Problem 1

An alloy contains 10 wt.% zinc and 90 wt.% copper. What is the concentration of Zn (in atoms of Zn/m^3) in the alloy?

DATA: A_{Cu} = 63.55 gm/mole, A_{Zn} = 65.41 gm/mole, ρ_{Cu} = 8.94 gm/cm³, ρ_{Zn} = 7.13 gm/cm³

10 wtil. Zn, 90 wtil. Cn. Pau = 8.94 gm Acu = 63.55 gm/mole, Azn = 66.41 gm/mole Pan = 7.13 gm Nzn= NA Czn Czn Azn Azn (100-Czn) Pzn Pcu 6.02×10²³ atom 5</sup> × 10 wt/. (10wt/.) (65.41 gm/mde) + (65.41 gm/mde) (90 wt/.) 7.13 gm/cm³ + 8.94 gm/cm³ 5 = 8.02 ×10²¹ atoms 2n = 8.02×10²⁷ atoms 2n m³

	Tabulation of Error Function Values					
Problem 2	z	erf(z)	z	erf(z)	z	erf(z)
Nitrogen from a gaseous phase is	0	0	0.55	0.5633	1.3	0.9340
to be diffused into pure iron. If	0.025	0.0282	0.60	0.6039	1.4	0.9523
the surface concentration is	0.05	0.0564	0.65	0.6420	1.5	0.9661
maintained at 0.3 wt.% N, what	0.10	0.1125	0.70	0.6778	1.6	0.9763
will be the concentration at 0.5	0.15	0.1680	0.75	0.7112	1.7	0.9838
mm from the surface after 20	0.20	0.2227	0.80	0.7421	1.8	0.9891
hours? The diffusion coefficient	0.25	0.2763	0.85	0.7707	1.9	0.9928
for N in Fe is $2.5 \times 10^{-11} \text{ m}^2/\text{sec}$.	0.30	0.3286	0.90	0.7970	2.0	0.9953
	0.35	0.3794	0.95	0.8209	2.2	0.9981
	0.40	0.4284	1.0	0.8427	2.4	0.9993
	0.45	0.4755	1.1	0.8802	2.6	0.9998
	0.50	0.5205	1.2	0.9103	2.8	0.9999

800°C= 1073K Cs= 0.3 wtil. N Cb=0 X=0.5mm Cx=? t=20 hrs X=0.5mm $\frac{Cx-Co}{Cs-Co} = 1 - erf$ 2 Tol 0.5×10³ m 2 (2.5×10¹¹ m²/sec · 20 hrs · 3600 sec pr CX = 1-evf $\frac{C_{\times}}{0.3} = 1 - erf(0.186) Table \underbrace{\frac{2}{2}}_{0.15} \frac{erf(z)}{0.1680}$ $\frac{0.15}{0.1680} \underbrace{\frac{2}{1000}}_{0.1860} \underbrace{\frac{2}{1000}}_{0.1860} \underbrace{\frac{2}{1000}}_{0.1860} \underbrace{\frac{2}{1000}}_{0.1800} \underbrace{\frac{2}{1000}}_{0.1200} \underbrace{\frac{2}{1000}}_{0.2200} \underbrace{\frac{2}{1000}}_{0.200} \underbrace{$ $\frac{Cx}{03} = 1 - 0.21$ Interpolation (linear) $\Rightarrow C_{X} = 0.238 \text{ wt/N} \qquad \underline{X = 0.1680}_{0.186 = 0.2227 = 0.1680}$ X= 0.2074

Problem 3

Tungsten has an atomic radius of 0.137 nm, a density of 19.3 gm/cm³ and atomic weight, $A_W = 183.84$ gm/mole. Determine if the structure is FCC or BCC.

P= 19.3 gm/cm³ A_w = 183.84 gm mole r= 0.137 nm For FLC $V_{c_{Fu}} = \left(Q_{Fu} \right)^3 = \left(2r_{V_{\Sigma}} \right)^3$ 0= n=4 4 atoms · 183,84 gm/mole 2×0.137×10 cm √2) 3. 6.02×1023 atoms mole P= Fee Cm 3 $= (a_{RC})^3 = (\frac{4}{13})^3$ BCC For n=22atoms . 183.84 gm/mole 19.3 -Bu 4×0.137×107cm . 6.02×10 23 atoms Then it is BC

Problem 4

The fraction of vacancies in a metal at 500°C is 8.91 x 10^{-6} . What is the fraction of vacancies at 900°C?

500°C= 773K ny = 8,91 ×10-6 exp 8.62×10 .773K => Q= 0, 7Bev Jatam At 900°C= 1173K 4 - 0.73 8.62×105 - 1173 = 4,6×10 ny = exp

Problem 5 Put your answer in the boxes to the right.

The your answer in the boxes to the right.	(answer)
The grain size of a material can be determined by: (a) the density (b) x-ray diffraction (c) optical microscopy (d) all of the above	С
T/F Steady state diffusion occurs when the concentration gradient changes with the distance.	F
A close packed plane in the FCC structure is the: (a) (101) (b) $(\overline{1}\overline{1}1)$ (c) (001) (d) none of the above	b
 An x-ray diffraction pattern from a BCC crystal has a peak at 2θ = 35° that is indexed to the (110) plane. What is the lattice parameter? The x-ray wavelength = 0.154 nm. (a) 0.190 nm (b) 0.256 nm (c) 0.362 nm (d) none of the above 	C
 An covalent bond forms by the: (a) formation of an electron cloud surrounding the atoms (b) sharing of electrons between the atoms (c) transfer of an electron from one atom to the other (d) none of the above 	b

$$2d_{hjl}\sin\theta_{hkl} = n\lambda \qquad n = 1$$
$$d_{hjl} = \frac{a}{\sqrt{h^2 + k^2 + \ell^2}}$$
$$\frac{2a}{\sqrt{1^2 + 1^2}}\sin(17.5^\circ) = 0.154 \ nm$$
$$a = 0.362 \ nm$$