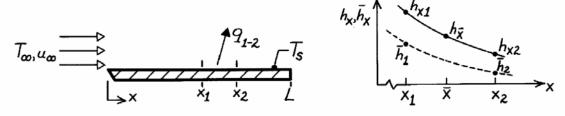
PROBLEM 7.7

KNOWN: Parallel flow over a flat plate and two locations representing a short span x_1 to x_2 where $(x_2 - x_1) \ll L$.

FIND: Three different expressions for the average heat transfer coefficient over the short span x_1 to x_2 , \overline{h}_{1-2} .

SCHEMATIC:



ASSUMPTIONS: (1) Parallel flow over a flat plate.

ANALYSIS: The heat rate per unit width for the span can be written as

$$q'_{1-2} = \overline{h}_{1-2} (x_2 - x_1) (T_s - T_{\infty})$$
(1)

where \overline{h}_{1-2} is the average heat transfer coefficient over the span and can be evaluated in either of the following three ways:

(a) Local coefficient at $\overline{x} = (x_1 + x_2)/2$. If the span is very short, it is reasonable to assume that

$$\overline{h}_{1-2} \approx h_{\overline{X}} \tag{2}$$

where $h_{\overline{X}}$ is the local convection coefficient at the mid-point of the span.

(b) Local coefficients at x_1 and x_2 . If the span is very short it is reasonable to assume that \overline{h}_{1-2} is the average of the local values at the ends of the span,

$$\overline{\mathbf{h}}_{1-2} \approx \left[\mathbf{h}_{x1} + \mathbf{h}_{x2}\right]/2. \tag{3}$$

(c) Average coefficients for x_1 and x_2 . The heat rate for the span can also be written as

$$q'_{1-2} = q'_{0-2} - q'_{0-1} \tag{4}$$

where the rate q_{0-x} denotes the heat rate for the plate over the distance from 0 to x. In terms of heat transfer coefficients, find

$$\overline{h}_{1-2} \cdot (x_2 - x_1) = \overline{h}_2 \cdot x_2 - \overline{h}_1 \cdot x_1$$

$$\overline{h}_{1-2} = \overline{h}_2 \frac{x_2}{x_2 - x_1} - \overline{h}_1 \frac{x_1}{x_2 - x_1}$$
(5)

where \overline{h}_1 and \overline{h}_2 are the average coefficients from 0 to x_1 and $x_2,$ respectively.

COMMENTS: Eqs. (2) and (3) are approximate and work better when the span is small and the flow is turbulent rather than laminar ($h_x \sim x^{-0.2} \text{ vs } h_x \sim x^{-0.5}$). Of course, we require that $x_c < x_1, x_2 \text{ or } x_c > x_1, x_2$; that is, the approximations are inappropriate around the transition region. Eq. (5) is an exact relationship, which applies under any conditions.