MAE 140 - Linear Circuits - Fall 2007
Midterm - Solution

## Question 1 [Thevenin equivalent]

Regarding the following circuit:

a) [4 marks] Determine the Thevenin equivalent as seen from terminals (A) and (B) using source transformations only.

Transform the 3 A current source in parallel with the $4 \Omega$ resistor.


Transform the $30 V$ voltage source in series with the $6 \Omega$ resistor.


Combine the $5 A$ and the 8 A sources of current into a single $3 A$ source of current.


Transform the 3 A current source in parallel with the $6 \Omega$ resistor.


Combine the 12 V and the 18 V sources of voltage into a single 6 V source of voltage and associate the resistor to obtain the Thevenin equivalent circuit.


REMARK: You get 1 mark per correct transformation up to a max of 4 marks.
b) [2 marks] How much power would be absorbed by a $10 \Omega$ resistor connected between terminals (A) and (B)?

Plug the resistor in the Thevenin equivalent.


Use the voltage divider formula to conclude that

$$
v_{R}=\frac{10}{10+10}(-6)=-3 \mathrm{~V}, \quad i_{R}=\frac{v_{R}}{10}=-\frac{3}{10} \mathrm{~A}
$$

so that the power absorbed by the resistor is $p_{R}=v_{R} i_{R}=9 / 10 \mathrm{~W}$.

## Question 2 [Superposition / Mesh analysis]

Regarding the following circuit:

a) [4 marks] Find $v_{0}$ using superposition.

We will use superposition to compute

$$
v_{0}=v_{1}+v_{2}
$$

where $v_{1}$ is the solution when the current source is zero and $v_{2}$ is he solution when the voltage source is zero.

First case: Zero the current source, that is, replace the current source by an open circuit, and redraw the circuit as follows.


Voltage $v_{1}$ can now be found using the voltage divider formula

$$
v_{1}=\frac{6}{6+6}\left(v_{A}-v_{B}\right)=\frac{1}{2}\left(v_{A}-v_{B}\right)
$$

and

$$
v_{A}-v_{B}=\frac{6 / /(6+6)}{6+[6 / /(6+6)]} 30=\frac{4}{6+4} 30=12 \mathrm{~V}
$$

where we used the fact that $6 / /(6+6)=6 \times 12 /(6+12)=4$. That is

$$
v_{1}=\frac{1}{2}\left(v_{A}-v_{B}\right)=6 \mathrm{~V}
$$

Second case: Zero the voltage source, that is, replace the voltage source by a short circuit, and redraw the circuit as follows.


Voltage $\nu_{2}$ is

$$
v_{2}=6 i_{2}
$$

where can now be found using the current divider formula. Indeed

$$
i_{2}=\frac{\frac{1}{6}}{\frac{1}{6}+\frac{1}{6+(6 / / 6)}}(-15) \mathrm{A}=-\frac{\frac{1}{6}}{\frac{1}{6}+\frac{1}{9}} 15 \mathrm{~A}=-\frac{3}{5} 15 \mathrm{~A}=-9 \mathrm{~A}
$$

where we used the fact that $6+(6 / / 6)=6+3=9$. That is

$$
v_{2}=6 i_{2}=-54 V .
$$

The final result is then

$$
v_{0}=v_{1}+v_{2}=6-54=-48 \mathrm{~V} .
$$

REMARK: Two marks per case: one for correct setup, another for correct answer.
b) [4 marks] Formulate mesh-current equations for the circuit. Clearly indicate the equations to be solved and the unknowns. Use the mesh currents indicated in the drawing.

Because the 15 A source of current is on a single mesh we have

$$
\begin{equation*}
i_{3}=-15 \mathrm{~A} . \tag{1}
\end{equation*}
$$

Writting the mesh-current equations by inspection for meshes 1 and 2 we have

$$
\left[\begin{array}{ccc}
6+6+6 & -6 & -6 \\
-6 & 6+6 & -6
\end{array}\right]\left(\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right)=\binom{0}{30}
$$

Using (1) we obtain the final form of the mesh-current equations

$$
\left[\begin{array}{cc}
18 & -6 \\
-6 & 12
\end{array}\right]\binom{i_{1}}{i_{2}}=\binom{-90}{-60}, \quad \quad i_{3}=-15 \mathrm{~A} .
$$

REMARK: You get 1 mark if you stated eq. (1) correctly. 1 mark if you stated mesh-current equation for mesh 1 correctly. One more if mesh 2 is correct. One more mark if indicated the final equations to be solved, either by substituting $i_{3}$ or clearly indicating that meshes 1 and 2 must be solved in the presence of this constraint.
c) [2 marks] Use the mesh-current equations to find $v_{0}$.

First note that

$$
\begin{equation*}
v_{0}=6 i_{1} \tag{2}
\end{equation*}
$$

Then determine $i_{1}$ by solving

$$
\binom{i_{1}}{i_{2}}=\frac{1}{6}\left[\begin{array}{cc}
3 & -1 \\
-1 & 2
\end{array}\right]^{-1}\binom{-90}{-60}=\frac{1}{30}\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]\binom{-90}{-60}=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]\binom{-3}{-2}=\binom{-8}{-9} .
$$

Hence

$$
v_{0}=6 i_{1}=-48 \mathrm{~V}
$$

REMARK: You get 1 mark if you stated eq. (2) correctly. 1 more mark if you solved for $i_{1}$ correctly.

## Question 3 [OpAmp Circuit Analysis]

Regarding the following resistive OpAmp circuit:

a) [4 marks] Show that the current $i_{s}=-v_{s} / R_{N}$.

Label voltages and currents in the circuit


Because $i_{N}=0$, the resistors $R$ form a voltage divider

$$
v_{N}=\frac{R}{R+R} v_{0}=\frac{1}{2} v_{0} .
$$

KCL at node (A) implies

$$
i_{s}=i_{P}+\frac{\left(v_{P}-v_{0}\right)}{R_{N}}
$$

These two equations combined with $v_{P}=v_{N}=v_{s}$ and $i_{P}=0$. yield

$$
i_{s}=\frac{\left(v_{P}-v_{0}\right)}{R_{N}}=\frac{\left(v_{s}-2 v_{s}\right)}{R_{N}}=-\frac{v_{s}}{R_{N}}
$$

as desired.
REMARK: You get one mark for stating $v_{N}$ correctly. One more for stating KCL @ node (A). One for using $v_{P}=v_{N}=v_{s}, i_{p}=i_{n}=0$. One for getting the right answer.
b) [2 marks] Draw the equivalent circuit as seen from terminals (A) and (B) in the direction indicated by the arrow. Explain why this circuit is called a "negative resistance"?
Hint: Recall that an equivalent circuit is one which has the same $v-i$ characteristic.

From part a)

$$
v_{s}=R_{s} i_{s}, \quad \quad R_{s}=-R_{N}
$$

The above is Ohm's Law for a "negative resistance" $R_{N}$. Hence the name of the circuit. The equivalent is simply


## Question 4 [OpAmp Circuit Analysis (bonus)]

[2 marks] Consider the connection of the "negative resistance" circuit of Question 3 in parallel with a load $R_{L}$ as seen in the next circuit. What is the equivalent circuit as seen from terminals (C) and (D)? Draw the circuit. What happens when $R_{L}=R_{N}$ ?
Hint: Make use of Question 3.


Use the equivalent obtained in Question 3

from where an equivalent can be obtained after associating $R_{L}$ and $-R_{N}$ in parallel

$$
R_{\mathrm{EQ}}=R_{L} / /-R_{N}=\frac{1}{\frac{1}{R_{L}}-\frac{1}{R_{N}}}=\frac{R_{L} R_{N}}{R_{N}-R_{L}}
$$

When $R_{N} \rightarrow R_{L}$ then $R_{\mathrm{EQ}} \rightarrow \infty$, that is, the equivalent becomes an open circuit.
REMARK: One mark for $R_{\mathrm{EQ}}$ and one for the limit case.

