
PROBLEM 2.13 
 
KNOWN:  A rod of constant thermal conductivity k and variable cross-sectional area Ax(x) = Aoeax

w
 

here Ao and a are constants. 

FIND:  (a) Expression for the conduction heat rate, qx(x); use this expression to determine the 
temperature distribution, T(x); and sketch of the temperature distribution, (b) Considering the presence 
of volumetric heat generation rate, ( )oq q exp ax= − , obtain an expression for qx(x) when the left 
ace, x = 0, is well insulated. f

 
SCHEMATIC:  

 
 
ASSUMPTIONS:  (1) One-dimensional conduction in the rod, (2)  Constant properties, (3) Steady-
tate conditions. s

 
ANALYSIS:   Perform an energy balance on the control volume, A(x)⋅dx, 
 
  in out gE E E− + = 0

0=
 
  ( )x x dxq q q A x dx+− + ⋅ ⋅
 
The conduction heat rate terms can be expressed as a Taylor series and substituting expressions for  
nd A(x), 

q
a
 

 ( ) ( ) ( )x o o
d q q exp ax A exp ax

dx
− + − ⋅ 0=  (1) 

 

 ( )x
dTq k A x
dx

= − ⋅  (2) 
 
(a) With no internal generation,  = 0, and from Eq. (1) find qo 

 ( )x
d q 0

dx
− =  < 

 
i
 
ndicating that the heat rate is constant with x.  By combining Eqs. (1) and (2) 

 ( ) ( ) 1
d dT dTk A x 0 or A x C

dx dx dx
⎛ ⎞− − ⋅ = ⋅ =⎜ ⎟
⎝ ⎠

 (3) < 
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PROBLEM 2.13 (Cont.) 

 
That is, the product of the cross-sectional area and the temperature gradient is a constant, independent 
of x.  Hence, with T(0) > T(L), the temperature distribution is exponential, and as shown in the sketch 
above.  Separating variables and integrating Eq. (3), the general form for the temperature distribution 
an be determined, c

 

 ( )o 1
dTA exp ax C
dx
⋅ =  

 
  ( )1

1 odT C A exp ax dx−= −
 

  < ( ) ( )1 o 2T x C A a exp ax C= − − +
 
We could use the two temperature boundary conditions, To = T(0) and TL = T(L), to evaluate C1 and 
C
 2 and, hence, obtain the temperature distribution in terms of To and TL. 

(
 
b) With the internal generation, from Eq. (1),  

 ( )x o o x o o
d q q A 0 or q q A

dx
− + = = x  < 

 
T
 

hat is, the heat rate increases linearly with x. 

COMMENTS:  In part (b), you could determine the temperature distribution using Fourier’s law and 
knowledge of the heat rate dependence upon the x-coordinate.  Give it a try! 
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