
1 Output Controllability

LTI system in state space

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)

Problem: Given x(0) = 0 and any x̄, compute u(t) such that y(t̄) = ȳ for
some t̄ > 0.

Solution: We know that

ȳ = y(t̄) =

∫ t̄

0

CeA(t̄−τ)Bu(τ)dτ.

If we limit our search for solutions u in the form

u(t) = BTeAT (t̄−t)CT z̄

we have

ȳ =

∫ t̄

0

CeA(t̄−τ)BBTeAT (t̄−τ)CT z̄dτ,

= CX(t)CT z̄, X(t) :=

∫ t

0

eAξBBTeAT ξdξ

and

z̄ =
(

CX(t)CT
)−1

x̄, ⇒ u(t) = BTeAT (t̄−t)CT
(

CX(t)CT
)−1

ȳ

As before, singularity of CX(t)CT is equivalent to the existance of

z 6= 0, z∗CeAτB ≡ 0, ∀ 0 ≤ τ ≤ t.

which implies

di

dτ i
(i! z∗CeAτB)

∣

∣

∣

∣

τ=0

= z∗CAieAτB
∣

∣

τ=0
= z∗CAiB = 0, i = 0, . . . , n − 1.

This is equivalent to the matrix
[

CB CAB CA2B . . . CAn−1B
]

= CC(A, B)

having full-row rank.
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1.1 Summary on Output Controllability

Theorem: The following are equivalent

1) The triplet (A, B, C) is output controllable;

2) The matrix CC(A, B) has full-row rank;

3) The matrix CX(t)CT is positive definite for some t ≥ 0.

WARNING: If C has full-row rank X(t) > 0 ⇒ CX(t)CT > 0. But there
might be cases when CX(t)CT > 0 and X(t) ≥ 0!
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2 A complete example: satelite in circular orbit
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PSfrag replacements

u1

u2

m
r

θ

Earth
Satelite of mass m with thrust in the radial direction u1 and in the tangential
direction u2. From Skelton, DSC, p. 101.

Newton’s law
m~̈r = ~u1 + ~u2 + ~fg,

where ~fg is the gravitational force

~fg = −
km

r2

~r

r
.

Using cylindrical coordinates

~e1 =

(

cos θ
sin θ

)

, ~e2 =

(

− sin θ
cos θ

)

,

we have

~r = r~e1, ~u1 = u1~e1, ~u2 = u2~e2, ~fg = −
km

r2
~e1.
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We need to compute

~̈r =
d2

dt2
(r~e1) =

d

dt
(ṙ~e1 + r~̇e1) = r̈~e1 + 2ṙ~̇e1 + r~̈e1,

where

~̇e1 = θ̇

(

− sin θ
cos θ

)

= θ̇~e2,

~̈e1 = θ̈

(

− sin θ

cos θ

)

+ θ̇2

(

− cos θ

− sin θ

)

= θ̈~e2 − θ̇2~e1.

That is
~̈r = (r̈ − rθ̇2)~e1 + (2ṙθ̇ + rθ̈)~e2,

so that Newton’s law can be rewritten as

m(r̈ − rθ̇2)~e1 + m(2ṙθ̇ + rθ̈)~e2 = u1~e1 + u2~u2 −
km

r2
~e1,

or, equivalently, as the two scalar differential equations

m(r̈ − rθ̇2) = u1 −
km

r2
,

m(2ṙθ̇ + rθ̈) = u2.

In state space

x =









r
θ

ṙ

θ̇









, ẋ =









ṙ

θ̇

r̈

θ̈









=









x3

x4

x1x
2
4 − k/x2

1

−2x3x4/x1









+









0 0
0 0

1/m 0
0 1/(mx1)









(

u1

u2

)

.

This is a nonlinear system and we look for equilibrium (r̈ = θ̈ = 0) when
u1 = u2 = 0. This can be stated as

x1x
2
4 − k/x2

1 = 0, −2x3x4/x1 = 0.

The second condition implies x3 = ṙ and/or x4 = θ̇ must be zero. We choose
x3 = ṙ = 0 which implies x1 = r = r̄ constant and

x4 = θ̇ =

√

k

x3
1

=

√

k

r̄3
= ω̄ ⇒ k = r̄3ω̄2.

Note also that x2 = θ = ω̄t.
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This nonlinear system is in the form

ẋ = f(x, t) + g(x)u.

We will linearize f(x, t) and g(x)u around the equilibrium point (x̄, ū) to obtain
the linearized system

ẋ = (∇fx)
T [x(t) − x̄(t)] + (∇gx)

T [x(t) − x̄(t)]ū + g(x̄)u.

For this problem

x̄(t) =









r̄

ω̄t

0
ω̄









, ū = 0, f(x, t) =









x3

x4

x1x
2
4 − k/x2

1

−2x3x4/x1









, g(x) =









0 0
0 0

1/m 0
0 1/(mx1)









,

and

(∇fx)
T =









0 0 1 0
0 0 0 1

2k/r̄3 + ω̄2 0 0 2r̄ω̄
0 0 −2ω̄/r̄ 0









=









0 0 1 0
0 0 0 1

3ω̄2 0 0 2r̄ω̄
0 0 −2ω̄/r̄ 0









.

This produces the linearized system

ẋ =









0 0 1 0
0 0 0 1

3ω̄2 0 0 2r̄ω̄
0 0 −2ω̄/r̄ 0









x +









0 0
0 0

1/m 0
0 1/(mr̄)









(

u1

u2

)

.

If we looking at the satelite (from the earth) we can say that we can observe r
and θ̇ (how?), that is

y =

[

1 0 0 0
0 0 0 1

]

x.

Questions:

1) Can we know the ‘state’ of the satelite is by measuring only r?

2) Can we know the ‘state’ of the satelite is by measuring only θ̇?

3) Can we know the ‘state’ of the satelite by measuring r and θ̇?

4) Can the system be controlled to remain in circular orbit using radial
thrusting (u1) alone?

5) Can the system be controlled using tangential thrusting (u2) alone?
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Question: Can we know the ‘state’ of the satelite by measuring only r?

Answer: Is the system observable when C =
[

1 0 0 0
]

? Compute the
observability matrix

O(A, C) =









C

CA
CA2

CA3









,

=









1 0 0 0

0 0 1 0

3ω̄2 0 0 2r̄ω̄

0 0 −ω̄2 0









Phsysical interpretation: measuring r does not give any information on θ or θ̄!

Note that if we that know the satelite is in equilibrium and “measure” k then

θ̇ = ω̄ =

√

k

r̄3
.

But we still do not know θ since

θ(t) = θ(0) + ωt,

and we do not know θ(0)!
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Question: Can we know the ‘state’ of the satelite by observing θ̇ only?

Answer: Is the system observable when C =
[

0 0 0 1
]

? Compute the
observability matrix

O(A, C) =









C
CA

CA2

CA3









,

=









0 0 0 1

0 0 −2ω̄/r̄ 0

−6ω̄3/r̄ 0 0 −4ω̄2

0 0 2ω̄3/r̄ 0









Phsysical interpretation: again, if we try to reconstruct θ from θ̇ we still need to
know θ at some t̄! From that point on

θ = θ(t̄) +

∫ t

t̄

θ̇(τ)dτ.
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Question: Can we know the ‘state’ of the satelite by measuring r and θ̇?

Answer: Is the system observable when C =

[

1 0 0 0
0 0 0 1

]

? Compute the

observability matrix

O(A, C) =









C
CA

CA2

CA3









,

=



























1 0 0 0
0 0 0 1

0 0 1 0
0 0 −2ω̄/r̄ 0

3ω̄2 0 0 2r̄ω̄
−6ω̄3/r̄ 0 0 −4ω̄2

0 0 −ω̄2 0
0 0 2ω̄3/r̄ 0



























Phsysical interpretation: can we know θ at all?
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Question: Can the system be controlled to remain in circular orbit using radial
thrusting (u1) alone?

Answer: Is the system controllable when B =









0
0

1/m
0









? Compute the

controllability matrix

O(A, C) =
[

B AB A2B A3B
]

,

=
1

m









0 1 0 −ω̄2

0 0 −2ω̄/r̄ 0
1 0 −ω̄2 0
0 −2ω̄/r̄ 0 2ω̄3/r̄









Note that

−ω̄2









1
0
0

−2ω̄/r̄









=









−ω̄2

0
0

2ω̄3/r̄









which implies that the system is not controllable from u1!
Phsysical interpretation: there must be a change in the angular velocity θ̇ if one
changes the radius!
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Question: Can the system be controlled using tangential thrusting (u2) alone?

Answer: Is the system controllable when B =









0
0
0

1/(mr̄)









? Compute the

controllability matrix

O(A, C) =
[

B AB A2B A3B
]

,

=
1

mr̄









0 0 2r̄ω̄ 0
0 1 0 −4ω̄2

0 2r̄ω̄ 0 −2r̄ω̄3

1 0 −4ω̄2 0









The above matrix has full rank, so the system is controllable from u2!
Phsysical interpretation: we can change the radius by changing the angular
velocity!
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