MAE 140 - Linear Circuits - Summer 2007
Final Solution
NOTE: The items d) and e) of Question 4 gave you bonus marks.

Question 1 [Equivalent Circiuts]

[4 marks] Find the equivalent impedance between terminals (A) and (B) in the following circuits.

$$
Z(s)=R / /[s L+R / /(R+1 / s C)]
$$

Let's compute one term at a time. First

$$
R / /(R+1 / s C)=\frac{R(R+1 / s C)}{R+(R+1 / s C)}=\frac{R(s R C+1)}{s R C+(s R C+1)},
$$

followed by

$$
s L+R / /(R+1 / s C)=s L+\frac{R(s R C+1)}{s R C+(s R C+1)}=\frac{s^{2} R L C+(s L+R)(s R C+1)}{s R C+(s R C+1)} .
$$

Finally

$$
\begin{aligned}
Z(s) & =R / /[s L+R / /(R+1 / s C)] \\
& =\frac{\frac{s^{2} R^{2} L C+R(s L+R)(s R C+1)}{s R C+(s R C+1)}}{R+\frac{s^{2} R L C+(s L+R)(s R C+1)}{s R C+(s R C+1)}}=\frac{s^{2} R^{2} L C+R(s L+R)(s R C+1)}{s R C(s L+R)+(s L+2 R)(s R C+1)} .
\end{aligned}
$$

$$
Z(s)=1 / s C / / R / /(s L+1 / s C)
$$

so all there is to do is to compute the parallel association

$$
Z(s)=\frac{1}{s C+\frac{1}{R}+\frac{s C}{s^{2} L C+1}}=\frac{R\left(s^{2} L C+1\right)}{s C R+(s C R+1)\left(s^{2} L C+1\right)} .
$$

Question 2 [Nodal Analysis in the s-Domain]

[6 marks] Transform the following circuit to the s-domain and formulate node-voltage equations. Assume initial conditions and reference ground as indicated in the figure. The current source is constant.

Transform to the s-domain using sources of current for initial conditions, as we will need to write node-voltage equations.

Now write node-voltage equations by inspection:

$$
\left[\begin{array}{cc}
\frac{1}{s L}+\frac{2}{R} & -\frac{1}{s L}-\frac{1}{R} \\
-\frac{1}{s L}-\frac{1}{R} & \frac{1}{s L}+s C+\frac{1}{R}
\end{array}\right]\binom{V_{A}(s)}{V_{B}(S)}=\binom{-\frac{i_{L}(0)}{s}}{\frac{I+i_{L}(O)}{s}+C v_{C}(0)} .
$$

Question 3 [Transient Analysis in the s-Domain]

[6 marks] The switch in the next circuit has been left in position (A) for a long time and is moved to position (B) at $t=0$. Find $v_{c}(t)$ for $t \geq 0$. The voltage source is constant.

The first step is to determine $v_{C}(0)$. This is obtained by noticing that if the switch is on (A) for a long time then the current in C, and consequently in R, should be zero, therefore, $v_{C}(0)=V$.

Now transform the circuit after the switch is moved to (B) to the s-domain as in the following diagram.

Mesh analysis applied to the diagram provides

$$
(s L+1 / s C) I(s)=-\frac{v_{C}(0)}{s} \quad \Rightarrow \quad I(s)=-\frac{v_{C}(0)}{s(s L+1 / s C)}=-\frac{C V}{s^{2} L C+1}
$$

Noticing that

$$
v_{C}(s)=\frac{v_{C}(0)}{s}+\frac{1}{s C} I(s)=\left(1-\frac{1}{s^{2} L C+1}\right) \frac{V}{s}=\frac{s L C}{s^{2} L C+1} V=\frac{s}{s^{2}+1 / L C} V
$$

Therefore, applying the Laplace inverse we have

$$
v_{c}(t)=V \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+1 / L C}\right\}=V \cos (\omega t) u(t), \quad \omega:=\sqrt{\frac{1}{L C}} .
$$

Question 4 [Circuit Variables and OpAmp Circuit Design]

When two different metal wires are placed in contact (creating a junction) a voltage appears that is proportional to the junction temperature and the material properties. A pair of wires made with different materials connected at one end as in the next figure is known as a thermocouple, and is a very popular temperature sensor. No voltage appears on junctions made of same materials because of temperature. The points B and B^{\prime} are at the same temperature T_{B}.

A good model for the thermocouple junction is as a voltage source with voltage $v=\bar{K}+K T$, where \bar{K} and K are constants that depend only on the material used in the junction and T is the junction temperature. A simple circuit model for the above thermocouple is given in the next diagram, where R_{x} and R_{y} represent the resistance of the wires, which are essentially functions of the cross section area and length of the thermocouple. It is fair to assume that $R_{x} \approx R_{y}$.

A thermocouple made with 'metal x ' being copper and 'metal y' being constantan can measure temperatures in the range $-200{ }^{\circ} \mathrm{C}$ to $350^{\circ} \mathrm{C}$ with $K=43 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The voltage v is measured from the copper terminal $(+)$ to the constantan terminal $(-)$. As you will see soon, the value of \bar{K} is not important.
a) [3 marks] A friend of yours suggested that you can measure the temperature of point $A\left(T_{A}\right)$ by simply connecting a voltmeter with copper leads to the points B and B^{\prime} and measure the resulting voltage in C and C^{\prime} (internal to the voltmeter), as in the next figure. The points B and B^{\prime} are at the same temperature T_{B}. The points C and C^{\prime} are at the same temperature T_{C}. Draw the circuit diagram corresponding to this setup and show that he/she is not correct: this setup can only measure $V_{C}-V_{C^{\prime}}=K\left(T_{A}-T_{B}\right)$.
(Hint: remember that a voltage appear on all junctions made with different materials!)

Because the junction B^{\prime} has two different metals the circuit diagram of the above setup is as follows:

Because no current flows into the voltmeter, then

$$
V_{C}-V_{C}^{\prime}=\left(\bar{K}+K T_{A}\right)-\left(\bar{K}+K T_{B}^{\prime}\right)=K\left(T_{A}-T_{B}^{\prime}\right)=K\left(T_{A}-T_{B}\right)
$$

as stated.
One way of overcomming the above problem is to let the temperature T_{B} be known. A popular approach is to have the junction B^{\prime} be immersed in a bath of water and ice, in which the temperature is exactly $0.01{ }^{\circ} \mathrm{C}$ (known as the triple point of water) so that $T_{A}=T_{B}+\left(V_{C}-V_{C^{\prime}}\right) / K \approx\left(V_{C}-\right.$ $\left.V_{C^{\prime}}\right) / K$.
b) [4 marks] Assume that T_{B} is in a cold bath at the triple point of water (assume $T_{B} \approx 0$) and design an OpAmp circuit to be connected at C - C^{\prime} that outputs a voltage $v_{0}=\alpha T_{A}$, where $\alpha=10$ $\mathrm{m} \mathrm{V} /{ }^{\circ} \mathrm{C}$. Note that this circuit should makes the measurement independent of the wire resistance. If the OpAmp is powered with +10 V and -10 V what is the temperature range that you can measure accurately with your circuit?

Because $T_{A} \approx\left(V_{C}-V_{C}^{\prime}\right) / K$ our circuit have to implement the function

$$
\begin{aligned}
v_{0} & =\alpha T_{A} \\
& \approx(\alpha / K)\left(V_{C}-V_{C}^{\prime}\right)
\end{aligned}
$$

with gain

$$
\frac{\alpha}{K}=\frac{10 \times 10^{-3} V /{ }^{\circ} C}{43 \times 10^{-6} V /{ }^{\circ} C}=\frac{10}{43} \times 10^{3} \approx 232 .
$$

One possible answer is to use a non-inverting amplifier setup

with gain

$$
\frac{R_{2}+R_{1}}{R_{1}}=1+\frac{R_{2}}{R_{1}}=232 .
$$

This configuration has a high input impedance so the effect of the ohmic wire resistances is minized. Possible (unrealistic) choices for R_{1} and R_{2} that could be used are

$$
R_{1}=1 K \Omega, \quad \quad R_{2}=231 K \Omega
$$

We should be able to read temperatures while the OpAmp stays in the linear range. So we look for the saturation points:

$$
\begin{array}{lll}
10 \times 10^{-3} T_{\text {low }}=-10 & \Rightarrow & T_{\text {low }}=-1000^{\circ} \mathrm{C} \\
10 \times 10^{-3} T_{\text {high }}=10 & \Rightarrow & T_{\text {high }}=+1000^{\circ} \mathrm{C} .
\end{array}
$$

As the thermocouple is accurate in the range $[-200,350]^{\circ} \mathrm{C}$ we should be able to read accurately the entire scale of the thermocouple. Indeed, we could have used a higher gain to enhance the circuit resolution, perhaps using two stages of amplification.

Another way of overcomming the temperature reference problem is to directly measure the temperature T_{B}. The justification for this is that T_{B} is the temperature of a controlled environment, say your workbench, while T_{A} may be an extreme temperature you're trying to measure. Therefore, you could use a temperature sensor to measure T_{B} that is less expensive or perhaps acurate only on ambient temperature. One such device is called a termistor, which is a resistor whose resitance varies with the temperature. Termistors are typically accurate and approximately linear from $0^{\circ} \mathrm{C}$ to a dozen degrees above ambient temperature.
c) [2 marks] You have a linear termistor with a resistance of $30 \mathrm{~K} \Omega$ at $0^{\circ} \mathrm{C}$ and a resistance of $10 \mathrm{~K} \Omega$ at $20^{\circ} \mathrm{C}$. Show that the relationship between the termistor resistance $\left(R_{T}\right)$ and the termistor temperature $\left(T_{B}\right)$ is

$$
R_{T}=\left(30-T_{B}\right) \times 10^{3} \Omega
$$

Up to what temperature do you think this termistor is acurate (or at least linear)? Why?

Because the termistor is linear it should satisfy

$$
R_{T}=a T_{B}+b
$$

for some a and b. Evaluating R_{T} at $T_{B}=0{ }^{\circ} C$ and $T_{B}=20^{\circ} \mathrm{C}$ yields

$$
a \times 0+b=b=30 \times 10^{3} \Omega, \quad a \times 20+b=10 \times 10^{3} \Omega
$$

from where

$$
\begin{aligned}
& b=30 \times 10^{3} \\
& a=\left(10 \times 10^{3}-b\right) / 20=\left(10 \times 10^{3}-30 \times 10^{3}\right) / 20=-1 \times 10^{3} \Omega /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Hence

$$
R_{T}=\left(30-T_{B}\right) \times 10^{3} \Omega
$$

You should start being suspicious about this termistor model when it reaches temperatures for which R_{T} becomes near zero, that is, near

$$
\left(30-T_{B}\right) \times 10^{3}=0 \quad \Rightarrow \quad T_{B}=30^{\circ} C .
$$

You should then worry about using it in a hot day or improve your linear assumption :).
d) [Bonus: 4 marks] Using the above relationship between the termistor resistance and temperature find values for the components R_{1}, R_{3} and R_{4} so that the following circuit produces $v_{0}=\alpha T_{B}$, where $\alpha=10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and T_{B} is the temperature of the termistor and the junction B^{\prime}.

First recognize that the above circuit is a differential amplifier where

$$
v_{0}=K_{1} v_{1}+K_{2} v_{2}, \quad K_{1}=-\frac{R_{T}}{R_{1}}, \quad K_{2}=\frac{R_{T}+R_{1}}{R_{1}} \frac{R_{4}}{R_{3}+R_{4}}=\left(1+\frac{R_{T}}{R_{1}}\right) \frac{R_{4}}{R_{3}+R_{4}}
$$

and $v_{1}=v_{2}=10 \mathrm{~V}$. Using this fact

$$
\begin{aligned}
v_{0} & =10\left(K_{1}+K_{2}\right) \\
& =10\left(\frac{R_{1}+R_{T}}{R_{1}} \frac{R_{4}}{R_{3}+R_{4}}-\frac{R_{T}}{R_{1}}\right) \\
& =\frac{10}{R_{1}}\left(\frac{R_{4}\left(R_{1}+R_{T}\right)}{R_{3}+R_{4}}-R_{T}\right) \\
& =\frac{10}{R_{1}\left(R_{3}+R_{4}\right)}\left(R_{1} R_{4}-R_{3} R_{T}\right)
\end{aligned}
$$

Now substitute for $R_{T}=R_{0}-\beta T_{B}$, where $R_{0}=30 \times 10^{3} \Omega$ and $\beta=10^{3}$

$$
\begin{aligned}
v_{0} & =\frac{10}{R_{1}\left(R_{3}+R_{4}\right)}\left(R_{1} R_{4}-R_{3} R_{0}+\beta R_{3} T_{B}\right) \\
& =\frac{10}{R_{1}\left(R_{3}+R_{4}\right)}\left(R_{1} R_{4}-R_{3} R_{0}\right)+\frac{10 \beta R_{3}}{R_{1}\left(R_{3}+R_{4}\right)} T_{B}
\end{aligned}
$$

For $v_{0}=\alpha T_{B}$ we need to chose

$$
\frac{R_{3}}{R_{4}}=\frac{R_{1}}{R_{0}}, \quad \frac{10 \beta R_{3}}{R_{1}\left(R_{3}+R_{4}\right)}=\frac{10 \beta}{R_{1}\left(1+\frac{R_{4}}{R_{3}}\right)}=\alpha
$$

This fixes the choice of R_{1} since

$$
R_{1}=10 \beta \alpha^{-1}-R_{0}=10 \times 10^{3} \times 10^{2}-30 \times 10^{3}=(1000-30) K \Omega=970 K \Omega
$$

Possible choices of R_{3} and R_{4} are

$$
R_{3}=R_{1}=970 K \Omega, \quad R_{4}=R_{0}=30 K \Omega, \quad \frac{R_{3}}{R_{4}}=\frac{R_{1}}{R_{0}}=\frac{970 \times 10^{3}}{30 \times 10^{3}} \approx 32
$$

e) [Bonus: 4 marks] Design an OpAmp circuit that has as output voltage $v_{0}=\alpha\left(T_{A}-T_{B}\right)$, where $\alpha=10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and T_{B} is measured using the termistor as in item d).
(Hint: use the circuit you designed in item d)!)

The simplest solution is to reuse the circuits developed in items b) and d) through a differential amplifier configuration with

$$
v_{0}=K_{1} v_{1}+K_{2} v_{2}, \quad K_{1}=-\frac{R_{2}}{R_{1}}, \quad K_{2}=\frac{R_{2}+R_{1}}{R_{1}} \frac{R_{4}}{R_{3}+R_{4}}
$$

with $v_{1}=\alpha T_{B}$ as in item d) and $v_{2}=\alpha T_{A}$ as in item b). This requires

$$
K_{1}=-\frac{R_{2}}{R_{1}}=-1, \quad K_{2}=2 \frac{R_{4}}{R_{3}+R_{4}}=1
$$

Possible choices of R_{1}, R_{2}, R_{3} and R_{4} are

$$
R_{1}=R_{2}=R_{3}=R_{4}=100 K \Omega
$$

The final circuit diagram is as follows.

