1 More on the Cayley-Hamilton Theorem

1.1 How to evaluate polynomial functions of a matrix?

Problem:

Given p(s) of order $m \ge n$ evaluate p(A) for some matrix A of order n.

First answer:

Compute the characteristic polynomial $d_A(s)$ of A with order n. Then use the Euclidian algorithm for polynomial division to write

$$p(s) = q(s)d_A(s) + r(s)$$

where r(s) has degree at most n-1. From the Cayley-Hamilton Theorem $d_A(A) = 0$, so that

$$p(A) = q(A)d_A(A) + r(A) = r(A).$$

Example:

Compute $A^5 + A^3$ for $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. For this problem $p(s) = s^5 + s^3$ and $d_A(s) = (s - 1)^2 = s^2 - 2s + 1$. Therefore

$$\underbrace{s^5 + s^3}_{p(s)} = \underbrace{(s^3 + 2s^2 + 4s + 6)}_{q(s)} \underbrace{(s^2 - 2s + 1)}_{d_A(s)} + \underbrace{(8s - 6)}_{r(s)},$$

 and

$$A^{5} + A^{3} = p(A) = r(A) = 8A - 6I = 8 \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} - 6 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 8 \\ 0 & 2 \end{bmatrix}.$$

Second answer:

Since there exists

$$p(s) = q(s)d_A(s) + r(s)$$

where r(s) is of degree at most n-1 and if λ_i , $i = 1, \ldots, n$ are the eigenvalues of A then

$$p(\lambda_i) = q(\lambda_i)d_A(\lambda_i) + r(\lambda_i) = r(\lambda_i), \quad \forall i = 1, \dots, n.$$

The above gives us n equations on n unknowns (the coefficients of r!).

Example:

Compute A^{1000} for $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$. For this problem $p(s) = s^{1000}$ and $\lambda_1 = 1$, $\lambda_2 = 2$. Therefore for $r(s) = r_1 s + r_2$

$$r_1 + r_2 = r_1\lambda_1 + r_2 = r(\lambda_1) = p(\lambda_1) = \lambda_1^{1000} = 1,$$

$$2r_1 + r_2 = r_1\lambda_2 + r_2 = r(\lambda_2) = p(\lambda_2) = \lambda_2^{1000} = 2^{1000}.$$

Solving the above equations we have

$$r_1 = 2^{1000} - 1,$$

$$r_2 = 1 - r_1 = 2 - 2^{1000},$$

and

$$A^{1000} = r(A) = (2^{1000} - 1) \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} + (2 - 2^{1000}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2^{1000} - 1 \\ 0 & 2^{1000} \end{bmatrix}.$$

1.2 Interpolation

Let $d_A(s) = \prod_{i=1}^m (s - \lambda_i)^{k_i}$, $\sum_{i=1}^m k_i = n$ and f(s) be a function with at least r - 1 derivatives, where $r = \max_i k_i$. The polynomial

$$r(s) = r_1 s^{n-1} + r_2 s^{n-2} + \dots + r_n$$

is said to *interpolate* f and its derivatives at the roots of d_A if

$$f^{(j-1)}(\lambda_i) = r^{(j-1)}(\lambda_i), \quad \forall i = 1, \dots, m, \quad j = 1, \dots, k_i.$$

Proposition: When f(s) is a polynomial of degree m and r(s) is a polynomial of degree q(s) are polynomials such that

$$f(s) = q(s)d_A(s) + r(s),$$

then r interpolates f and its derivatives at the roots of d_A .

Proof: For all λ_i , $i = 1, \ldots, m$, j = 1,

$$f(\lambda_i) = q(\lambda_i)d_A(\lambda_i) + r(\lambda_i) = r(\lambda_i).$$

Note that

$$f'(s) = q'(s)d_A(s) + q(s)d'_A(s) + r'(s),$$

and for all i such that $k_i > 1$ we have

$$d'_A(\lambda_i) = 0$$

so that

$$f'(\lambda_i) = q'(\lambda_i)d_A(\lambda_i) + q(s)d'_A(\lambda_i) + r'(\lambda_i) = r'(\lambda_i).$$

In general, for i such that $k_i > 1$ we have

$$d_A^{(j-1)}(\lambda_i) = 0, \quad j = 1, \dots, k_i,$$

which implies

$$f^{(j-1)}(\lambda_i) = r^{(j-1)}(\lambda_i), \quad j = 1, \dots, k_i.$$

1.3 How to evaluate non-polynomial functions of a matrix?

Problem:

Given f(s) with at least r-1 derivatives and a matrix A of order n, where r is maximum multiplicity of the eigenvalues of A, evaluate f(A).

Answer:

Compute the polynomial r of degree n-1 that interpolates f at the roots of d_A . Then f(A) = r(A).

Example:

Compute e^A for $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$. For this problem $\lambda_1 = 1$, $\lambda_2 = 2$. Therefore, for $r(s) = r_1 s + r_2$

$$r_1 + r_2 = r_1\lambda_1 + r_2 = r(\lambda_1) = f(\lambda_1) = e^{\lambda_1} = e,$$

$$2r_1 + r_2 = r_1\lambda_2 + r_2 = r(\lambda_2) = f(\lambda_2) = e^{\lambda_2} = e^2$$

Solving the above equations we have

$$r_1 = e^2 - e,$$

 $r_2 = e - r_1 = 2e - e^2,$

and

$$e^{A} = r(A) = (e^{2} - e) \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} + (2e - e^{2}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e & e^{2} - e \\ 0 & e^{2} \end{bmatrix}.$$

2 More on Controllability and Observability

2.1 Non-controllable realizations

Assume (A,B) is not controllable and that $\operatorname{rank} \mathcal{C}(A,B) = r < n$

Proposition: There exist a nonsingular matrix T such that

$$\bar{A} = T^{-1}AT = \begin{bmatrix} A_c & A_{c\bar{c}} \\ 0 & A_{\bar{c}} \end{bmatrix}, \quad \bar{B} = T^{-1}B = \begin{bmatrix} B_c \\ 0 \end{bmatrix}, \quad \bar{C} = CT = \begin{bmatrix} C_c & C_{\bar{c}} \end{bmatrix},$$

where $A_c \in \mathbb{R}^{r \times r}$ and (A_c, B_c) is controllable.

Proof:

First note that

$$\begin{aligned} \mathcal{C}(\bar{A},\bar{B}) &= \begin{bmatrix} \bar{B} & \bar{A}\bar{B} & \cdots & \bar{A}^{r-1}\bar{B} & \cdots & \bar{A}^{n-1}\bar{B} \end{bmatrix}, \\ &= \begin{bmatrix} B_c & A_c B_c & \cdots & A_c^{r-1} B_c & \cdots & A_c^{n-1} B_c \\ 0 & 0 & \cdots & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} \mathcal{C}(A_c,B_c) & \star \\ 0 & 0 \end{bmatrix} \end{aligned}$$

so that we can use the Cayley-Hamilton Theorem to show that $C(\bar{A}, \bar{B})$ has rank r if and only if $C(A_c, B_c)$ has rank r. Furthermore

$$\mathcal{C}(\bar{A},\bar{B}) = \begin{bmatrix} T^{-1}B & T^{-1}AB & \cdots & T^{-1}A^{n-1}B \end{bmatrix},$$

= $T^{-1} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix},$
= $T^{-1}\mathcal{C}(A,B),$

therefore $C(\bar{A}, \bar{B})$ must have rank r, and so has $C(A_c, B_c)$. From the above

$$\mathcal{C}(A,B) = \begin{bmatrix} \bar{B} & \bar{A}\bar{B} & \cdots & \bar{A}^{r-1}\bar{B} & \star \end{bmatrix},$$

$$= T\mathcal{C}(\bar{A},\bar{B}),$$

$$= \begin{bmatrix} T_1 & T_2 \end{bmatrix} \begin{bmatrix} \mathcal{C}(A_c,B_c) & \star \\ 0 & 0 \end{bmatrix},$$

$$= \begin{bmatrix} T_1\mathcal{C}(A_c,B_c) & \star \end{bmatrix},$$

which implies that

$$T_1 = \begin{bmatrix} \bar{B} & \bar{A}\bar{B} & \cdots & \bar{A}^{r-1}\bar{B} \end{bmatrix} \mathcal{C}^{\dagger}(A_c, B_c),$$

where the symbol X^{\dagger} denotes the pseudo-inverse of X (more on that later!). As T_1 has full rank, matrix T_2 can be chosen to make T nonsingular. **Corollary:** $C(sI - A)^{-1}B = C_{\bar{c}}(sI - A_{\bar{c}})^{-1}B_{\bar{c}}.$

Proof: Verify that

$$\begin{bmatrix} C_c & C_{\bar{c}} \end{bmatrix} \begin{bmatrix} sI - A_c & -A_{c\bar{c}} \\ 0 & sI - A_{\bar{c}} \end{bmatrix}^{-1} \begin{bmatrix} B_c \\ 0 \end{bmatrix} = \begin{bmatrix} C_c & C_{\bar{c}} \end{bmatrix} \begin{bmatrix} (sI - A_c)^{-1} & \star \\ 0 & (sI - A_{\bar{c}})^{-1} \end{bmatrix}^{-1} \begin{bmatrix} B_c \\ 0 \end{bmatrix},$$
$$= \begin{bmatrix} C_c & C_{\bar{c}} \end{bmatrix} \begin{bmatrix} (sI - A_c)^{-1}B_c \\ 0 \end{bmatrix},$$
$$= C_c(sI - A_c)^{-1}B_c.$$

2.2 Non-observable realizations

Assume $\left(A,C\right)$ is not observable and that

$$\operatorname{rank} \mathcal{O}(A, c) = r < n$$

Proposition: There exist a nonsingular matrix T such that

$$\bar{A} = T^{-1}AT = \begin{bmatrix} A_o & 0\\ A_{\bar{o}o} & A_{\bar{o}} \end{bmatrix}, \quad \bar{B} = T^{-1}B = \begin{bmatrix} B_o\\ B_{\bar{o}} \end{bmatrix}, \quad \bar{C} = CT = \begin{bmatrix} C_o & 0 \end{bmatrix},$$

where $A_o \in \mathbb{R}^{r \times r}$ and (A_o, C_o) is observable.

2.3 The Popov-Belevitch-Hautus Test

Theorem: The pair (A, C) is observable if and only if there exists no $x \neq 0$ such that

$$Ax = \lambda x, \quad Cx = 0. \tag{1}$$

Proof:

Sufficiency: Assume there exists $x \neq 0$ such that (1) holds. Then

$$CAx = \lambda Cx = 0,$$

$$CA^{2}x = \lambda CAx = 0,$$

$$\vdots$$

$$CA^{n-1}x = \lambda CA^{n-2}x = 0$$

so that

$$\mathcal{O}(A,C)x = 0,$$

which implies that the pair (A, C) is not observable.

Necessity: Assume that (A, C) is not observable. Then transform it into the equivalent non observable realization where

$$\bar{A} = \begin{bmatrix} A_o & 0\\ A_{\bar{o}o} & A_{\bar{o}} \end{bmatrix}, \qquad \qquad \bar{C} = \begin{bmatrix} C_o & 0 \end{bmatrix}.$$

Chose $x \neq 0$ such that

 $A_{\bar{o}}x = \lambda x.$

Then

$$\begin{bmatrix} A_o & 0\\ A_{\bar{o}o} & A_{\bar{o}} \end{bmatrix} \begin{pmatrix} 0\\ x \end{pmatrix} = \lambda \begin{pmatrix} 0\\ x \end{pmatrix}, \quad \begin{bmatrix} C_o & 0 \end{bmatrix} \begin{pmatrix} 0\\ x \end{pmatrix} = 0.$$

Theorem: The pair (A,B) is observable if and only if there exists no $z\neq 0$ such that

$$z^*A = \lambda z, \quad z^*B = 0.$$