
MAE 20 
Winter 2011 

Assignment 4 
 
 

 7.6  (a) Compare planar densities (Section 3.11 and Problem 3.54) for the (100), (110), and (111) planes 

for FCC. 

 (b) Compare planar densities (Problem 3.55) for the (100), (110), and (111) planes for BCC. 
 

  Solution 

 (a)  For the FCC crystal structure, the planar density for the (110) plane is given in Equation 3.11 as 

 

    

 

PD110 (FCC) = 1
4 R2 2

= 0.177
R2  

 

 Furthermore, the planar densities of the (100) and (111) planes are calculated in Homework Problem 3.54, 

which are as follows: 

 

    

 

PD100(FCC) =  1
4 R2 = 0.25

R2  

 

    

 

PD111(FCC) = 1
2 R2 3

= 0.29
R2  

 

 (b)  For the BCC crystal structure, the planar densities of the (100) and (110) planes were determined in 

Homework Problem 3.55, which are as follows: 

 

    

 

PD100(BCC) = 3
16R2 = 0.19

R2  

 

    

 

PD110 (BCC) = 3
8 R2 2

= 0.27
R2  

 

 Below is a BCC unit cell, within which is shown a (111) plane. 

 



 
(a) 

 

The centers of the three corner atoms, denoted by A, B, and C lie on this plane.  Furthermore, the (111) plane does 

not pass through the center of atom D, which is located at the unit cell center.  The atomic packing of this plane is 

presented in the following figure;  the corresponding atom positions from the Figure (a) are also noted. 

 

 
(b) 

 

Inasmuch as this plane does not pass through the center of atom D, it is not included in the atom count.  One sixth of 

each of the three atoms labeled A, B, and C is associated with this plane, which gives an equivalence of one-half 

atom. 

 In Figure (b) the triangle with A, B, and C at its corners is an equilateral triangle.  And, from Figure (b), the 

area of this triangle is 
    

 

xy
2

.  The triangle edge length, x, is equal to the length of a face diagonal, as indicated in 

Figure (a).  And its length is related to the unit cell edge length, a, as 

 

    

 

x2 = a2 + a2 = 2a2  



 

or 

    

 

x = a 2  

 

For BCC,  
    

 

a = 4 R
3

 (Equation 3.3), and, therefore, 

 

    

 

x =
4R 2

3
 

 

Also, from Figure (b), with respect to the length y we may write 
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which leads to 
    

 

y =
x 3

2
.  And, substitution for the above expression for x yields 
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Thus, the area of this triangle is equal to 
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And, finally, the planar density for this (111) plane is 

 

    

 

PD111(BCC) = 0.5 atom

8 R2

3

=
3

16 R2 = 0.11

R2  

 

7.13  A single crystal of aluminum is oriented for a tensile test such that its slip plane normal makes an angle of 

28.1° with the tensile axis.  Three possible slip directions make angles of 62.4°, 72.0°, and 81.1° with the same 

tensile axis. 

 (a) Which of these three slip directions is most favored? 

 (b) If plastic deformation begins at a tensile stress of 1.95 MPa (280 psi), determine the critical resolved 

shear stress for aluminum. 



 

  Solution 

 We are asked to compute the critical resolved shear stress for Al.  As stipulated in the problem, φ = 28.1°, 

while possible values for λ are 62.4°, 72.0°, and 81.1°. 

 (a)  Slip will occur along that direction for which (cos φ cos λ) is a maximum, or, in this case, for the 

largest cos λ.  Cosines for the possible λ values are given below. 

 

cos(62.4°) = 0.46 

cos(72.0°) = 0.31 

cos(81.1°) = 0.15 

 

Thus, the slip direction is at an angle of 62.4° with the tensile axis. 

 (b)  From Equation 7.4, the critical resolved shear stress is just 

 

  

 

! crss = " y (cos # cos $)max  

 

 

=  (1.95 MPa) cos  (28.1°) cos  (62.4°)[ ] =  0.80 MPa  (114 psi) 7.23 
 
 

 7.23  (a) From the plot of yield strength versus (grain diameter)–1/2 for a 70 Cu–30 Zn cartridge brass, 

Figure 7.15, determine values for the constants σ0 and ky in Equation 7.7. 

 (b) Now predict the yield strength of this alloy when the average grain diameter is 1.0 × 10-3 mm. 
 

  Solution 

 (a)  Perhaps the easiest way to solve for σ0 and ky in Equation 7.7 is to pick two values each of σy and d-1/2 

from Figure 7.15, and then solve two simultaneous equations, which may be created.  For example 

 
 d-1/2 (mm) -1/2 σy (MPa) 

 4 75 

 12 175 

 

The two equations are thus 

 
  

 

75 = !0 + 4 k y  
 

  

 

175 = !0 + 12 k y  



 

Solution of these equations yield the values of 

 

  

 

k y = 12.5 MPa (mm)1/2 1810  psi (mm)1/2[ ]  

 
σ0 = 25 MPa  (3630 psi) 

 

 (b)  When d = 1.0 × 10-3 mm, d-1/2 = 31.6 mm-1/2, and, using Equation 7.7, 
 

  

 

! y = !0 + k yd -1/2  

 

 

= (25  MPa) + 12.5  MPa (mm) 1/2! 
" # 

$ 
% & (31.6  mm-1/2) = 420 MPa  (61,000  psi) 

 
 

 7.29  Two previously undeformed specimens of the same metal are to be plastically deformed by reducing 

their cross-sectional areas.  One has a circular cross section, and the other is rectangular; during deformation the 

circular cross section is to remain circular, and the rectangular is to remain as such.  Their original and deformed 

dimensions are as follows: 

 

 Circular (diameter, mm) Rectangular (mm) 

Original dimensions 15.2 125 × 175 

Deformed dimensions 11.4 75 × 200 

 

 Which of these specimens will be the hardest after plastic deformation, and why? 
 

  Solution 

 The hardest specimen will be the one that has experienced the greatest degree of cold work.  Therefore, all 

we need do is to compute the %CW for each specimen using Equation 7.8.  For the circular one 
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For the rectangular one 
 

 

%CW = (125 mm)(175 mm) ! (75 mm)(200 mm)
(125 mm)(175 mm)

" 
# $ 

% 
& ' (  100 = 31.4%CW 

 

Therefore, the deformed circular specimen will be harder. 
 
 

 7.38  The average grain diameter for a brass material was measured as a function of time at 650°C, which 

is tabulated below at two different times: 

 

Time (min) Grain Diameter (mm) 

30 3.9 × 10–2 

90 6.6 × 10–2 

 (a) What was the original grain diameter? 

 (b) What grain diameter would you predict after 150 min at 650°C? 
 

  Solution 

 (a)  Using the data given and Equation 7.9 (taking n = 2), we may set up two simultaneous equations with 
d0 and K as unknowns;  thus 

 

  

 

(3.9  !  10-2  mm)2 "  d0
2 =  (30 min)K  

 

  

 

(6.6  !  10-2  mm)2 "  d0
2 =  (90 min)K  

 
Solution of these expressions yields a value for d0, the original grain diameter, of 

 

d0 = 0.01 mm, 

and a value for K of 4.73 × 10-5 mm2/min 

 (b)  At 150 min, the diameter d is computed using a rearranged form of Equation 7.9 as 
 

 



    

 

d = d0
2 + Kt  

 

 

= (0.01 mm)2 + (4.73 ! 10"5 mm2/min)(150 min) = 0.085 mm  
 
 
 
 


