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 8.3  If the specific surface energy for soda-lime glass is 0.30 J/m2, using data contained in Table 12.5, 

compute the critical stress required for the propagation of a surface crack of length 0.05 mm. 
 

  Solution 

 We may determine the critical stress required for the propagation of an surface crack in soda-lime glass 

using Equation 8.3;  taking the value of 69 GPa (Table 12.5) as the modulus of elasticity, we get 
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= 16.2  !  106  N/m2 = 16.2 MPa  

 
 

 8.7  Suppose that a wing component on an aircraft is fabricated from an aluminum alloy that has a plane 

strain fracture toughness of 

 

40 MPa m  

 

(36.4 ksi in. ).   It has been determined that fracture results at a stress of 

365 MPa (53,000 psi) when the maximum internal crack length is 2.5 mm (0.10 in.).  For this same component and 

alloy, compute the stress level at which fracture will occur for a critical internal crack length of 4.0 mm (0.16 in.). 
 

  Solution 

 This problem asks us to determine the stress level at which an a wing component on an aircraft will fracture 
for a given fracture toughness 

 

(40 MPa m )  and maximum internal crack length (4.0 mm), given that fracture 

occurs for the same component using the same alloy at one stress level (365 MPa) and another internal crack length 

(2.5 mm).  It first becomes necessary to solve for the parameter Y for the conditions under which fracture occurred 

using Equation 8.5.  Therefore, 
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= 1.75 

 
Now we will solve for σc using Equation 8.6 as 
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= 288  MPa  (41,500 psi)  

 
 

 8.13  Following is tabulated data that were gathered from a series of Charpy impact tests on a tempered 

4140 steel alloy. 
 

Temperature (°C) Impact Energy (J) 
100 89.3 
75 88.6 
50 87.6 
25 85.4 
0 82.9 

–25 78.9 
–50 73.1 
–65 66.0 
–75 59.3 
–85 47.9 

–100 34.3 
–125 29.3 
–150 27.1 
–175 25.0 

 

 (a) Plot the data as impact energy versus temperature. 

 (b) Determine a ductile-to-brittle transition temperature as that temperature corresponding to the average 

of the maximum and minimum impact energies. 

 (c) Determine a ductile-to-brittle transition temperature as that temperature at which the impact energy is 

70 J. 

 
  Solution 

 The plot of impact energy versus temperature is shown below. 
 



 
 

 (b)  The average of the maximum and minimum impact energies from the data is 

 

 

Average = 89.3 J + 25 J
2

= 57.2  J  

 

As indicated on the plot by the one set of dashed lines, the ductile-to-brittle transition temperature according to this 

criterion is about –75°C. 

 (c)  Also, as noted on the plot by the other set of dashed lines, the ductile-to-brittle transition temperature 

for an impact energy of 70 J is about –55°C. 
 
 

 8.18  The fatigue data for a brass alloy are given as follows: 

 

Stress Amplitude (MPa) Cycles to Failure 

310 2 × 105 

223 1 × 106 

191 3 × 106 

168 1 × 107 

153 3 × 107 

143 1 × 108 

134 3 × 108 

127 1 × 109 

 



 (a) Make an S–N plot (stress amplitude versus logarithm cycles to failure) using these data. 

 (b) Determine the fatigue strength at 5 × 105 cycles. 

 (c) Determine the fatigue life for 200 MPa. 
 

  Solution 

 (a)  The fatigue data for this alloy are plotted below. 

 

 
 

 (b)  As indicated by the “A” set of dashed lines on the plot, the fatigue strength at 5 × 105 cycles [log (5 × 

105) = 5.7] is about 250 MPa. 

 (c)  As noted by the “B” set of dashed lines, the fatigue life for 200 MPa is about 2 × 106 cycles (i.e., the 

log of the lifetime is about 6.3). 
 
 

 8.22  Three identical fatigue specimens (denoted A, B, and C) are fabricated from a nonferrous alloy. Each 

is subjected to one of the maximum-minimum stress cycles listed below; the frequency is the same for all three tests. 

 

Specimen σmax (MPa) σmin (MPa) 

A +450 –350 

B +400 –300 

C +340 –340 
 

 (a) Rank the fatigue lifetimes of these three specimens from the longest to the shortest. 

 (b) Now justify this ranking using a schematic S–N plot. 



 

  Solution 

 In order to solve this problem, it is necessary to compute both the mean stress and stress amplitude for each 

specimen.  Since from Equation 8.14, mean stresses are the specimens are determined as follows: 
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!m (A) = 450  MPa + ("350  MPa)
2

= 50 MPa  

 

  

 

!m (B) = 400  MPa + ("300  MPa)
2

= 50 MPa  

 

  

 

!m (C ) = 340  MPa + ("340  MPa)
2

= 0 MPa 

 

Furthermore, using Equation 8.16, stress amplitudes are computed as 
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!a (A) = 450  MPa " ("350  MPa)
2

= 400 MPa  

 

  

 

!a (B) = 400  MPa " ("300  MPa)
2

= 350 MPa  

 

  

 

!a (C ) = 340  MPa " ("340  MPa)
2

= 340 MPa 

 
On the basis of these results, the fatigue lifetime for specimen C will be greater than specimen B, which in turn will 
be greater than specimen A.  This conclusion is based upon the following S-N plot on which curves are plotted for 
two σm values. 



 
 
 
 
 8.27  The following creep data were taken on an aluminum alloy at 400°C (750°F) and a constant stress of 

25 MPa (3660 psi).  Plot the data as strain versus time, then determine the steady-state or minimum creep rate.  

Note:  The initial and instantaneous strain is not included. 

 

Time (min) Strain Time (min) Strain 

0 0.000 16 0.135 

2 0.025 18 0.153 

4 0.043 20 0.172 

6 0.065 22 0.193 

8 0.078 24 0.218 

10 0.092 26 0.255 

12 0.109 28 0.307 

14 0.120 30 0.368 

 
  Solution 

 These creep data are plotted below 
 



 
 

 The steady-state creep rate (Δε/Δt) is the slope of the linear region (i.e., the straight line that has been 

superimposed on the curve) as 
 

 8.34  Steady-state creep rate data are given below for nickel at 1000°C (1273 K): 

 

  

 

˙ ! s (s–1) σ  [MPa (psi)] 

10–4 15 (2175) 

10–6 4.5 (650) 

 

If it is known that the activation energy for creep is 272,000 J/mol, compute the steady-state creep rate at a 

temperature of 850°C (1123 K) and a stress level of 25 MPa (3625 psi). 

 
  Solution 

 Taking natural logarithms of both sides of Equation 8.20 yields 

 

    

 

ln ˙ ! s =  ln K2 + n ln " #
Qc
RT

 

 
With the given data there are two unknowns in this equation--namely K2 and n.  Using the data provided in the 

problem statement we can set up two independent equations as follows: 

 

  

 

ln 1 ! 10"4  s"1( ) = ln K2 +  n ln (15 MPa) " 272,000 J /mol
(8.31 J/mol - K)(1273 K)

 

 



  

 

ln 1 ! 10"6  s"1( ) = ln K2 +  n ln (4.5 MPa) " 272,000  J /mol
(8.31 J/mol - K)(1273 K)

 

 
Now, solving simultaneously for n and K2 leads to n = 3.825 and K2 = 466 s-1.  Thus it is now possible to solve for 

  

 

˙ ! s at 25 MPa and 1123 K using Equation 8.20 as 
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2.28 × 10-5 s-1 
 
 
 

 8.D6  Consider an 18-8 Mo stainless steel component (Figure 8.35) that is exposed to a temperature of 

500°C (773 K).  What is the maximum allowable stress level for a rupture lifetime of 5 years?  20 years? 

 
  Solution 

 We are asked in this problem to calculate the stress levels at which the rupture lifetime will be 5 years and 

20 years when an 18-8 Mo stainless steel component is subjected to a temperature of 500°C (773 K).  It first 
becomes necessary to calculate the value of the Larson-Miller parameter for each time.  The values of tr 

corresponding to 5 and 20 years are 4.38 × 104 h and 1.75 × 105 h, respectively.  Hence, for a lifetime of 5 years 

 

  

 

T (20 +  log tr) = 773 20 +  log (4.38 !  104)[ ] = 19.05 !  103  

 
And for tr = 20 years 

 

  

 

T (20 +  log tr) = 773 20 +  log (1.75 !  105)[ ] = 19.51 !  103  

 

 Using the curve shown in Figure 8.35, the stress values corresponding to the five- and twenty-year lifetimes 

are approximately 260 MPa (37,500 psi) and 225 MPa (32,600 psi), respectively. 
 


