MAE 140 - Linear Circuits - Winter 2008

Final

Instructions

1) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a hand calculator with no communication capabilities.
2) You have 170 minutes.
3) On the questions for which we have given the answers, please provide detailed derivations.

Question 1 - Equivalent Circuits

Figure 1: Circuit for Question 1 (i)

Figure 2: Circuit for Question 1 (ii)

Part (i) [5 marks] Assuming zero initial conditions, find the impedance equivalent to the circuit in Figure 1 as seen from terminals A and B. The answer should be given as a ratio of two polynomials.

Part (ii) [5 marks] Assuming that the initial condition of the capacitor is as indicated in the diagram, redraw the circuit shown in Figure 2 in s-domain. Then use source transformations to find the s-domain Norton equivalent to the circuit as seen from terminals A and B.

Question 2 - Laplace Domain Circuit Analysis

Part (i) [2 marks] Consider the circuit depicted in Figure 3. The voltage sources are constant. The switch is kept in position A for a very long time. At $t=0$ it is moved to position B. Show that the initial capacitor voltage is given by

$$
v_{C}\left(0^{-}\right)=1.5 V
$$

[Show your working.]
Part (ii) [2 marks] Use this initial condition to transform the circuit into the s-domain for $t \geq 0$. Use an equivalent model for the capacitor in which the initial condition appears in a current source.
[Show your working.]

Figure 3: RC circuit for Laplace analysis.
Part (iii) [3 marks] Use s-domain circuit analysis and inverse Laplace transforms to show that the capacitor voltage satisfies,

$$
v_{C}(t)=3\left(e^{-2 t /(R C)}-1 / 2\right) u(t)
$$

Hint: simplify the circuit, transform all voltage sources into equivalent current sources and use nodal-analysis.
[Show your working.]
Part (iv) [3 marks] Use the final value theorem to show that the voltage on the capacitor after the switch is kept in position B for a very long time is given by

$$
v_{C}(\infty)=-1.5 \mathrm{~V} .
$$

Verify whether the same solution is obtained from the answer to the previous question. [Show your working.]

Question 3 - Active Filter Analysis and Design

Figure 4: Filter for analysis

Part (i) [4 marks] Assuming zero initial conditions, transform the circuit in the Figure 4 into the s-domain and compute the transfer function from $V_{i}(s)$ to $V_{o}(s)$.

Part (ii) [3 marks] Showing your reasoning, determine the nature of this filter's frequency response. Further, determine the gain of the filter and its cut-off frequency.

Part (iii) [3 marks] If $C=100 \mathrm{nF}$, find values of R_{1}, R_{2} and R_{3} so that the cutoff frequency is 10 KHz and the filter gain is 2 .

Figure 5: Frequency Response Circuit

Question 4 - Laplace Domain Circuit Analysis

[6 marks] Formulate node-voltage equations for the circuit in Figure 5. Use the reference node and other labels as shown in the figure. Do not assume zero initial conditions!

Question 5 - Frequency Response

[4 marks] Let $L=(1 / \pi) \mathrm{H}, C=(25 / \pi) \mu \mathrm{F}$ and $R=200 \Omega$. Using what you known about frequency response, find the steady state current $i_{2}(t)$ in the circuit given in Figure 5 when the input current is $i_{1}(t)$ is a cosine function with amplitude ' 1 ' A and frequency 100 Hz .

Question 6 - Op-Amp Analysis and Application (Bonus)

Figure 6: Op-Amp Circuit

Part (i) [4 marks] Using the fundamental op-amp relationships, find the transfer function from $V_{i}(s)$ to $V_{o}(s)$ in Figure 6. Assume zero initial conditions.

Part (ii) [3 marks] Calculate the input and the output impedances of this circuit.
Part (iii) [3 marks] Set $R_{1}=1100 \Omega, R_{2}=1200 \Omega, R_{3}=150 \mathrm{~K} \Omega, C=.01 \mu \mathrm{~F}$. Tell me as much as you can about this circuit's function.

