MAE 140 - Linear Circuits - Winter 2009 Midterm

Instructions

1) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a hand calculator with no communication capabilities.
2) You have 70 minutes.
3) Write your name, student number and instructor.

Figure 1: Circuit for questions 1-4.

Questions

1. Equivalent circuits

(a) (2 points) Turn off all the sources in the circuit of Figure 1 and find the equivalent resistance as seen from terminals A and D.

Solution: First determine the circuit with all sources off:

The equivalent resistance is then

$$
\begin{equation*}
[(20 / / 20)+10] / / 20=[10+10] / / 20=20 / / 20=10 \Omega \tag{1point}
\end{equation*}
$$

(b) (3 points) Find the Thévenin equivalent as seen from terminals A and D.

Solution: The simplest possible way may be to use a source transformation on the current source to obtain the following circuit:

Then associate the voltage sources in series:

and apply a source transformation:
(1 point)

Associate 20//20 and perform one more source transformation:

Calculate the open-circuit voltage V_{T} directly using voltage division

$$
V_{T}=\frac{20}{10+10+20} 5 \mathrm{~V}=2.5 \mathrm{~V}
$$

and use part (a) to draw the Thévenin equivalent:

(c) (1 point) Find the power absorbed by a 10Ω resistor if connected to terminals A and D.

Solution: Using the Thévenin equivalent from part (b):

Compute the voltage on the resistor using voltage division:

$$
v=\frac{10}{10+10} 2.5=1.25 \mathrm{~V}
$$

then the power absorbed is

$$
\begin{equation*}
p=\frac{v^{2}}{10}=\frac{1.25^{2}}{10} \approx 156 \mathrm{~mW} \tag{1point}
\end{equation*}
$$

2. Mesh current analysis

(a) (6 points) Formulate mesh-current equations for the circuit in Figure 1. Use the mesh currents shown in the figure and clearly indicate how you handle the presence of a current source, the final equations and the unknowns they must be solved for. Do not modify the circuit or the labels in any way. Do not use source transformation. Do not solve any equations!

Solution: Because the current source appears in a single mesh we have

$$
\begin{equation*}
i_{1}=1 \mathrm{~A}, \tag{eq.1}
\end{equation*}
$$

which determines i_{1}.
(1 point)
The remaining two currents can be determined by the mesh-current equations

$$
\left[\begin{array}{ccc}
-20 & 20+20 & -20 \tag{eq.2}\\
0 & -20 & 20+10+20
\end{array}\right]\left(\begin{array}{c}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right)=\binom{-10}{0}
$$

which were obtained by inspection of the circuit.
(3 points)
One must solve (eq. 1) and (eq. 2) for currents i_{1}, i_{2} and i_{3}. That is $i_{1}=1$ and solve

$$
\left[\begin{array}{cc}
40 & -20 \\
-20 & 50
\end{array}\right]\binom{i_{2}}{i_{3}}=\binom{10}{0}
$$

for i_{2} and i_{3}.
(2 points)

3. Nodal voltage analysis

(a) (6 points) Assuming that the node labeled D is the ground node (reference), formulate node-voltage equations for the circuit in Figure 1. Use the node labels provided in the figure and clearly indicate how you handle the presence of a voltage source, the final equations, and the unknowns they must be solved for. Do not modify the circuit or the labels in any way. Do not use source transformation. Do not solve any

Solution: We start by writing the node-voltage equations by inspection

$$
\left[\begin{array}{ccc}
\frac{1}{10}+\frac{1}{20} & -\frac{1}{10} & 0 \tag{eq.3}\\
-\frac{1}{10} & \frac{1}{10}+\frac{1}{20} & 0 \\
0 & 0 & \frac{1}{20}
\end{array}\right]\left(\begin{array}{l}
v_{A} \\
v_{B} \\
v_{C}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-i_{v} \\
1+i_{v}
\end{array}\right)
$$

where i_{v} is the unknown current on the voltage source.
Furthermore, we have the relationship

$$
\begin{equation*}
v_{C}-v_{B}=10 \mathrm{~V} \tag{eq.4}
\end{equation*}
$$

because of the voltage source.
(1 point)
In order to determine the node-voltages we can form the super-node equation formed by adding the second and third rows of (eq. 4)

$$
\left[\begin{array}{lll}
-\frac{1}{10} & \frac{1}{10}+\frac{1}{20} & \frac{1}{20}
\end{array}\right]\left(\begin{array}{l}
v_{A} \tag{eq.5}\\
v_{B} \\
v_{C}
\end{array}\right)=1
$$

which should be solved for v_{A}, v_{B} and v_{C} along with the first equation of (eq. 3) and (eq. 4).
(2 points)
The final equations are

$$
\left[\begin{array}{ccc}
\frac{1}{10}+\frac{1}{20} & -\frac{1}{10} & 0 \\
-\frac{1}{10} & \frac{1}{10}+\frac{1}{20} & \frac{1}{20} \\
0 & -1 & 1
\end{array}\right]\left(\begin{array}{l}
v_{A} \\
v_{B} \\
v_{C}
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
10
\end{array}\right)
$$

to be solved for v_{A}, v_{B} and v_{C}.
(1 point)

4. Bonus Question

(a) (1 point) If you were allowed to modify the circuit in Figure 1, describe what would you do in order to avoid having to use a super-node in Question 3? Do not write or solve any equations!

Solution: One could choose nodes B (or C) as references.
(1 point)
In this way v_{C} (or v_{B}) would be determined and one would simply not write KCL at node C. This is method \# 2 .
Alternatively, a more complicate solution would be to leave D as the reference node and apply a source transformation on the current source and then associate the voltage sources as done in part (b) of Question 1.

