2-53 Use circuit reduction to find \(v_x \) in Figure P2-53.

![Figure P2-53](image)

2-58 The current through \(R_L \) in Figure P2-58 is 40 mA. Use source transformations to find \(R_L \).

![Figure P2-58](image)

2-62 Center Tapped Voltage Divider

Figure P2-62 shows a voltage divider with the center tap connected to ground. Derive equations relating \(v_A \) and \(v_B \) to \(v_S \), \(R_1 \), and \(R_2 \).

![Figure P2-62](image)
3–2 (a) Formulate node-voltage equations for the circuit in Figure P3–2.
 (b) Use these equations to find \(v_x \) and \(i_x \).

3–5 (a) Formulate node-voltage equations for the circuit in Figure P3–5.
 (b) Solve for \(v_x \) and \(i_x \) when \(R_1 = R_2 = R_3 = R_4 = 10 \, \text{k}\Omega \), \(v_s = 20 \, \text{V} \), and \(i_s = 2 \, \text{mA} \).
3–37 Find the Thévenin equivalent circuit seen by R_L in Figure P3–37. Find the voltage across the load when $R_L = 5 \, \Omega$, $10 \, \Omega$, and $50 \, \Omega$.

![Figure P3–37](image)

3–41 The purpose of this problem is to use Thévenin equivalent circuits to find the voltage v_X in Figure P3–41. Find the Thévenin equivalent circuit seen looking to the left of terminals A and B. Find the Thévenin equivalent circuit seen looking to the right of terminals A and B. Connect these equivalent circuits together and find the voltage v_X.

![Figure P3–41](image)