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We study numerically the two-dimensional flow past a circular cylinder as a
prototypical transitional flow, and investigate the influence of a generic slip boundary
condition on the wake dynamics. We show that slip significantly delays the onset
of recirculation and shedding in the wake behind the cylinder. As expected, the
drag on the cylinder decreases with slip, with an increased drag sensitivity for large
Reynolds numbers. We also show that past the critical shedding Reynolds number,
slip decreases the vorticity intensity in the wake, as well as the lift forces on the
cylinder, but increases the shedding frequency. We further provide evidence that the
shedding transition can be interpreted as a critical accumulation of surface vorticity,
similarly to related studies on wake instability of axisymmetric bodies. Finally, we
propose that our results could be used as a passive method to infer the effective
friction properties of slipping surfaces.

1. Introduction

In most continuum studies in fluid mechanics, the goal is to understand and
predict the behaviour of systems with different physical phenomena at play, but
there is in general very little debate regarding what the appropriate flow equations
and boundary conditions are. For gases or liquids flowing under normal conditions in
mesoscopic systems (millimetres or larger) bounded by solid walls, it is now universally
agreed that the Navier—Stokes equations associated with the no-slip boundary
condition provide an excellent description of the velocity and pressure fields in the
fluid.

Much recent experimental work has been devoted to the behaviour of fluids at sub-
mesoscopic length scales, microns and nanometres (Stone, Stroock & Ajdari 2004;
Squires & Quake 2005). In the limit where the continuum description remains suitable,
the Navier—Stokes equations still provide an appropriate predictive framework, but
the validity of the no-slip boundary condition has been proven experimentally to
break down in very confined systems (Vinogradova 1999; Granick, Zhu & Lee 2003;
Neto et al. 2005; Lauga, Brenner & Stone 2007). Wall slip is typically quantified by
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a slip length /1 which is the fictitious distance below the slipping surface where the
velocity extrapolates to zero.

Typically, surfaces in contact with a wetting fluid show very little slip, but in
a non-wetting (or hydrophobic) case, the ‘intrinsic’ slip length can reach tens of
nanometres, thereby leading to significant reduction in friction on small length scales.
Larger slip lengths can be obtained, for example, using super-hydrophobic surfaces,
a situation where a high-surface energy liquid in contact with a hydrophobic surface
with significant surface roughness spontaneously de-wets and transitions from a state
where it is everywhere in contact with the solid, to a state where it is mostly in
contact with air, and is in contact with the solid only at the edge of the surface
roughness (Quéré 2005). Measurements of laminar flow over such surfaces with
roughness features in the tens of microns range show ‘effective’ slip lengths of a few
tens of microns, accompanied by noteworthy laminar drag reduction (up to 40 %,
and typically 20 %, Ou, Perot & Rothstein 2004).

Whether the boundary slip is intrinsic to the solid/surface combination, or is used
as a generic but effective description of complex surface processes (Vinogradova
1999; Granick et al. 2003; Neto et al. 2005; Lauga et al. 2007), the drag reduction it
implies may have a remarkable impact on flows beyond the laminar regime, and in
particular on the transition to turbulence. This has motivated a few groups to study
the effect of wall slip on flow at higher Reynolds number. A linear stability study
for channel flows with slip at the wall revealed that slip delays the occurrence of
flow instability, but has virtually no impact on the transient energy growth (Lauga &
Cossu 2005). A subsequent numerical study looked at fully developed turbulent
channel flow, analysing the influence of wall slip on turbulent structures (Min & Kim
2004). Surprisingly, while slip in the streamwise direction does lead to a decrease
in friction, slip in the spanwise direction was found to increase turbulent drag. A
related work reported computations of vortex shedding past a cylinder, both in the
laminar and turbulent regimes, with either uniform slip along the cylinder or mixed
slip/no-slip domains distributed along the span of the cylinder (You & Moin 2007).
In the laminar regime, a weak enhancement of the wake stability was observed,
whereas in the turbulent regime a significant decrease of the fluctuating forces on
the cylinder was noticed, as well as a narrowing of the wake. Finally, experiments on
rolling droplets with Reynolds number in the transitional regime showed up to 15 %
laminar drag reduction (Gogte et al. 2005).

In this paper, we consider two-dimensional flow past a circular cylinder as a
prototypical transitional flow, and ask the following questions. Generically, how does
slip on the surface of the cylinder modify the transition from steady to unsteady flow?
How does it change the stability diagram and the overall flow dynamics? The paper
is structured as follows. We describe our numerical approach and validate our code
in §2. The results of our study, namely the influence of slip on the dynamics of the
two-dimensional wake behind a cylinder, are discussed in §3. A possible application
is discussed in §4 where we propose to use our results as a passive method to infer
the friction properties of slipping surfaces. We conclude with some suggestions for
future work.

2. Set-up, numerical method and validation

We consider a two-dimensional incompressible flow past a uniformly slipping
circular cylinder of radius a. The upstream flow is uniform, of magnitude U. We
solve numerically the incompressible Navier—Stokes equations for the velocity u and
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Grid Parameters Cp CL St
GRID 1 N, x Ny =80 x 160, § =0.004a 1.348 0.334 0.176
GRID 2 N, x Ny =80 x 80, § =0.004a 1.332 0.315 0.166
GRID 3 N, X Ny =100 x 160, § =0.002a 1.347 0.331 0.169

GRID 4 N, x Ny =160 x 160, § =0.001a 1.339 0.324 0.167

TaBLE 1. Computational results obtained with four different grids in the case Re =100, Kn =0
(no-slip cylinder). The drag (resp. lift) coefficients are defined by dividing the time-averaged
drag force (resp. the maximum of the fluctuating lift force) per unit length by npa’U?/2. The
Strouhal number is defined as St =2a/(TU) where T is the vortex shedding period.

pressure p, namely

5
p<;+u-Vu>=—Vp+2/LV-S, Veu=0, @.1)

where p is the fluid density, u its dynamic viscosity and 8 = (Vu + (Vu)")/2 denotes the
rate-of-strain tensor. Associated with (2.1) are the impermeability and slip boundary
conditions on the surface of the cylinder, which read

n-u=0, nxu=2inx(S-n), (2.2)

where /4 is the cylinder slip length and »r is the unit normal to the cylinder surface.
The two dimensionless parameters characterizing the flow are the Reynolds number
Re=2pUa/p and the Knudsen number Kn = 1/a.

The computations in this paper were carried out with the finite volume JADIM
code described in detail in previous studies (e.g. Magnaudet, Rivero & Fabre 1995
and Calmet & Magnaudet 1997). We use a polar grid extending up to r,, =80a. The
number of nodes are N, =80 and Ny =160 along the radial and polar directions,
respectively. A uniform distribution in 6 and a geometrical progression along r are
used. To properly capture the vorticity generated at the cylinder surface, the thickness
8 of the row of cells closest to the cylinder surface is chosen as § =0.004q, so that
at least seven cells are located within the boundary layer for the highest Reynolds
number considered, the thickness 8z; of the boundary layer being estimated as
8s. ~ aRe™'?. The influence of these numerical parameters was carefully checked
to make sure that the results are grid independent. The example reported in table 1
shows the drag and lift coefficients and the Strouhal number obtained for Re =100
in the no-slip case with the grid used in this study, called GRID 1. These results are
compared with those given by three other grids (see also table 2). It may be observed
that the changes in N,, N, as well as in § do not induce significant modifications of the
drag, lift and shedding frequency (most of the variation on the last two quantities are
due to the marginal sampling time rather than the grid). Similar results were obtained
for the surface vorticity near the rear stagnation point. This region is very sensitive
to the grid characteristics because the sign of the vorticity changes due to separation,
and a very good agreement was also observed between the predictions provided by the
four grids. The code has been extensively validated in the past, especially for bubbles
and solid spheres (e.g. Magnaudet et al. 1995). In order to provide an extra validation
in the present configuration, the values of the drag coefficient, the maximum value
of the lift coefficient and the Strouhal number are reported for Kn =0 (no-slip) in
table 2 and compared with a selection of previous results available in the literature.



Kn=0 Re=5 20 50 100 200 500 800
DNS1 4116  2.045 - - - - -
Cp Two-dimensional (resp. three-dimensional) DNS2 - - - 1.253 (1.240) 1.321 (1.306) - —
This study 4065 2035 1445 1.350 1.345 1.379 1.391
CL Two-dimensional (resp. three-dimensional) DNS2 - - - 0.39 (0.36) 0.76 (0.64) — -
This study 0 0 0.066 0.334 0.70 1.11 1.14
Experiments - - 0.123 0.164 0.197 - -
St Two-dimensional (resp. three-dimensional) DNS2 - - - 0.165 (0.164) 0.198 (0.181) - -
DNS3 0.140 0.179 0.206 - -
This study 0 0 0.133 0.176 0.204 0.222 0.224
Kn=o0 Re=5 20 50 100 200 500 800
Cp This study 3.15 133 0.712 0.415 0.228 0.0973 0.0618

oy

TaBLE 2. Drag coefficient, lift coefficient and Strouhal number as a function of the Reynolds number in the case of a no-slip cylinder (Kn =0)
and a shear-free cylinder (Kn = c0). Results for the no-slip cylinder are compared with previous results from DNS (DNS1, DNS2 and DNS3 are
from Dennis & Chang 1970, Persillon & Braza 1998 and Karniadakis & Triantafyllou 1989, respectively) and experiments (Williamson 1988).
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Let us remind that the flow past a no-slip circular cylinder first separates for a
critical Reynolds number Re; slightly less than 7 (Chen, Pritchard & Tavener 1995),
while a second transition where the flow becomes time-dependent and vortices of
alternating signs are shed from either side of the cylinder occurs at another critical
Reynolds number Re= Re, which is between 46 and 50 (Williamson 1996), the
Strouhal number St(Re,) being about 0.13. Present computations indicate Re; =6.5,
Rey; =47.5 and St(Re;) = 0.131, in excellent agreement with previous studies.

Numerically, the slip condition (2.2) is implemented in the following manner.
In a system of polar coordinates, the tangential strain rate at the surface is
Srol,_,=0ug/0r — ug/a)|,_,. Evaluating the Taylor expansion of the tangential
velocity in the vicinity of r =a at the centre of the first two rows of cells surrounding
the cylinder (i.e. at distances d; and d, (d; <d,) from the surface), and equating
these expansions with the numerical values found at the previous iteration for
Ugr =ugl,_,,4 and ug =ug|,_, , ., respectively, yields a second-order accurate explicit
expression for duy/0r|,_,. Combining the resulting approximation with the second
equation in (2.2), the surface velocity uy|,_, is obtained as

d, di 1 1 d+d
- _ S42 . 23
4ol (dl(dz—dl)um dz(dz—dl)u02> / (z te ) (2.3)

Using (2.3), the surface shear stress 25,4/, _, involved in the local momentum balance
is finally obtained through the above approximation for du,/or|, _,,.

3. Influence of slip on the wake dynamics
3.1. Stability diagram

The main result of our investigation is illustrated in figure 1, where we display the
stability diagram for the wake in the (Re, Kn) plane. The regions separated by the
two solid lines are the subdomains where the wake is, in the order of increasing
Reynolds number, steady and unseparated, steady and separated and unsteady (i.e.
in the vortex-shedding regime). The main conclusion inferred from figure 1 is that
slip delays both the onset of separation and the onset of vortex shedding. The effect
is significant, and small values of Kn lead to large changes in the critical Reynolds
number Re,, with a very sharp increase for Kn = 0.5. Note also that the critical line
for the onset of separation behind the cylinder is not monotonic. That is, for Knudsen
numbers typically in the range [2, 2.5], the flow separates only within a finite range of
Reynolds number, say [Rey;, Rey,], whereas it remains unseparated both for Re < Rey;
and for Re > Rey, (see the discussion in 3.3). We also illustrate in figure 1, as insets,
the flow in the wake by displaying vorticity snapshots for some selected values of Re
and Kn. For a given Re, increasing Kn leads to a decrease in the vorticity intensity
in the boundary layer and wake, and a narrowing of the wake due to the decrease of
the separation angle. In the case Re =200, the separation angle varies from 72.6° for
Kn =0 to 27.2° for Kn =0.5 and finally falls to zero for Kn =2.45.

3.2. Global flow characteristics

The changes in the forces on the cylinder as a function of wall slip are shown in
figure 2(a,b). In figure 2(a), we display the normalized time-averaged drag coefficient
C;(Kn)=(Cp(Kn)— Cp(Kn =0))/(Cp(Kn =0) — Cp(0)). The values corresponding
to the no-slip limit (Kn =0) and to perfect slip (Kn =o0) are available in table 2. As
expected, the drag on the cylinder decreases monotonically with increasing wall slip,
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FIGURE 1. Stability diagram in the (Re, Kn) space and structure of the wake vorticity for
some selected values of the Reynolds number Re and Knudsen number Kn (colour scheme
is the same for all figures; red is positive vorticity). For each Kn (resp. Re), the transition
curves were obtained by varying Re (resp. Kn) until the results for two consecutive values were
found to lie on each side of the corresponding transition; a linear interpolation was then used
to determine more accurately the corresponding critical Re or Kn. The closed circles on the
transition curves indicate the pairs (Re, Kn) at which the flow was explored for nearly critical
conditions. Separation and vortex shedding were detected by examining the occurrence of a
change of sign in the surface velocity and that of a non-zero lift force, respectively.

with a steeper decrease as the Reynolds number goes up. Typically, the normalized
drag coefficient crosses the median value 0.5 for Kn ~ 0.5 when Re=20 and for
Kn ~ 0.1 when Re =_800. In other words, the wake becomes more sensitive to a small
amount of slip as inertial effects increase. We also see from table 2 that the change
in the drag coefficient between the no-slip and the infinite slip cases is small for
small Reynolds numbers, but becomes dramatic as the Reynolds number increases.
For Reynolds numbers beyond Re =50, the amount of drag reduction is larger than
50 %, and is above 80% for Re >200. In figure 2(b), we display the normalized
lift coefficient C;(Kn)=C.(Kn)/Cr(Kn=0), as a function of the Knudsen number
normalized by the critical value Kn. beyond which the wake no longer sheds vortices
(and therefore displays no lift). Again, we observe a smooth decrease of the lift force
with increasing wall slip, and an increase of the sensitivity of the wake as the Reynolds
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FIGURE 2. Drag and lift coefficients as a function of the Knudsen number for Re=20
(O, only in (a)), 50 (O), 100 (<), 200 (A), 500 (V) and 800 (*). (a) normalized drag
coefficient, C,(Kn)=(Cp(Kn) — Cp(0))/(Cp(0) — Cp(c0)); (b) normalized lift coeflicient,
C[(Kn)=Cr(Kn)/Cr(0). In (b), the Knudsen number is normalized by its critical value,
Kn.(Re), above which the flow is no longer unsteady (Kn, =0.09, 0.38,0.47, 0.49 and 0.53 for
Re =50, 100, 200, 500 and 800, respectively).
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FIGURE 3. Normalized Strouhal number St*(Kn)= St(Kn)/St(0), as a function of Kn for
Re =50, 100, 200, 500 and 800. St was computed by considering the most energetic peak in
the lift force spectrum. The definition of symbols and that of Kn. are similar to those in
figure 2.

number is increased. The origin of the drag reduction with increasing slip is two-fold.
First, for a sufficiently large Reynolds number, the vorticity at the surface decreases
from O(Re'?)U/a for Kn=0 to O(1)U/a for Kn =00 (see figure 4), and the skin
friction decreases accordingly. Second, this decrease in the surface vorticity reduces or
even suppresses separation at the cylinder surface. Therefore the fore-aft asymmetry
of the surface pressure/distribution decreases, thereby reducing the form drag. As less
vorticity is produced at the cylinder surface when Kn increases, the strength of the
vortices shedded in the wake decreases with increasing slip, and so does the lift force.

Further insight on the wake dynamics can be gained by computing the
shedding dominant frequency 1/T as a function of slip. The results are illustrated
in figure 3 where we display the normalized Strouhal number for the wake,
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St"(Kn)= St(Kn)/St(0), as a function of Kn/Kn, for different values of Re. The
shedding frequency increases with Kn, with up to a factor of 4 increase at large
Reynolds number. Hence, although slip leads to a decrease of the force amplitudes on
the cylinder, it increases the frequency at which these force components oscillate.
This is because the time rate-of-change of the vorticity at the cylinder surface
(which is proportional to St) results from both the diffusion of vorticity across
the boundary layer and its advection along the cylinder surface. While the former
is almost unaffected by slip, the strength of the latter increases linearly with the
tangential velocity at the cylinder surface. Combining (2.2) with an estimate of the
boundary layer thickness 8p;/a=aRe /> with @ = 0(1), one can show that the
magnitude of the tangential velocity scales as a Re'/?/(aRe'/> + 1 + Kn™"), so that St
increases with Kn when Re is kept fixed.

3.3. Surface vorticity

There are strong indications that the formation of a standing eddy and the occurrence
of wake instability past axisymmetric bodies arises when the vorticity accumulated
around the body, i.e. the difference between the amount of vorticity generated at the
body surface and that which is evacuated downstream in the wake, exceeds some
critical value (Leal 1989). This idea explains why the wake past rising spherical gas
bubbles remains axisymmetric for all Reynolds numbers, while the axial symmetry
breaks down when the bubble deformation exceeds some critical value, vorticity at a
perfect-slip surface being directly proportional to the surface curvature (Magnaudet &
Mougin 2007). In the latter paper it was shown that, once expressed in terms of the
maximum vorticity at the body surface, w,,,, the criterion predicting whether the
wake past a solid sphere is stable or not is identical to that predicting wake instability
for a shear-free bubble. This criterion indicates that the wake is unstable when
wmax (Re)/(U/a) > g(Re), where g is a function that weakly depends on the Reynolds
number. In other terms, the strength of the vorticity at the body surface is the key
quantity that determines the stability of the wake, irrespective of the specific dynamic
boundary condition at the surface.

It is of interest to examine how the same argument works in the present
configuration. For this purpose, we show in figure 4 the quantity w,.a/U, for the two
transitions displayed in figure 1, as well as along iso-Kn curves, as a function of the
Reynolds number. Note that the curve corresponding to Kn =0 exhibits a 1/2 slope
for large enough Reynolds number, reflecting the fact that the normalized vorticity at
a no-slip surface grows like Re!/?. The results shown in figure 4 reveal that along the
shedding transition curve, the Reynolds number increases by a factor of 20, whereas
the critical vorticity, although dependent on Re, displays little variation and remains
in the range 5 < wuaca/U < 7. Hence, present results offer additional evidence that
the shedding transition occurs when the surface vorticity exceeds some critical value
that weakly varies with the Reynolds number, irrespective of the dynamic boundary
condition at the cylinder surface. In particular one can infer from figure 4 that the
wake past a shear-free cylinder (for which w,.ca/U =4, as shown by assuming a
potential flow solution with a vortex sheet at the cylinder surface) remains steady and
unseparated for arbitrarily large Reynolds numbers. The same argument allows us to
understand why, according to figure 1, the wake separates only within a finite range
of Reynolds number, [Rey;, Rey,], when Kn exceeds some critical value: vorticity
generation at the surface increases only weakly with Re in presence of significant slip,
while the vorticity flux advected downstream in the wake increases linearly with the
upstream velocity (and therefore with Re), implying the existence of an upper value
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FIGURE 4. Maximum dimensionless vorticity wyq./(U/a) at the cylinder surface as a
function of the Reynolds number (log-log scale). The thick solid and dash-dotted lines
correspond to Kn=0 and Kn=o0, respectively; the thin solid lines correspond to
Kn=0.050.1,0.2,0.4,1,2.2 and 5, respectively. The long and short dashed lines delimit
the regions where the wake is unseparated, steady and separated, and unsteady, respectively.
These lines were obtained using the procedure described in the caption of figure 1.

of Re beyond which there is not enough vorticity accumulated behind the cylinder
for the wake to separate (Leal 1989).

4. Application to the effective friction of slipping surfaces

The results presented in figure 1 could be used as a method to passively infer the
friction properties of surfaces prone to slip. For example, given the potentially large
drag reduction resulting from super-hydrophobic coatings, there is growing interest
in obtaining quantitative information regarding their overall friction properties, and
the effectiveness of particular geometrical designs (length scales and morphology).
The methods used so far in the literature involve real friction measurements, where
a particular surface is modified to become super-hydrophobic, a pressure gradient
is applied and the change in the flow rate is measured (Ou et al. 2004). These
are arguably difficult experiments and it would be useful that simpler methods be
available.

In this spirit, we propose to coat a cylinder with the studied slipping surface, and
to place it in a uniform flow field with known upstream velocity U. As the flow speed
is increased beyond a critical value, the flow will become unsteady, and we can then
exploit our numerical results to infer the effective slip length on the surface, without
performing any actual friction measurement. With the knowledge of the critical value
of U, and hence Re, at which vortex shedding sets in, one reads the corresponding
value of Kn from figure 1, and infers the effective slip length describing the surface.
According to the results displayed in figure 1, this will work as long as Kn < 0.5.

For super-hydrophobic surfaces, this method will be effective provided two
hypotheses are satisfied. We first need to ensure that the surface remains super-
hydrophobic, and does not transition back to a wetted state. We further need to ensure
that the effect be sufficiently strong to be experimentally measurable. Regarding the
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first point, it is necessary that the flow-induced pressures, which are of the order of
pU?, are small enough to prevent transition to the wetting state. For typical super-
hydrophobic surfaces made of a dense population of pillars with size r, the critical
pressure is a capillary pressure, of the order of o/r, where o is the surface tension of
the liquid in air (Bartolo et al. 2006). Wetting will therefore be avoided if pU? < o/r,
or Re < a/\Jtr, where £=p?/po is the Ohnesorge length for the liquid. Regarding
the second point, we need the slip length to be sufficiently large for the effect to be
detectable. According to previous work by Ybert et al. (2007), we expect 4~ d, where
d is the distance between the pillars composing the super-hydrophobic surface. To fix
ideas, if we wish the transition to occur at a particular Kn, we need a ~ d/Kn. This
limit will be compatible with the constraint found above if Re Kn < d/ \/£7 and, with
r ~d, we need therefore to be in the limit where (Re Kn)*> < r/¢. For an air-water
system, we have £ ~ 14 nm. The critical Reynolds number for, say, Kn =0.1 is about
60, which is sufficiently above Re;(Kn =0)=47.5 to be measured without ambiguity,
so r and d need to be at least of a few microns, and the proposed experiment can be
achieved in a microfluidics device.

5. Concluding remarks

In this work, we performed direct numerical simulations to study the influence
of generic slip boundary conditions on the dynamics of the two-dimensional wake
behind a circular cylinder. Specifically, we have shown that slip: (i) delays the onset
of recirculation and vortex shedding in the wake; (ii) decreases both drag and lift;
(iii) decreases the vorticity intensity in the near wake; (iv) increases the shedding
frequency. We have also discussed a practical application of our results and proposed
that they could be used as a passive method to infer the effective friction properties
of slipping surfaces.

The most severe limitation of the current work is the two-dimensional assumption
for all Reynolds numbers. In the case of a long no-slip cylinder, three-dimensional
effects are known to become important when the Reynolds number reaches Re ~ 190
(Williamson 1996). However, since these three-dimensional effects occur well into
the unsteady regime, the wake is likely to remain two-dimensional close to the
shedding transition, and our critical curves Re; = f(Kn) and Re, = g(Kn) should not
be affected by these effects. Regarding the applicability of our results as a method
to passively estimate wall slip, other effects such as geometrical confinement would
lead to changes in the details of the results shown in figure 1, and each experimental
set-up would be characterized by its own transition curve to be obtained numerically,
but the general principle remains valid. Moreover, in general, most complex surfaces
cannot be adequately modelled by a single homogeneous slip coefficient, but instead
a detailed look at the geometrical and physico-chemical nature of the interface is
required. Results in the case of micro-textured surface will be reported in future work.

This work was funded in part by the US National Science Foundation (grants
CTS-0624830 and CBET-0746285 to Eric Lauga).
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