Laplace Transforms — recap for ccts

What's the big idea?

1. Look at initial condition responses of ccts due to capacitor
voltages and inductor currents at time =0

Mesh or nodal analysis with s-domain impedances
(resistances) or admittances (conductances)

Solution of ODEs driven by their initial conditions
Done in the s-domain using Laplace Transforms

2. Look at forced response of ccts due to input ICSs and IVSs
as functions of time
Input and output signals 1,(s)=Y(s)V(s) or V(s)=Z(s)l(s)
The cct is a system which converts input signal to
output signal
3. Linearity says we add up parts 1 and 2

The same as with ODEs
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Laplace transforms

Complex frequency domain
(s domain)

Differential Laplace Algebraic
equation transform £ equation
Classical Algebraic
techniques techniques
Response Response
signal transform

The diagram commutes

Same answer whichever way you go
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Time domain (¢ domain)

Inverse Laplace
transform £
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Laplace Transform - definition

Function f(?) of time
Piecewise continuous and exponential order |f(¢) < Ke”

F(s)=[f(t)e S'dt
0-

0- limit is used to capture transients and discontinuities at =0

s is a complex variable (ot+jw)

There is a need to worry about regions of convergence of
the integral

Units of s are secl=Hz
A frequency
If /() is volts (amps) then F(s) is volt-seconds (amp-seconds)
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Laplace transform examples

Step function - unit Heavyside Function {0, for £ <0

After Oliver Heavyside (1850-1925) u(t) =
I, fort=0

00 00 e—st > e—(G+ja))t > 1
F(s)= [u()e'dt = [e™*d = - = - _ == if 0>0
0— 0— S o otjo |, S
Exponential function
After Oliver Exponential (1176 BC- 1066 BC)
0 0 ~(s+a)t|” 1
F(s)= fe_ate_Stdt = fe_(“a)tdt =€ = if o>«
0 0

S+dA 0 S+dAd
Delta (impulse) function (%)

F(s)= [6(t)e”*dt =1 for all s
0-
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Laplace Transform Pair Tables

Signal Waveform Transform
impulse (1) 1
step u(t) 1
S
ramp tu(t) 12
S
exponential e~ u(t) b
S+O
damped ramp at I
te T u(t) (S+a)2
i p
SHAS sin( Bt )u(t
([3’ )u( ) S2+ﬁ2
. S
cosine
cos(ﬁt)u(t) 32+ﬁ2
damped sine . p
P e~ sin( Bt Ju(?) (s+a)2+[3’2
damped cosine s+t
P e~ cos( Bt Ju(t) (s+a)2+[3’2
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Laplace Transform Properties

Linearity — absolutely critical property
Follows from the integral definition

LA/ (1) + Bf5(0) = AL f1(0) + BLAS, () = AF () + BF; (s)

Example

L(Acos(ft)) = L(I;Ejﬁt +e_j/5t] =§L€jﬁt)4-gLé_jﬁt/
A1 4
2s—jB 2s+jp
_ As
S2+/32

MAE140 Linear Circuits 112



Laplace Transform Properties

t
Integration property L{ff(r)dr}= F(s)
0 S
t oo [t
Proof L{ff(t)dr}=f [ff(r)dt]e_Stdt
0 0([0
_e~ St {
Denote x = ,and y = [ f(r)dt
0
SO Z’;C —¢ % and ;{J; = f(?)
t _oSt ” | @
Integrate by parts £|[f(z)dr | = S [f(@)dT +Sff(t)e‘“dt
0 0 0 0
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Laplace Transform Properties

Differentiation Property L{df;(t)} = sF(s)- f(0-)
t

Proof via integration by parts again

r {df@} T sty ldf(r)e_sf

= J
dt | 4 dt

= sF(s) - f(0-)
Second defivative

21| _ [d O _ [dfO)_df

42 [ ldt| at dt | dt

0o o0
+s [ f()e Sdt
0- 0-

L

(0-)

= s2F(s) - £ (0-) - £'(0-)

MAE140 Linear Circuits 114



Laplace Transform Properties
General derivative formula

, { d" /(1)

v } =s"F(s)- Sm_lf(O—) — sm_zf’(()_) e f(m)(O—)
A

Translation properties
s-domain translation Ll £y = F(s +a)

r-domain translation

L{f(t-ayu(t-a)=e “F(s) for a>0
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Laplace Transform Properties

Initial Value Property

Final Value Property

Caveats:

lim f(¢)= lim sF(s)

t—0+ §—>00

lim f(¢) = lim sF'(s)

[—>00 s—0

Laplace transform pairs do not always handle

discontinuities properly

Often get the average value
Initial value property no good with impulses
Final value property no good with cos, sin etc
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Rational Functions
We shall mostly be dealing with LTs which are

rational functions - ratios of polynomials in s
m—1

n n-1
ClnS +an_1S +"°+611S+CIO

_g 8-z —23) (s~ zp)

(s—p(s—p2)--(s—py)
p, are the poles and z; are the zeros of the function

b, s" +b, 15" +---+bs+ by

F(s)=

K is the scale factor or (sometimes) gain

A proper rational function has n=m
A strictly proper rational function has n>m

An improper rational function has n<m
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A Little Complex Analysis

We are dealing with linear ccts
Our Laplace Transforms will consist of rational function (ratios
of polynomials in s) and exponentials like 7
These arise from
e discrete component relations of capacitors and inductors
e the kinds of input signals we apply

— Steps, impulses, exponentials, sinusoids, delayed
versions of functions

Rational functions have a finite set of discrete poles
e>’Tis an entire function and has no poles anywhere

To understand linear cct responses you need to look at
the poles - they determine the exponential modes in
the response circuit variables.

Two sources of poles: the cct — seen in the response to Ics
the input signal LT poles - seen in the forced response
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A Little More Complex Analysis

A complex function is analytic in regions where it has
no poles

Rational functions are analytic everywhere except at a finite
number of isolated points, where they have poles of finite
order

Rational functions can be expanded in a Taylor Series
about a point of analyticity

f(@)=fla)+(z-a) f(a)+ zl!(z ~a)? /(@) +..

They can also be expanded in a Laurent Series about an

isolated pole
-1 o0
f(z)= E cp(z—a)" + Ecn(z—a)n
n=-N n=0
General functions do not have N necessarily finite
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Residues at poles

Functions of a complex variable with isolated, finite
order poles have residues at the poles
Simple pole: residue = lim (s —a)F (s)
S%al dm ~1

(m=1)!s—a gs™!

ES a)” F(S)

Multiple pole: residue =

The residue is the c_, term in the Laurent Series

Cauchy Residue Theorem
The integral around a simple closed rectifiable positively
oriented curve (scroc) is given by 277 times the sum of
residues at the poles inside
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Inverse Laplace Transforms
— the Bromwich Integral

FEG]= 7 =

+ %

b st
2 f F(S)e ds

This is a contour integral in the complex s-plane
o is chosen so that all singularities of F(s) are to the left of
Re(s)=a
It yields f(t) for =0
The inverse Laplace transform is always a causal function
For t<0 f(t)=0

Remember Cauchy’s Integral Formula
Counterclockwise contour integral =

21t7x(sum of residues inside contour)
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Inverse Laplace Transform Examples
L I U
Bromwich integral of F(s) " a 0 t<0
O+ joo | t
f@O= e’ ds R—>00
.. 8S+da
o= ] ;
_ e forr=0 X
0 fort<0 pole a
On curve C, =G C.
jO « 3 2
s=a+re’/”, —<O<—, r—>
For given 6 there is r—w such that ™. | | . s=plane

Re(s)=a +rcosf <0

St = eRe(S)tej Im(s)t _, Oas r—=o for t>0

Integral disappears on C, for positive t
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Inverting Laplace Transforms

Compute residues at the poles Slina(s—a)F(S)
1 dm—l
y

(m_l)!S%adsm_l

[(s—a)mF<s>]

- | 252 455 2As+D)Z+(s+1)=3 2 L] 3
xample = - _
P (S+1)3 (S+1)3 s+1 (S+1)2 (s+1)3
3,2 32y
o D257 +5s) i LG TD (ZS3 59) | =
s (st sTolds | (s+])
1. d?|(s+1)@2s?+55)]
— lim > 3 =2
s~ ~lds (st1)
-1 25% +5s ~¢ )
c ~|=e 2 +1-3t9u(r)
(s 1)
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Inverting Laplace Transforms

Compute residues at the poles lim (s—a)F(s)

S—>da

1 . dm—l .
oy lim - ")

Bundle complex conjugate pole pairs into second-
order terms if you want

(s—a—-jB)s—a+ jB) = 2-2as+(z2+/32):|
but you will need to be careful

Inverse Laplace Transform is a sum of complex
exponentials

For circuits the answers will be real

MAE140 Linear Circuits
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Inverting Laplace Transforms in Practice

We have a table of inverse LTs
Write F(s) as a partial fraction expansion

-1
F(s) = b,,s" +Db,,_ (s 4+ bys+by

n n-1
a,s +a,_1s ~+--+ais+qg

_K (s—z)(s=29) - (s—2,,)

(s=pp)(s=py)--(s=py)

__ % oy 03 o O3 033 %q
T

(s=p1) (s=p2) G-P3) (s-p3)* (s-p3) +(S_pq)

Now appeal to linearity to invert via the table
Surprise!

Nastiness: computing the partial fraction expansion is best
done by calculating the residues
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Example 9-12

: . 20(s T3
Find the inverse LT of F(s)= (2 )
(st1)(s” t2st5)
%
ki k k
F(s) = : =
s+1 S+1 j2 S+1+]2
k= lim (s+1)F(s)= 30(“3) =10
s — -1 ST +25+ 505 = -1
5
20(s+3) | . J,7
by = 1 1-2/)F(s) = =-5-5j=5J2 4
2 L T T (a2 Ly, T T
5 5 7
(-1+j2)t+j-m (-1-j2)t-j—n
F@)=[10e™! +52¢ 4 152 4 |u(@)

=110 +104/2¢7! cos(2t + 57”) u(t)
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Not Strictly Proper Laplace Transforms
s +65% +125+8
52 +45+3

Convert to polynomial plus strictly proper rational function
Use polynomial division

F(s)=s+2+

Find the inverse LT of F(s)=

S+2

ST +4s5+3

404 0.5 N 0.5

s+1 s+3

Invert as normal

dd (1)

o200+ 0.5¢7" +0.5¢7 |u(z)

(@)=
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Multiple Poles

Look for partial fraction decomposition
F(s) = K(s-2z) - ki, ko koo :
(s=p)(s—pp)~ S=P1 S=P2 (s—p2)

Ks— Kz = k(s = pp)* + ka1 (s = p1)(s = p2) + ko (s = py)

Equate like powers of s to find coefficients
ki +ky; =0
=2k\py = 2ky 1 (p1+ p2)+kpp =K
klpi + kPP — koo pr = Kz

Solve
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Introductory s-Domain Cct Analysis

. =0 R LQ)
First-order RC cct A AN ———
_ + Vg -
KL vs (@) =vg()=ve(t) =0 RGN vim= C
instantaneous for each ¢ T~ -
Substitute element relations
vg(t) =Vu(t), vgp()=Ri(t), i(t)= -

Ordinary differential equation in terms of capacitor voltage

RCMCD L6y =V ()
di 1

Laplace transform RC[sV(s)=ve(0)]+V(s) =V
S
VA/RC + Vc(O)
s(s+1/RC) s+1/RC

V4 (1 — e_%zc ) +Vve (0)8_%2(?

Solve Vc(s) =

Invert LT ve(2) = u(t) Volts

129
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An Alternative s-Domain Approgch&)

SR . A ——
N T iVA(D = SIC
v, C_) Vg ve=C m)> v

Transform the cct element relations

Work in s-domain directly OK since L is linear
Ve(s) = L[C(S) + ve (V) Impedance + source
Cs S
Io(s)=sCV(s)-Cve(0) Admittance + source

KVL in s-Domain  sCRV(s)—CRv-(0)+ Vo (s) = 1VA
S
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Time-varying inputs

Suppose vy(t)=V cos(pPt), what happens? e I
=0 R ﬂ) NN
A +/\ /v\R/\-/— sV 4 <+> - 1
v, CDtS V= ¢ mmmm) P+ v (5 s¢
C @ ve (0)

o
KVL as before (RCs+1)l(s)=RCvc(0) = 2S ’;2
S +
SVA
Ve(s) = AC )

(s + s+ Vo) s+ Vo

~t ~t
Solve v-(1)= V4 cos(Bt+0)- & eACwC(O)e Rclu(t)

J1+(BRC)? 1+(BRC)?

1
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