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We use numerical simulations to probe the dynamics of concentrated suspensions of spherical
microswimmers interacting hydrodynamically. Previous work in the dilute limit predicted
orientational instabilities of aligned suspensions for both pusher and puller swimmers, which we
confirm computationally. Unlike previous work, we show that isotropic suspensions of spherical
swimmers are also always unstable. Both types of initial conditions develop long-time polar order
of a nature which depends on the hydrodynamic signature of the swimmer but very weakly on the
volume fraction up to very high volume fractions. VC 2011 American Institute of Physics.
[doi:10.1063/1.3660268]

Living fluids and chemically active colloidal dispersions
are modern examples of nonequilibrium hydrodynamic phe-
nomena, presenting tantalizing avenues for both research and
industrial application. Recent experiments on motile par-
ticles, from collections of microorganisms4,5,7,21,25,30 to self-
propelled colloids,8,9,18,22 exhibit pattern forming behavior
and enhanced transport characteristics that pose fundamental
questions for the nonequilibrium statistical mechanics of
active systems20 and have implications in bio- and nano-en-
gineering.29 One area of particular interest concerns the
hydrodynamics of microorganisms swimming in viscous flu-
ids at zero Reynolds number.3,13,14

Several methodologies have been developed in the past to
address the emergence of collective locomotion, correspond-
ing to either microscopic or macroscopic formulations. Active
hydrodynamic equations developed from non-equilibrium
kinetic theory have been the prevailing microscopic approach
to the system.1,23,26 By modeling microswimmers as force-
dipoles, these theories build continuum dynamical equations
for fields quantifying the long-wavelength properties of sus-
pensions of self-propelled particles. The difficulty in dealing
with interacting particles leads to the necessity of a dilute
assumption and the lack of any specified structure to the
microswimmers (beyond oriented point singularities).

At the other end of the spectrum, thermodynamic mod-
els of active media give access to nonlinearities and coupled
modes that cannot be derived from a dilute formulation due
to relevant (allowed) terms in a dynamical equation.16,28

These “flocking” models lead to rich dynamics that cannot
be captured by the microscopic models, at the expense of
introducing phenomenological parameters that may be diffi-
cult to explain physically and derive from microscopic
considerations.20

Here, we use a model spherical microswimmer to address
orientational order computationally. With our approach, both
semi-dilute and concentrated suspensions of spherical

swimmers can be considered. Many microorganisms, such as
Bacillus subtilis or Escherichia coli are elongated swimmers,
and as a result much work has been done to model the loco-
motion of rodlike active particles as well as fabricate syn-
thetic devices of similar aspect ratio; however, colloidal
microswimmers, active oil droplets, or self-propelled vesicles
are likely to be spherical in shape, not to mention the spheri-
cal organisms like Volvox which appear readily in nature. For
all of these reasons, it is important to develop an understand-
ing of the hydrodynamic interactions between active spherical
particles. Contrary to predictions from dilute continuum theo-
ries, we find that isotropic suspensions of spherical swimmers
are unstable and evolve dynamically to take on a long-time
state of polar order. This state of polar order, which exists in
phenomenological flocking models, is thus shown here to
arise from hydrodynamic interactions.

We simulate a system of N spherical swimmers in a
cubic box of volume L3, where L is determined from the
number of swimmers and preset volume fraction /, i.e.,
/¼ 4pN/(3 L3) (the radius of the swimmer is 1) and periodic
boundary conditions. The swimmer we use, termed a
squirmer,2,15 is a spherical particle that has a prescribed axi-
symmetric tangential velocity distribution on its surface. We
impose uh(h)¼B1P1(cos h)þB2P2(cos h), where Pn is the
nth Legendre polynomial, and h¼ 0 defines the direction e in
which the squirmer swims, with speed (for a solitary
squirmer) U#B1 (U is set to 1). Fluid disturbances in the far
field are governed by the “stresslet” (or force-dipole) of
the organisms, quantified by the dimensionless quantity
b¼B2/B1. The flow field decays as #b/r2 far from the
swimmer, and, in the absence of thermal fluctuations, the
stresslet dominates the long-range interactions,13 as illus-
trated in Fig. 1. Some microorganisms, like the algae Chla-
mydomonas, generate thrust in front of their bodies pulling
themselves therefore through the fluid (“pullers,” with b> 0)
while most flagellated cells such the E. coli bacteria, or
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spermatozoa, generate thrust behind them, and instead are
being pushed from the back (“pushers,” with b< 0). Typical
values for b range from $%1 for bacteria like E. coli,6 $0
for Volvox and artificially created squirmers17,24,27 to $þ1
for Chlamydomonas.19

The swimming kinematics of the N¼ 64 squirmers are
calculated by enforcing instantaneously the condition of
force- and torque-free swimming. The computational
approach is based on Stokesian dynamics, with an analytical
treatment of lubrication forces for closely separated
swimmers as well as short-range repulsive forces to prevent
particle overlap, as described in detail in Refs. 11 and 12. A
typical snapshot of the simulation is displayed in Fig. 2.
The two parameters characterizing the collective swimming
dynamics are thus the swimmer volume fraction, /, and the
swimmer stresslet, b. In order to probe the development of
order in our system, we define a polar order parameter, P,
based on the orientation vector e of the particles, namely
PðtÞ ¼ j

PN
i eiðtÞj=N. If every particle is swimming in the

same direction (polar order) then P¼ 1, while for isotropic
orientation, we expect P # 1=

ffiffiffiffi
N

p
.

In the dilute limit, continuum theories for slender self-
propelled rods have predicted that aligned suspensions are
always unstable, for both pushers and pullers. On the contrary,
isotropically oriented states are only unstable for pushers
(b< 0) while pullers remain in an isotropic state.23 The physi-
cal nature of the isotropic instability is described as resulting
from long-range hydrodynamic extensional disturbances that
cause reorientation of anisotropic particles, for which spheri-
cal swimmers are immune. In the dilute limit, no instability of
isotropic suspensions due to long-range hydrodynamic inter-
actions is thus expected to occur for spherical particles.23,26

In Fig. 3(a), we plot the time-evolution of the polar
order parameter, P(t), for suspensions starting in the aligned
state with three different stresslet values, b¼%1 (pusher), 0
(potential swimmer), and þ1 (puller). The initial positions of
the swimmers are taken to be random. Over the semi-dilute

to concentrated range of volume fractions, /¼ 0.1–0.5 (the
results in Fig. 3(a) are shown for /¼ 0.1), we observe the
system to systematically decay from perfect order (P¼ 1) to
some finite long-time value (0<P1< 1). The decay time
over which the suspension is driven to this new ordered state
depends on the stresslet value b, and larger values of the
stresslet disturb the fluid more violently, causing reorienta-
tion, and loss of polar order, more quickly; b can thus be
interpreted as the speed at which orientation decorrelation
propagates throughout the suspension.

To further characterize long-time global order, we per-
form ensemble averages on five realizations of our simula-
tions, starting with an aligned orientations and random
positions, for volume fractions in the range /¼ 0.1–0.5 and
stresslets varying from b¼%2 to þ2. Upon doing ensemble
averages, we define a long-time order parameter P1 by
averaging over the time period after the initial decay from
alignment until the end of the simulation; the results are
shown in Fig. 3(b). In the range of volume fractions studied,
the long-time order is essentially independent of the value
of /, but strongly depends on the value of the stresslet b.
Larger values of jbj lead to increased swimmer-swimmer
reorientations due to hydrodynamic interactions, and thus
lead to decreased values of P1. In addition, we observe a
marked asymmetry between pushers and pullers, and for a
given value of jbj, pullers are systematically more ordered.
For large values of jbj, the global order disappears, as shown
by the dashed line in Fig. 3(b) denoting the 1=

ffiffiffiffi
N

p
isotropy

that is expected in our system. This is in contrast with ana-
lytical predictions in the dilute limit where suspensions of
pullers are expected to be systematically driven to orienta-
tional isotropy.23

It has been suggested in the past that near-field interac-
tions are the dominant mechanism for polar ordering.11 To
address the pusher-puller asymmetry, we take a detailed look
at the flow field near the swimmers. The far-field difference
between a pusher and a puller leads in the near-field to a
change in the location of the stagnation point, see Fig. 1: for

FIG. 1. (Color online) Flow streamlines of isolated squirmers in the swim-
ming frame (top; a to c) and lab frame (bottom; d to f). Left (a and d): Pusher
with a negative stresslet (b¼%5). Center (b and e): Potential flow developed
by a squirmer with b¼ 0. Right (c and f): Puller with a positive stresslet
(b¼þ5).

FIG. 2. (Color online) A snapshot of a simulation with /¼ 0.1, b¼ 1 (pul-
lers), and N¼ 64. The computational cell is in the middle, with identical
copies surrounding this periodic box. Dark dots on the squirmers represent
the rear (i.e., h¼p), while light dots represent the swimming direction,
h¼ 0.
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a pusher, this stagnation point leads the swimmer, while for
a puller, it trails it. This asymmetry causes the different colli-
sional situations (head to head, head to tail, and tail to tail) to
produce different reorientations between pushers and pullers.
From previous numerical work, it is known that head-to-
head interactions are far more likely to occur.10 For pushers,
the head-to-head orientation is stable to rotation (see Fig.
1(d)): the presence of a stagnation point establishes vortices
near the surface of the swimmer, and in a head to head colli-
sion, both pairs of vortices interact in a manner as to main-
tain this orientation. Pullers, on the other hand, are unstable
in this configuration, as their vortices trail in such a collision.
In terms of contributing to order, head to head orientations
yields P# 0, and thus any instability of this configuration, as
expected for pullers, will lead to an increase of polar order,
hence the asymmetry between pushers and pullers seen in
Fig. 3(b).

In contrast to the aligned case, orientation instabilities in
isotropic suspensions was predicted by continuum theories to
exist only for pushers, and only then when the swimmers
have a nonspherical shape.23 We performed numerical simu-
lations to probe the long-time behavior of initially isotropic
suspensions. We show in Fig. 4 the evolution in time of the
order parameter for suspensions of pullers (b¼ 1) at very
low volume fraction (/¼ 0.01), for both aligned (top) and
isotropic (bottom) initial conditions. The results for pushers

are similar. We see not only that both sets of initial condi-
tions are unstable, but also that both are driven at long times
to a similar, and intermediate, value of the order parameter.
The time scale over which the instability takes place is long
compared to the case of more concentrated suspensions, and
thus it is plausible that in the limit / ! 0, the instability
would disappear, allowing us to reconcile our numerical
results with those of continuum theories.

How does increasing the volume fraction affect this
order? We show in Fig. 5(a) the evolution in time of the
order parameter for different volume fractions, /, of pullers
(b¼ 1). The averaged value of the order parameter, P1, is

FIG. 4. (Color online) Time-evolution of the order parameter, P(t), for ini-
tially aligned (top) and isotropic (bottom) suspensions (in both cases initial
positions are random). The case shown is for a puller swimmer (b¼ 1) with
a volume fraction /¼ 0.01. Both aligned and isotropic states are unstable
and approach similar finale state of global orientational order at long times.

FIG. 3. (Color online) Global order of semi-dilute suspensions of pushers
and pullers starting from aligned state. (a) Order parameter, P(t), for pushers
(b¼%1), pullers (b¼ 1), and potential swimmers (b¼ 0). Each simulation
starts from an initially aligned state (with random positions) and decays to a
finite order, P1, after a characteristic decay time that depends on the stress-
let coefficient b. (b) Long-time order parameter, P1, for initially aligned
suspensions. Each data point represents an average over an ensemble (five
separate realizations) and time (performed after initial transient). Error bars
represent standard deviations of the ensemble averaging process. The hori-
zontal dashed line indicates the expected result for isotropic suspensions
(N¼ 64).

FIG. 5. (Color online) Polar order as function of volume fraction. (a) Sam-
ples of order decay for initially aligned pullers (b¼ 1) and (b) long-time
order as a function of volume fraction, for pullers (b¼ 1). For semi-dilute
suspensions, there is only a weak dependence on the volume fraction. At
larger volume fractions, the order drops sharply to isotropy (indicated by
dashed line). Error bars show standard deviation over many realizations.
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plotted as a function of the volume fraction in Fig. 5(b). We
see that as the volume fraction starts increasing away from
the dilute limit, the average value of the order parameter
changes only slightly over a wide range of volume fractions.
When the volume fraction reaches /# 0.5, fluctuations in
the order parameter are observed to become larger, until
finally the order disappears near /# 0.6. Suspensions of
pushers display a similar dependence, although with a
decreased overall magnitude of the order parameter due to
the pusher-puller asymmetry noted earlier. The fluctuating
behavior observed at high concentrations is further illus-
trated in Fig. 6(a). We also show in Fig. 6(b) how different
initial conditions for the same dense suspension can yield
drastically different results, indicating that particles are
“trapped” in their initial conditions before finally escaping to
the isotropic steady state.

In summary, we have used in this paper numerical simu-
lations to address the instabilities and long-time order of
semi-dilute and dense suspensions of spherical swimmers.
We have shown that spherical squirmers, starting from either
an aligned or isotropic state, develop long-time polar order
due to hydrodynamic interactions, of a nature which depends
on the hydrodynamic signature of the swimmer but very
weakly on the volume fraction up to the dense regime. Our
results show thus non-trivial differences with dilute, dipole
continuum models, but display similarities with phenomeno-
logical flocking models.
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