
1 More on the Cayley-Hamilton Theorem

1.1 How to evaluate polynomial functions of a matrix?

Problem:

Given p(s) of order m ≥ n evaluate p(A) for some matrix A of order n.

First answer:

Compute the characteristic polynomial dA(s) of A with order n. Then use the
Euclidian algorithm for polynomial division to write

p(s) = q(s)dA(s) + r(s)

where r(s) has degree at most n − 1. From the Cayley-Hamilton Theorem
dA(A) = 0, so that

p(A) = q(A)dA(A) + r(A) = r(A).

Example:

Compute A5 + A3 for A =

[
1 1
0 1

]

.

For this problem p(s) = s5 + s3 and dA(s) = (s − 1)2 = s2 − 2s + 1. Therefore

s5 + s3
︸ ︷︷ ︸

= (s3 + 2s2 + 4s + 6)
︸ ︷︷ ︸

(s2 − 2s + 1)
︸ ︷︷ ︸

+ (8s − 6)
︸ ︷︷ ︸

,

p(s) q(s) dA(s) r(s)

and

A5 + A3 = p(A) = r(A) = 8A − 6I = 8

[
1 1
0 1

]

− 6

[
1 0
0 1

]

=

[
2 8
0 2

]

.
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Second answer:

Since there exists
p(s) = q(s)dA(s) + r(s)

where r(s) is of degree at most n− 1 and if λi, i = 1, . . . , n are the eigenvalues
of A then

p(λi) = q(λi)dA(λi) + r(λi) = r(λi), ∀i = 1, . . . , n.

The above gives us n equations on n unknowns (the coefficients of r!).

Example:

Compute A1000 for A =

[
1 1
0 2

]

. For this problem p(s) = s1000 and λ1 = 1,

λ2 = 2. Therefore for r(s) = r1s + r2

r1 + r2 = r1λ1 + r2 = r(λ1) = p(λ1) = λ1000
1 = 1,

2r1 + r2 = r1λ2 + r2 = r(λ2) = p(λ2) = λ1000
2 = 21000.

Solving the above equations we have

r1 = 21000 − 1,

r2 = 1 − r1 = 2 − 21000,

and

A1000 = r(A) = (21000 − 1)

[
1 1
0 2

]

+ (2 − 21000)

[
1 0
0 1

]

=

[
1 21000 − 1
0 21000

]

.
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1.2 Interpolation

Let dA(s) =
∏m

i=1(s − λi)
ki,

∑m
i=1 ki = n and f(s) be a function with at least

r − 1 derivatives, where r = maxi ki. The polynomial

r(s) = r1s
n−1 + r2s

n−2 + · · · + rn

is said to interpolate f and its derivatives at the roots of dA if

f (j−1)(λi) = r(j−1)(λi), ∀ i = 1, . . . , m, j = 1, . . . , ki.

Proposition: When f(s) is a polynomial of degree m and r(s) is a polynomial
of degree q(s) are polynomials such that

f(s) = q(s)dA(s) + r(s),

then r interpolates f and its derivatives at the roots of dA.

Proof: For all λi, i = 1, . . . , m, j = 1,

f(λi) = q(λi)dA(λi) + r(λi) = r(λi).

Note that
f ′(s) = q′(s)dA(s) + q(s)d′A(s) + r′(s),

and for all i such that ki > 1 we have

d′A(λi) = 0

so that
f ′(λi) = q′(λi)dA(λi) + q(s)d′A(λi) + r′(λi) = r′(λi).

In general, for i such that ki > 1 we have

d
(j−1)
A (λi) = 0, j = 1, . . . , ki,

which implies

f (j−1)(λi) = r(j−1)(λi), j = 1, . . . , ki.
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1.3 How to evaluate non-polynomial functions of a matrix?

Problem:

Given f(s) with at least r − 1 derivatives and a matrix A of order n, where r is
maximum multiplicity of the eigenvalues of A, evaluate f(A).

Answer:

Compute the polynomial r of degree n − 1 that interpolates f at the roots
of dA. Then f(A) = r(A).

Example:

Compute eA for A =

[
1 1
0 2

]

. For this problem λ1 = 1, λ2 = 2. Therefore, for

r(s) = r1s + r2

r1 + r2 = r1λ1 + r2 = r(λ1) = f(λ1) = eλ1 = e,

2r1 + r2 = r1λ2 + r2 = r(λ2) = f(λ2) = eλ2 = e2

Solving the above equations we have

r1 = e2 − e,

r2 = e − r1 = 2e − e2,

and

eA = r(A) = (e2 − e)

[
1 1
0 2

]

+ (2e − e2)

[
1 0
0 1

]

=

[
e e2 − e

0 e2

]

.

MAE 280A 4 Mauŕıcio de Oliveira



2 More on Controllability and Observability

2.1 Non-controllable realizations

Assume (A, B) is not controllable and that rank C(A, B) = r < n

Proposition: There exist a nonsingular matrix T such that

Ā = T−1AT =

[
Ac Acc̄

0 Ac̄

]

, B̄ = T−1B =

[
Bc

0

]

, C̄ = CT =
[
Cc Cc̄

]
,

where Ac ∈ R
r×r and (Ac, Bc) is controllable.

Proof:

First note that

C(Ā, B̄) =
[
B̄ ĀB̄ · · · Ār−1B̄ · · · Ān−1B̄

]
,

=

[
Bc AcBc · · · Ar−1

c Bc · · · An−1
c Bc

0 0 · · · 0 · · · 0

]

=

[
C(Ac, Bc) ?

0 0

]

so that we can use the Cayley-Hamilton Theorem to show that C(Ā, B̄) has
rank r if and only if C(Ac, Bc) has rank r. Furthermore

C(Ā, B̄) =
[
T−1B T−1AB · · · T−1An−1B

]
,

= T−1
[
B AB · · · An−1B

]
,

= T−1C(A, B),

therefore C(Ā, B̄) must have rank r, and so has C(Ac, Bc).
From the above

C(A, B) =
[
B̄ ĀB̄ · · · Ār−1B̄ ?

]
,

= TC(Ā, B̄),

=
[
T1 T2

]
[
C(Ac, Bc) ?

0 0

]

,

=
[
T1C(Ac, Bc) ?

]
,

which implies that

T1 =
[
B̄ ĀB̄ · · · Ār−1B̄

]
C†(Ac, Bc),

where the symbol X† denotes the pseudo-inverse of X (more on that later!).
As T1 has full rank, matrix T2 can be chosen to make T nonsingular.
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Corollary: C(sI − A)−1B = Cc̄(sI − Ac̄)
−1Bc̄.

Proof: Verify that

[
Cc Cc̄

]
[
sI − Ac −Acc̄

0 sI − Ac̄

]−1 [
Bc

0

]

=
[
Cc Cc̄

]
[
(sI − Ac)

−1 ?

0 (sI − Ac̄)
−1

]−1 [
Bc

0

]

,

=
[
Cc Cc̄

]
[
(sI − Ac)

−1Bc

0

]

,

= Cc(sI − Ac)
−1Bc.

2.2 Non-observable realizations

Assume (A, C) is not observable and that

rankO(A, c) = r < n

Proposition: There exist a nonsingular matrix T such that

Ā = T−1AT =

[
Ao 0
Aōo Aō

]

, B̄ = T−1B =

[
Bo

Bō

]

, C̄ = CT =
[
Co 0

]
,

where Ao ∈ R
r×r and (Ao, Co) is observable.
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2.3 The Popov-Belevitch-Hautus Test

Theorem: The pair (A, C) is observable if and only if there exists no x 6= 0
such that

Ax = λx, Cx = 0. (1)

Proof:

Sufficiency: Assume there exists x 6= 0 such that (1) holds. Then

CAx = λCx = 0,

CA2x = λCAx = 0,
...

CAn−1x = λCAn−2x = 0

so that

O(A, C)x = 0,

which implies that the pair (A, C) is not observable.

Necessity: Assume that (A, C) is not observable. Then transform it into the
equivalent non observable realization where

Ā =

[
Ao 0
Aōo Aō

]

, C̄ =
[
Co 0

]
.

Chose x 6= 0 such that

Aōx = λx.

Then
[

Ao 0
Aōo Aō

](
0
x

)

= λ

(
0
x

)

,
[
Co 0

]
(

0
x

)

= 0.

Theorem: The pair (A, B) is observable if and only if there exists no z 6= 0
such that

z∗A = λz, z∗B = 0.
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