Then $d_A(A) = 0$.

Lemma: Let S and R be upper triangular matrices with the structure

$$S = \begin{bmatrix} 0 & S_2 & S_3 \\ \hline 0 & S_4 & S_5 \\ \hline 0 & 0 & S_6 \end{bmatrix}, \qquad R = \begin{bmatrix} R_1 & R_2 & R_3 \\ \hline 0 & 0 & R_5 \\ \hline 0 & 0 & R_6 \end{bmatrix},$$

the product T = SR has the structure

$$T = \begin{bmatrix} 0 & 0 & T_3 \\ \hline 0 & 0 & T_5 \\ \hline 0 & 0 & T_6 \end{bmatrix},$$

Proof of the Lemma: Compute the product!

Proof of the Theorem: Write A as

$$A = TJT^{-1}$$

when J is upper-triangular with the eigenvalue λ_i in the ith position (e.g. in Jordan form). Then factor $d_A(s)$ as

$$d_A(s) = (s - \lambda_1)(s - \lambda_2) \cdots (s - \lambda_n)$$

so that

$$d_{A}(A) = (A - \lambda_{1}I)(A - \lambda_{2}I) \cdots (A - \lambda_{n}I),$$

$$= (TJT^{-1} - \lambda_{1}I) (TJT^{-1} - \lambda_{2}I) \cdots (TJT^{-1} - \lambda_{n}I),$$

$$= T (J - \lambda_{1}I) T^{-1}T (J - \lambda_{2}I) T^{-1} \cdots T (J - \lambda_{n}I) T^{-1},$$

$$= T (J - \lambda_{1}I) (J - \lambda_{2}I) \cdots (J - \lambda_{n}I) T^{-1},$$

$$= T d_{A}(J)T^{-1}.$$

Apply the above Lemma for $S=J-\lambda_1I$ and $R=J-\lambda_2$. Apply it again for $S=(J-\lambda_1I)(J-\lambda_2I)$ and $R=(J-\lambda_3I)$, and so on for the remaining terms to conclude that $d_A(J)=0$. Therefore $d_A(A)=0$.

1.4 Implications of the Cayley-Hamilton Theorem

 \star Any power of A^m for $m \geq n$ can be written as a linear combination of A_i , $i = 0, \ldots, n-1$. For example,

$$d_A(A) = A^n + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_{n-1} A + a_n I = 0$$

$$\Rightarrow A^n = -a_1 A^{n-1} - a_2 A^{n-2} + \dots - a_{n-1} A - a_n I.$$

 \star If $a_n \neq 0$ then A^{-1} can be written as a linear combination of A_i , $i=0,\ldots,n-1$.

$$a_n I = -\left(A^n + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_{n-1} A\right),$$

= $A\left(A^{n-1} + a_1 A^{n-2} + a_2 A^{n-3} + \dots + a_{n-1} I\right).$

Therefore

$$A^{-1} = -\left(A^{n-1} + a_1 A^{n-2} + a_2 A^{n-3} + \dots + a_{n-1}\right) / a_n.$$

 \star Rank of $\mathcal{C}(A,B,m)=\mathcal{C}(A,B,n)$ for all $m\geq n$. For m>n

$$C(A, B, m) = [C(A, B, n) \ A^n B \ \cdots \ A^m B].$$

Now use the Cayley-Hamilton theorem to write

$$A^m = p_m(I, A, \dots, A^{n-1}), \quad \forall m \ge n,$$

so that all columns of

$$A^m B = p_m(I, A, \dots, A^{n-1})B, \quad \forall m > n,$$

are linear combinations of the columns of C(A, B, n).