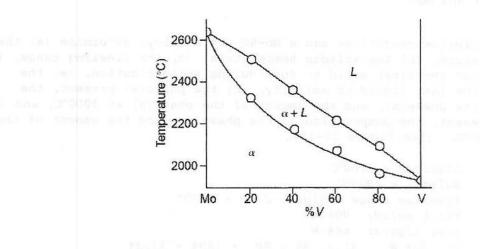
MAE20 Homework 6 Solutions

10-16 Determine the liquidus temperature, solidus temperature, and freezing range for the following MgO-FeO ceramic compositions. (See Figure 10-17).

		wt% FeO wt% FeO	(b) MgO-45 wt% FeO (d) MgO-80 wt% FeO	
Solution	: (a)	$T_L = 2600^{\circ}C$	$T_S = 2230^{\circ}C$	$FR = 370^{\circ}C$
	(b)	$T_L = 2340^{\circ}C$	$T_s = 1900^{\circ}C$	$FR = 440^{\circ}C$
	(c)	$T_L = 2000^{\circ}C$	$T_S = 1610^{\circ}C$	$FR = 390^{\circ}C$
	(d)	$T_L = 1750^{\circ}C$	$T_s = 1480^{\circ}C$	$FR = 270^{\circ}C$


10-19 A Nb-60 wt% W alloy is heated to 2800° C. Determine (a) the composition of the solid and liquid phases in both wt% and at% and (b) the amount of each phase in both wt% and at%. (c) Assuming that the density of the solid is 16.05 g/cm³ and that of the liquid is 13.91 g/cm³, determine the amount of each phase in vol%. (See Figure 10-18).

Solution:

(a) L: 49 wt% W at% W = $\frac{49/183.85}{(49/183.85) + (51/92.91)} \times 100\% = 32.7\%$ α : 70 wt% W at% W = $\frac{(70/183.85)}{(70/183.85) + (30/92.91)} \times 100\% = 54.1\%$ (b) wt% L = $\frac{70 - 60}{70 - 49} \times 100\% = 47.6\%$ wt% $\alpha = 52.4\%$ The original composition, in wt% MgO, is: $\frac{60 / 183.85}{(60 / 183.85) + (40 / 92.91)} \times 100\% = 43.1\%$ (60 / 183.85) + (40 / 92.91)at% L = $\frac{54.1 - 43.1}{54.1 - 32.7} \times 100\% = 51.4\%$ wt% $\alpha = 48.6\%$ (c) Vol% L = $\frac{47.6/13.91}{100} \times 100\% = 51.2\%$ Vol% $\alpha = 48.8\%$ 10-40 Cooling curves are shown in Figure 10-21 for several Mo-V alloys. Based on these curves, construct the Mo-V phase diagram.

Solution:

08	v	<u>T</u> Liquidus 2630°C	<u>T</u> solidus	
20%	V	2500°C	2320°C	
408	V	2360°C	2160°C	
60%	V	2220°C	2070°C	
808	V	2100°C	1970°C	
100%	V	1930°C		

DI 1. 145

11-7 A hypothetical phase diagram is shown in Figure 11-25. (a) Are any intermetallic compounds present? If so, identify them and determine whether they are stoichiometric or nonstoichiometric. (b) Identify the solid solutions present in the system. Is either material A or B allotropic? Explain. (c) Identify the three-phase reactions by writing down the temperature, the reaction in equation form, the composition of each phase in the reaction, and the name of the reaction.

Solution:

1

- (a) $\theta = \text{non-stoichiometric}$
- (b) α , η , γ , and β ; material B is allotropic, existing in three different forms at different temperatures

(c)	1100°C:	$\gamma + L \rightarrow \beta;$	peritectic;	L: 82% B	γ: 97% B	β: 90% B
	900°C:	$L_1 \rightarrow L_2 + \alpha;$	monotectic;	L1: 28% B	L ₂ : 50% B	a: 5% B
	680°C:		eutectic;			β: 90% B
	600°C:		peritectoid;			0: 37% B
	300°C:	$\beta \rightarrow \theta + \eta;$	eutectoid;	β: 90% B	θ: 40% B	η: 95% B

11-9 The Al-Li phase diagram is shown in Figure 11-27. (a) Are any intermetallic compounds present? If so, identify them and determine whether they are stoichiometric or nonstoichiometric. Determine the formula for each compound. (b) Identify the three-phase reactions by writing down the temperature, the reaction in equation form, the composition of each phase in the reaction, and the name of the reaction.

Solution:

(a) β is non-stoichiometric @ 21 wt% Li: at% Li = <u>21 g / 6.94 g/mol</u> × 100% = 50 at% Li .; AlLi 21/6.94 + 79/26.981 γ is stoichiometric @ 34 wt% Li: at% Li = <u>34 g / 6.94 g/mol</u> × 100% = 66.7% Li .; AlLi₂ 34/6.94 + 66/26.981
(b) 600°C: L → α + β eutectic L: 9.9% Li α: 4% Li β: 20.4% Li 510°C: β + L → γ peritectic β: 25% Li L: 47% Li γ: 34% Li 170°C: L → γ + α(L₁) eutectic L: 98% Li γ: 34% Li α(L₁): 99% Li