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Abstract
Cell motility in viscous fluids is ubiquitous and affects many biological processes, including
reproduction, infection and the marine life ecosystem. Here we review the biophysical and
mechanical principles of locomotion at the small scales relevant to cell swimming, tens of
micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small.
Our emphasis is on the simple physical picture and fundamental flow physics phenomena in
this regime. We first give a brief overview of the mechanisms for swimming motility, and of
the basic properties of flows at low Reynolds number, paying special attention to aspects most
relevant for swimming such as resistance matrices for solid bodies, flow singularities and
kinematic requirements for net translation. Then we review classical theoretical work on cell
motility, in particular early calculations of swimming kinematics with prescribed stroke and
the application of resistive force theory and slender-body theory to flagellar locomotion. After
examining the physical means by which flagella are actuated, we outline areas of active
research, including hydrodynamic interactions, biological locomotion in complex fluids, the
design of small-scale artificial swimmers and the optimization of locomotion strategies.

(Some figures in this article are in colour only in the electronic version)

This article was invited by Christoph Schmidt.
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1. Introduction

Our world is filled with swimming microorganisms: the
spermatozoa that fuse with the ovum during fertilization, the
bacteria that inhabit our guts, the protozoa in our ponds,
the algae in the ocean; these are but a few examples of a wide
biological spectrum. The reasons microorganisms move are
familiar. Bacteria such as Escherichia coli detect gradients in
nutrients and move to regions of higher concentration [1]. The
spermatozoa of many organisms swim to the ovum, sometimes
in challenging environments such as tidal pools in the case
of sea urchins or cervical mucus in the case of humans [2].
Paramecium cells swim to evade predator rotifers.

What is perhaps less familiar is the fact that the physics
governing swimming at the micrometer scale is different from
the physics of swimming at the macroscopic scale. The world
of microorganisms is the world of low ‘Reynolds number’, a
world where inertia plays little role and viscous damping is
paramount. As we describe below, the Reynolds number Re

is defined as Re = ρUL/η, where ρ is the fluid density, η

is the viscosity and U and L are characteristic velocity and
length scales of the flow, respectively. Swimming strategies
employed by larger organisms that operate at high Reynolds
number, such as fish, birds or insects [3–8], are ineffective at
the small scale. For example, any attempt to move by imparting
momentum to the fluid, as is done in paddling, will be foiled
by the large viscous damping. Therefore microorganisms
have evolved propulsion strategies that successfully overcome
and exploit drag. The aim of this review is to explain the
fundamental physics upon which these strategies rest.

The study of the physics of locomotion at low Reynolds
number has a long history. In 1930, Ludwig [9] pointed
out that a microorganism that waves rigid arms like oars is
incapable of net motion. Over the years there have been
many classic reviews, from the general perspective of animal
locomotion [10], from the perspective of fluid dynamics at
low Reynolds number [3, 11–16], and from the perspective
of the biophysics and biology of cell motility [1, 17–21].
Nevertheless, the number of publications in the field has grown
substantially in the past few years. This growth has been
spurred in part by new experimental techniques for studying
cell motility. Traditionally, motile cells have been passively
observed and tracked using light microscopy. This approach
has led to crucial insights such as the nature of the chemotaxis
strategy of E. coli [1]. These techniques continue to improve
and find applicability to a wide range of microorganisms [22].
Other recent advances in visualization techniques, such as
the fluorescent staining of flagella [23] in living, swimming
bacteria, also elucidate the mechanics of motility. A powerful
new contribution is the ability to measure forces at the scale
of single organisms and single motors. For example, it is now
possible to measure the force required to hold a swimming
spermatozoon [24–26], alga [27] or bacterium [28] in an optical
trap. Atomic force microscopy also allows direct measurement
of the force exerted by cilia [29]. Thus the relation between
force and the motion of the flagellum can be directly assessed.
These measurements of force allow new approaches to
biological questions, such the heterogeneity of motor behavior

in genetically identical bacteria. Measurements of force
together with quantitative observation of cell motion motivate
the development of detailed hydrodynamic theories that can
constrain or rule out models of cell motion.

The goal of this review is to describe the theoretical
framework for locomotion at low Reynolds number. Our
focus is on analytical results, but our aim is to emphasize
physical intuition. In section 2, we give some examples
of how microorganisms swim. After a brief general review
of low Reynolds number hydrodynamics (section 3), we
outline the fundamental properties of locomotion without
inertia (section 4). We then discuss the classic contributions
of Taylor [30], Hancock [31] and Gray [32], who all but
started the field more than 50 years ago (section 5); we also
outline many of the subsequent works that followed. We
proceed by introducing the different ways to physically actuate
a flagella-based swimmer (section 6). We then move on to
introduce topics of active research. These areas include the
role of hydrodynamic interactions, such as the interactions
between two swimmers, or between a wall and a swimmer
(section 7); locomotion in non-Newtonian fluids such as the
mucus of the female mammalian reproductive tract (section 8)
and the design of artificial swimmers and the optimization
of locomotion strategies in an environment at low Reynolds
number (section 9). Our coverage of these topics is motivated
by intellectual curiosity and the desire to understand the
fundamental physics of swimming; the relevance of swimming
in biological processes such as reproduction or bacterial
infection; and the practical desire to build artificial swimmers,
pumps and transporters in microfluidic systems.

Our review is necessarily limited to a small cross-section
of current research. There are many closely related aspects of
‘life at low Reynolds number’ that we do not address, such as
nutrient uptake or quorum sensing; instead we focus on flow
physics. Our hope is to capture some of the current excitement
in this research area, which lies at the intersection of physics,
mechanics, biology and applied mathematics, and is driven by
clever experiments that shed a new light on the hidden world
of microorganisms. Given the interdisciplinary nature of the
subject, we have tried to make the review a self-contained
starting point for the interested student or scientist.

2. Overview of mechanisms of swimming motility

In this section we motivate our review with a short overview of
mechanisms for swimming motility. We define a ‘swimmer’
to be a creature or object that moves by deforming its body in
a periodic way. To keep the scope of the paper manageable,
we do not consider other mechanisms that could reasonably be
termed ‘swimming’, such as the polymerization of the actin of
a host cell by pathogens of the genus Listeria [33], or the gas-
vesicle mediated buoyancy of aquatic micoorganisms such as
Cyanobacteria [34].

Many microscopic swimmers use one or more appendages
for propulsion. The appendage could be a relatively stiff helix
that is rotated by a motor embedded in the cell wall, as in the
case of E. coli [35] (figure 1(a)), or it could be a flexible filament
undergoing whip-like motions due to the action of molecular
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Figure 1. Sketches of microscopic swimmers, to scale. (a) E. coli.
(b) C. crescentus. (c) R. sphaeroides, with flagellar filament in the
coiled state. (d) Spiroplasma, with a single kink separating regions
of right-handed and left-handed coiling. (e) Human spermatozoon.
(f) Mouse spermatozoon. (g) Chlamydomonas. (h) A smallish
Paramecium.

motors distributed along the length of the filament, as in the
sperm of many species [21] (figures 1(e) and (f)). For example,
the organelle of motility in E. coli and Salmonella typhimurium
is the bacterial flagellum, consisting of a rotary motor [36], a
helical filament, and a hook which connects the motor to the
filament [1, 20, 37]. The filament has a diameter of≈20 nm and
traces out a helix with contour length ≈10 µm. In the absence
of external forces and moments, the helix is left-handed with
a pitch ≈2.5 µm and a helical diameter ≈0.5 µm [23]. There
are usually several flagella per cell. When the motor turns
counter-clockwise (when viewed from outside the cell body),
the filaments wrap into a bundle that pushes the cell along at
speeds of 25–35 µm s−1 (see section 7.3.2) [38]. When one
or more of the motors reverse, the corresponding filaments
leave the bundle and undergo ‘polymorphic’ transformations in
which the handedness of the helix changes; these polymorphic
transformations can change the swimming direction of the
cell [23].

There are many variations on these basic elements among
swimming bacteria. For example, Caulobacter crescentus
has a single right-handed helical filament (figure 1(b)), driven
by a rotary motor that can turn in either direction. The
motor preferentially turns clockwise, turning the filament in
the sense to push the body forward [39]. During counter-
clockwise rotation the filament pulls the body instead of
pushing. The motor of the bacterium Rhodobacter sphaeroides
turns in only one direction but stops from time to time [40].
The flagellar filament forms a compact coil when the motor
is stopped (figure 1(c)), and extends into a helical shape
when the motor turns. Several archaea also use rotating
flagella to swim, although far less is known about the archaea
compared with bacteria. Archaea such as the various species of
Halobacterium swim more slowly than bacteria, with typical
speeds of 2–3 µm s−1 [41]. Although archaeal flagella also
have a structure comprised of motor, hook and filament,
molecular analysis of the constituent proteins shows that

archaeal and bacterial flagella are unrelated (see [42] and
references therein).

There are also bacteria that swim with no external flagellar
filaments. The flagella of spirochetes lie in the thin periplasmic
space between the inner and outer cell membranes [43]. The
flagellar motors are embedded in the cell wall at both poles
of the elongated body of the spirochete, and the flagellar
filaments emerge from the motor and wrap around the body.
Depending on the species, there may be one or many filaments
emerging from each end of the body. In some cases, such as
the Lyme disease spirochete Borrelia burgdorferi, the body
of the spirochete is observed to deform as it swims, and it
is thought that the rotation of the periplasmic flagella causes
this deformation which in turn leads to propulsion [44, 45].
The deformation can be helical or planar. These bacteria
swim faster in gel-like viscous environments than bacteria
with external flagella [46, 47]. Other spirochetes, such as
Treponema primitia, do not change shape at all as they swim,
and it is thought that motility develops due to rotation of
the outer membrane and cytoplasmic membrane in opposite
senses [44, 48]. Finally, we mention the case of Spiroplasma,
helically shaped bacteria with no flagella (figure 1(d)). These
cells swim via the propagation of pairs of kinks along the
length of the body [49]. Instead of periplasmic flagella,
the kinks are thought to be generated by contraction of the
cytoskeleton [50–52].

Eukaryotic flagella and cilia are much larger than bacterial
flagella, with a typical diameter of ≈200 nm, and with
an intricate internal structure [21]. The most common
structure has nine microtubule doublets spaced around the
circumference and running along the length of a flagellum or
cilium, with two microtubules along the center. Molecular
motors (dynein) between the doublets slide them back and
forth, leading to bending deformations that propagate along
the flagellum. There is a vast diversity in the beat pattern and
length of eukaryotic flagella and cilia. For example, the sperm
of many organisms consists of a head containing the genetic
material propelled by a filament with a planar or even helical
beat pattern, depending on the species [53]. The length of the
flagellum is 12 µm in some Hymenoptera [54], ≈20 µm for
hippos, ≈40 µm for humans [2] (figure 1(e)), ≈80 µm for mice
(figure 1(f)), and can be 1 mm [55] or even several centimeters
long in some fruit flies [56] (although in the last case the flagella
are rolled up into pellets and offered to the female via a ‘pea-
shooter’ effect [56]).

Many organisms have multiple flagella. Chlamydomonas
reinhardtii is an alga with two flagella that can exhibit both
ciliary and flagellar beat patterns (figure 1(g)). In the ciliary
case, each flagellum has an asymmetric beat pattern [21].
In the power stroke, each flagellum extends and bends at
the base, sweeping back like the arms of a person doing
the breaststroke. On the recovery stroke, the flagellum
folds, leading as we shall see below to less drag. When
exposed to bright light, the alga swims in reverse, with its
two flagella extended and propagating bending waves away
from the cell body as in the case of sperm cells described
above [57]. Paramecium is another classic example of a
ciliated microorganism. Its surface is covered by thousands
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of cilia that beat in a coordinated manner [58], propelling the
cell at speeds of ≈500 µm s−1 (figure 1(h)). Arrays of beating
cilia are also found lining the airway where they sweep mucus
and foreign particles up toward the nasal passage [59].

3. Flows at low Reynolds number

3.1. General properties

We first briefly discuss the general properties of flow at low
Reynolds numbers. For more detail we refer to the classic
monographs by Happel and Brenner [60], Kim and Karrila [61]
and Leal [62]; an introduction is also offered by Hinch [63] and
Pozrikidis [64].

To solve for the force distribution on an organism, we need
to solve for the flow field u and pressure p in the surrounding
fluid. For an incompressible Newtonian fluid with density ρ

and viscosity η, the flow satisfies the Navier–Stokes equations

ρ

(
∂

∂t
+ u · ∇

)
u = −∇p + η∇2u, ∇ · u = 0, (1)

together with the boundary conditions appropriate to the
problem at hand. In the case of swimming of a deformable
body, the no-slip boundary condition states that the velocity of
the fluid at the boundary is equal to the velocity of the material
points on the body surface. The Navier–Stokes equations are a
pointwise statement of momentum conservation. Once u and
p are known, the stress tensor is given by σ = −p1 + η[∇u +
(∇u)T] (1 is the identity tensor), and the hydrodynamic force
F and torque L acting on the body are found by integrating
over its surface S,

F (t) =
∫∫

S

σ · n dS, L(t) =
∫∫

S

x × (σ · n) dS,

(2)

where x denotes positions on the surface S and n the unit
normal to S into the fluid (in this paper torques are measured
with respect to some arbitrary origin).

The Reynolds number is a dimensionless quantity which
qualitatively captures the characteristics of the flow regime
obtained by solving equation (1), and it has several different
physical interpretations. Consider a steady flow with typical
velocity U around a body of size L. The Reynolds number
Re is classically defined as the ratio of the typical inertial
terms in the Navier–Stokes equation, ∼ρu ·∇u, to the viscous
forces per unit volume, ∼η∇2u. Thus, Re = ρLU/η. A
low Reynolds number flow is one for which viscous forces
dominate in the fluid.

A second interpretation can be given as the ratio of time
scales. The typical time scale for a local velocity perturbation
to be transported convectively by the flow along the body
is tadv ∼ L/U , whereas the typical time scale for this
perturbation to diffuse away from the body due to viscosity
is tdiff ∼ ρL2/η. We see therefore that Re = tdiff/tadv, and a
low Reynolds number flow is one for which fluid transport is
dominated by viscous diffusion.

We can also interpret Re as a ratio of forces on the
body. A typical viscous stress on a bluff body is given by
σviscous ∼ ηU/L, leading to a typical viscous force on the body

of the form fviscous ∼ ηUL. A typical inertial stress is given by
a Bernoulli-like dynamic pressure, σinertial ∼ ρU 2, leading to
an inertial force finertial ∼ ρU 2L2. We see that the Reynolds
number is given by Re = finertial/fviscous, and therefore in a
low Reynolds number flow the forces come primarily from
viscous drag.

A fourth interpretation, more subtle, was offered by
Purcell [14]. He noted that, for a given fluid, F = η2/ρ

has units of force, and that any body acted upon by the force
F will experience a Reynolds number of unity, independent
of its size. Indeed, it is easy to see that Re = fviscous/F and
Re = (finertial/F)1/2, and therefore a body with a Reynolds
number of one will have finertial = fviscous = F . A body
moving at low Reynolds number therefore experiences forces
smaller than F , where F ≈ 1 nN for water.

What are the Reynolds numbers for swimming
microorganisms [3]? In water (ρ ≈ 103 kg m−3, η ≈
10−3 Pa s), a swimming bacterium such as E. coli with U ≈
10 µm s−1 and L ≈ 1–10 µm has a Reynolds number Re ≈
10−5–10−4. A human spermatozoon with U ≈ 200 µm s−1

and L ≈ 50 µm moves with Re ≈ 10−2. The larger ciliates,
such as Paramecium, have U ≈ 1 mm s−1 and L ≈ 100 µm,
and therefore Re ≈ 0.1 [13]. At these low Reynolds numbers,
it is appropriate to study the limit Re = 0, for which the
Navier–Stokes equations (1) simplify to the Stokes equations

− ∇p + η∇2u = 0, ∇ · u = 0. (3)

Since swimming flows are typically unsteady, we implicitly
assume the typical frequency ω is small enough so that the
‘frequency Reynolds number’ ρLω2/η is also small. Note
that equation (3) is linear and independent of time, a fact with
important consequences for locomotion, as we discuss below.

Before closing this subsection, we point out an important
property of Stokes flows called the reciprocal theorem [60]. It
is a principle of virtual work which takes a particularly nice
form thanks to the linearity of equation (3). Consider a volume
of fluid V , bounded by a surface S with outward normal n, in
which two solutions to equation (3) exist, u1 and u2, satisfying
the same boundary conditions at infinity. If the stress fields of
the two flows are σ1 and σ2, then the reciprocal theorem states
that the mixed virtual works are equal:∫∫

S

u1 · σ2 · n dS =
∫∫

S

u2 · σ1 · n dS. (4)

3.2. Motion of solid bodies

When a solid body submerged in a viscous fluid is subject to an
external force smaller than F , it will move with a low Reynolds
number. What determines its trajectory? Since equation (3) is
linear, the relation between kinetics and kinematics is linear.
Specifically, if the solid body is subject to an external force
F , and an external torque L, it will move with velocity U and
rotation rate Ω satisfying(

F

L

)
=

(
A B

BT C

)
·
(

U

Ω

)
, (5)
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or the inverse relation(
U

Ω

)
=

(
M N

NT O

)
·
(

F

L

)
. (6)

The matrix in equation (5) is the ‘resistance’ matrix of
the body and the matrix of equation (6) is the ‘mobility’
matrix. The reciprocal theorem (4) forces these matrices to
be symmetric [60]. Dimensionally, since low-Re stresses
scale as ∼ηU/L, the sub-matrices scale as [A] ∼ ηL,
[B] ∼ ηL2, [C] ∼ ηL3, and similarly [M ] ∼ (ηL)−1,
[N ] ∼ (ηL2)−1, [O] ∼ (ηL3)−1. For example, a solid sphere
of radius R has isotropic translational and rotational drag:
M = A−1 = (6πηR)−11 and O = C−1 = (8πηR3)−11;
the cross-couplings N and B vanish by symmetry. But for
most problems, the details of the geometry of the body make
these matrices very difficult to calculate analytically.

Three important features of equations (5)–(6) should be
emphasized for their implications for locomotion. The first
important property is drag anisotropy: the matrices A, M ,
C and O need not be isotropic (proportional to 1). As we
discuss in section 4, drag anisotropy is a crucial ingredient
without which biological locomotion could not occur at zero
Reynolds number. For a simple illustration, consider a slender
prolate spheroid of major axis L and minor axis � with
L � �. If e denotes the direction along the major axis
of the spheroid, we have A = A‖ee + A⊥(1 − ee), with
A‖ ≈ 4πηL/[ln(2L/�) − 1/2] and A⊥ ≈ 8πηL[ln(2L/�) +
1/2]. An interesting consequence of the drag anisotropy is the
sedimentation of a spheroid under the action of gravity. If the
body is not exactly parallel or perpendicular to the direction of
gravity, then its sedimentation velocity makes a constant angle
with the direction of gravity, and the spheroid slides along its
length as it sediments.

Secondly, there exist geometries for which the matrices
B and N are non-zero, namely chiral bodies, which lack a
mirror symmetry plane. In that case, there is the possibility
of driving translational motion through angular forcing—this
strategy is employed by bacteria with rotating helical flagella
(see section 6).

Thirdly, these matrices are important for calculating the
diffusion constants of solid bodies. The fluctuation-dissipation
theorem states that, in thermal equilibrium at temperature T ,
the translational diffusion constant of a solid body is given by
the Stokes–Einstein relationship D = kBT M , where kB is
Boltzmann’s constant, while the rotational diffusion constant
is given by DR = kBT O. The typical time scale for a body
to move by diffusion along its length is τD ∼ L2/[D], while
τR ∼ [DR]−1 is the typical time scale for the reorientation
of the cell by thermal forces alone. For a non-motile E. coli
bacterium at room temperature, we have [D] ∼ 0.1 µm2 s−1

in water; while the time scale for thermal reorientation of the
cell axis, [DR]−1, is a few minutes.

3.3. Flow singularities

Since the Stokes’ equations, equation (3), are linear, traditional
mathematical methods relying on linear superposition may be
used to solve for flow and pressure fields. Green’s function for

Stokes flow with a Dirac-delta forcing of the form δ(x−x′)F
is given by

u(x) = G(x − x′) · F ,

with G(r) = 1

8πη

(
1
r

+
rr

r3

)
, r = |r|, (7)

p(x) = H(x − x′) · F , with H(r) = r

4πr3
· (8)

The tensor G is known as the Oseen tensor, and the
fundamental solution, equation (7), is termed a stokeslet [31].
Physically, it represents the flow field due to a point force,
F , acting on the fluid at the position x′ as a singularity.
The velocity field is seen to decay in space as 1/r , a result
which can also be obtained by dimensional analysis. Indeed,
for a three-dimensional force F acting on the fluid, and by
linearity of Stokes’ flow, the flow velocity has to take the form
u ∼ Ff (θ, r, η), where θ is the angle between the direction
of F and r, and where F is the magnitude of the force.
Dimensional analysis leads to u ∼ g(θ)F/ηr with a 1/r decay.

An important property of the stokeslet solution for
locomotion is directional anisotropy. Indeed, we see from
equation (7) that if we evaluate the velocity in the direction
parallel to the applied force, we obtain that u‖ = F/4πηr ,
whereas the velocity in the direction perpendicular to the force
is given by u⊥ = F/8πηr . For the same applied force, the
flow field in the parallel direction is therefore twice that in
the perpendicular direction (u‖ = 2u⊥). Alternatively, to
obtain the same velocity, one would need to apply a force
in the perpendicular direction twice as large as in the parallel
direction (F⊥ = 2F‖). Such anisotropy, which is reminiscent
of the anisotropy in the mobility matrix for long slender
bodies (section 3.2; see also section 5.2) is at the origin of
the drag-based propulsion method employed by swimming
microorganisms (see section 4.3).

From the fundamental solution above, equation (7), the
complete set of singularities for viscous flow can be obtained
by differentiation [65]. One derivative leads to force dipoles,
with flow fields decaying as 1/r2. Two derivatives lead to
source dipole (potential flow also known as a doublet), and
force quadrupoles, with velocity decaying in space as 1/r3.
Higher-order singularities are easily obtained by subsequent
differentiation.

A well-chosen distribution of such singularities can then
be used to solve exactly Stokes’ equation in a variety of
geometries. For example, the Stokes flow past a sphere is
a combination of a stokeslet and a source dipole at the center
of the sphere [66]. For spheroids, the method was pioneered
by Chwang and Wu [65], and we refer to [61, 67] for a textbook
treatment. A linear superposition of singularities is also at the
basis of the boundary integral method to computationally solve
for Stokes flows using solely velocity and stress information
at the boundary (see [64, 67]).

When a flow field is described by a number of different
flow singularities, the singularity with the slowest spatial decay
is the one that dominates in the far field. Since a cell swimming
in a viscous fluid at low Reynolds numbers is force- and torque-
free (equation (9)), the flow singularities that describe point-
forces (stokeslets) and point-torques (antisymmetric force
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dipole or rotlets) cannot be included in the far-field description.
As a result, the flow field far from a swimming cell is in general
well represented by a symmetric force dipole or stresslet [68].
Such far-field behavior has important consequences on cell–
cell hydrodynamic interactions as detailed in section 7.1.

Finally, flow singularities are modified by the presence of
solid boundaries. Consider for example a flow near a planar
wall. In general the no-slip boundary condition along the wall
is not satisfied by the original set of singularities. As a result,
and similarly to the method of images in electrostatics, the flow
in the presence of the wall is then the linear superposition of the
infinite-fluid flow, plus a sequence of image flow fields located
on the other side of the surface, whose types and strengths are
such that the correct boundary condition is enforced along the
wall. Image flow fields for the fundamental singularities of
Stokes flows were pioneered by Blake [69, 70], and a textbook
treatment is offered in [61, 64]. In contrast to the method of
images in electrostatics, a mathematical complication stems
from the fact that in fluid mechanics the no-slip boundary
condition is vectorial, whereas the constant-potential boundary
condition in electrostatics is scalar. For a stokeslet near wall,
the image flow field is a stokeslet, a force dipole and a source
dipole [69, 70]. These images can be used to show that the
mobility of a sphere in translation decreases near a wall, and
that the mobility for translation along the wall is larger than
the mobility for translation perpendicular to the wall [60, 61].

4. Life at low Reynolds number

We now consider the general problem of self-propelled motion
at low Reynolds number. We call a body a ‘swimmer’ if by
deforming its surface it is able to sustain movement through
fluid in the absence of external (non-hydrodynamic) forces and
torques. Note that the ‘body’ includes appendages such as the
cilia covering a Paramecium or the helical flagella of E. coli.

4.1. Reinterpreting the Reynolds number

We first offer an alternative interpretation of the Reynolds
number in the context of swimming motion. Let us consider
a swimmer of mass m and size L swimming with velocity U

through a viscous fluid of density ρ and viscosity η. Suppose
the swimmer suddenly stops deforming its body, it will then
decelerate according to Newton’s law ma = fdrag. What is the
typical length scale d over which the swimmer will coast due
to the inertia of its movement? For motion at high Reynolds
number, as in the case of a human doing the breaststroke,
the typical drag is fdrag = finertial ∼ ρU 2L2, leading to a
deceleration a ∼ ρU 2L2/m. The swimmer coasts a length
d ∼ U 2/a ∼ m/(ρL2). If the swimmer has a density
ρs ∼ m/L3, we see that the dimensionless coasting distance
is given by the ratio of densities, d/L ∼ ρs/ρ. A human
swimmer in water can coast for a couple of meters. In contrast,
for motion at low Reynolds number, the drag force has the
viscous scaling, fdrag = fviscous ∼ ηUL, and the swimmer can
coast a distance d/L ∼ Reρs/ρ. For a swimming bacterium
such as E. coli, this argument leads to d ≈ 0.1 nm [14]. For
Re < 1, the Reynolds number can therefore be interpreted as
a non-dimensional coasting distance.

A consequence of this analysis is that in a world of
low Reynolds number, the response of the fluid to the
motion of boundaries is instantaneous. This conclusion
was anticipated by our second interpretation of the Reynolds
number (section 3), where we saw that in the limit of very
low Re, velocity perturbations diffuse rapidly relative to the
rate at which fluid particles are carried along by the flow.
To summarize, the rate at which the momentum of a low-Re

swimmer is changing is completely negligible when compared
with the typical magnitude of the forces from the surrounding
viscous fluid. As a result, Newton’s law becomes a simple
statement of instantaneous balance between external and fluid
forces and torques

Fext(t) + F (t) = 0, Lext(t) + L(t) = 0. (9)

In most cases, there are no external forces, and Fext(t) = 0.
Situations where Lext(t) is non-zero include the locomotion of
nose-heavy or bottom-heavy cells [71]; in all other cases we
will assume Lext(t) = 0.

4.2. The swimming problem

Mathematically, the swimming problem is stated as follows.
Consider a body submerged in a viscous fluid. In a reference
frame fixed with respect to some arbitrary reference point in
its body, the swimmer deforms its surface in a prescribed
time-varying fashion given by a velocity field on its surface,
uS(t). The velocity field uS(t) is the ‘swimming gait’. A
swimmer is a deformable body by definition, but it may be
viewed at every instant as a solid body with unknown velocity
U(t) and rotation rate Ω(t). The instantaneous velocity on the
swimmer’s surface is therefore given by u = U + Ω×x + uS ,
which, due to the no-slip boundary condition, provides the
boundary conditions needed to solve equation (3). The
unknown values of U(t) and Ω(t) are determined by satisfying
equation (9).

The mathematical difficulty of the swimming problem
arises from having to solve for the Stokes flow with unknown
boundary condition; in that regard, low-Re swimming is
reminiscent of an eigenvalue problem. A great simplification
was derived by Stone and Samuel [72], who applied the
reciprocal theorem, equation (4), to the swimming problem.
Recall that the reciprocal theorem involves two different flow
problems for the same body. Let u and σ be the velocity
and stress fields we seek in the swimming problem. For the
second flow problem, suppose û and σ̂ are the velocity and
stress fields for the dual problem of instantaneous solid body
motion of the swimmer with velocity Û and rotation rate Ω̂.
This problem correspond to subjecting the shape, S(t), to an
external force, F̂ , and torque, L̂, instantaneously. Applying
the reciprocal theorem, equation (4), we obtain the integral
relationship [72]

F̂ · U + L̂ · Ω = −
∫∫

S(t)

uS · σ̂ · n dS. (10)

Equation (10) shows explicitly how the swimming velocity U

and rotation rate Ω may be found instantaneously in terms of
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the gait uS , given the solution to the dual problem of the flow
induced by the motion of the rigid body with instantaneous
shape S(t), subject to force F̂ and torque L̂. Since F̂ and L̂

are arbitrary, equation (10) provides enough equations to solve
for all components of the swimming kinematics. Note that in
equation (10), all four fields F̂ , U , L̂ and Ω are implicitly
time dependent through the time-dependence of the shape
S(t). Note also that for squirming motion, where the shape of
the swimmer surface remains constant and all deformation is
tangential to the surface (uS · n = 0), equation (10) simplifies
further. For a spherical squirmer of radius R, we have the
explicit formulae [72]

U = − 1

4πR2

∫∫
S

uS dS,

Ω = − 3

8πR3

∫∫
S

n × uS dS.

(11)

4.3. Drag-based thrust

Most biological swimmers exploit the motion of slender
appendages such as flagella or cilia for locomotion. This limit
of slender bodies allows us to provide a physical, intuitive way
to understand the origin of locomotion through drag, which we
now present; the specifics of biological and artificial flagellar
actuation will be discussed in section 6.

The fundamental property allowing for drag-based thrust
of slender filaments is their drag anisotropy, as introduced in
section 3.2. Indeed, consider a thin filament immersed in a
viscous fluid which is motionless but for flows induced by
the motion and deformation of the filament. The shape of
the filament is described by its tangent vector t(s) at distance
s along the filament, and its instantaneous deformation is
described by the velocity field u(s, t), where t is time. For
asymptotically slender filaments, (see section 5), as in the case
of prolate spheroids, the local viscous drag force per unit length
opposing the motion of the filament is

f = −ξ‖u‖ − ξ⊥u⊥, (12)

where u‖ and u⊥ are the projections of the local velocity on
the directions parallel and perpendicular to the filament, i.e.
u‖ = (u·t)t and u⊥ = u−u‖; ξ‖ and ξ⊥ are the corresponding
drag coefficients (typically ξ⊥/ξ‖ ≈ 2).

The origin of drag-based thrust relies on the following
two physical ideas: (a) the existence of drag anisotropy means
that propulsive forces can be created at a right angle with
respect to the local direction of motion of the filament and
(b) a filament can deform in a time-periodic way and yet create
non-zero time-averaged propulsion. To illustrate these ideas,
consider the beating filament depicted in figure 2. Any short
segment of the filament may be regarded as straight and moving
with velocity u at an angle θ with the local tangent (figure 2,
inset). This velocity resolves into components u‖ = u cos θ

and u⊥ = u sin θ , leading to drag per unit length components
f‖ = −ξ‖u‖ = −ξ‖u cos θ and f⊥ = −ξ⊥u⊥ = −ξ⊥u sin θ .
For isotropic drag, ξ‖ = ξ⊥, and the force on the filament has
the same direction as the velocity of the filament; however, if

Figure 2. Physics of drag-based thrust: the drag anisotropy for
slender filaments provides a means to generate forces perpendicular
to the direction of the local actuation (see text for notation).

ξ‖ �= ξ⊥, the drag per unit length on the filament includes a
component fprop which is perpendicular to the direction of the
velocity,

fprop = (ξ‖ − ξ⊥)u sin θ cos θ ex. (13)

In addition, in order to generate a net propulsion from a
time–periodic movement, we see from equation (13) that both
the filament velocity u and its orientation angle θ need to vary
periodically in time. For example, actuation with a given u

and θ , followed by the change u → −u and θ → π − θ ,
leads to a a propulsive force with a constant sign; in contrast,
actuation in which only u → −u changes periodically leads
to zero average force.

It is important to realize that two properties are crucial
for propulsion. The first property is purely local, and states
that with the appropriate geometry and actuation, a force can
be created in the direction perpendicular to the motion of the
filament. This conclusion relies explicitly on the properties
of Stokes flows, and in a world with isotropic viscous friction
(ξ⊥ = ξ‖), locomotion would not be possible [32, 73]. The
second property is a global condition that says that the periodic
actuation of the filament needs to be non-time reversible in
order to generate non-zero forces on average; this property is
generally known as Purcell’s scallop theorem [14], which we
now describe.

4.4. The scallop theorem

As pointed out above, the Stokes equation—equation (3)—
is linear and independent of time. These properties lead
to kinematic reversibility, an important and well-known
symmetry property associated with the motion of any body
at zero Reynolds number [60, 62]. Consider the motion of a
solid body with an instantaneous prescribed velocity U and
rotation rate Ω together with the flow field surrounding it. If
we apply the scaling U → αU andΩ → αΩ, then by linearity,
the entire flow and pressure field transform as u → αu and
p → αp. Consequently, the instantaneous flow streamlines
remain identical, and the fluid stresses undergo a simple linear
scaling, resulting in the symmetry F → αF and L → αL

for the force and torque acting on the body. In particular,
when α = −1, this means that an instantaneous reversing of
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the forcing does not modify the flow patterns, but only the
direction in which they are occurring.

When applied to low Reynolds number locomotion, the
linearity and time-independence of Stokes equation of motion
lead to two important properties [14]. The first is rate
independence: if a body undergoes surface deformation, the
distance travelled by the swimmer between two different
surface configurations does not depend on the rate at which
the surface deformation occurs but only on its geometry (i.e.
the sequence of shapes the swimmer passes through between
these two configurations).

A mathematical proof of this statement can be outlined
as follows. We consider for simplicity swimmers with
no rotational motion (an extension to the case Ω �= 0 is
straightforward). Consider a body deforming its surface
between two different configurations identified by times t0 and
t1. We denote by rS the positions of points on the surface of the
swimmer. From equation (10), we know that the instantaneous
speed of locomotion is given by a general integral of the form

U(t) =
∫∫

f (rS )

ṙS · g(rS) dS, (14)

where the function g(rS) is a general tensor depending on the
shape of the body and on the boundary conditions at infinity
(but in general not known analytically) and where we have used
uS = ṙS = drS/dt . The net motion of the swimmer between
t0 and t1 is therefore given by

X =
∫ t1

t0

U(t) dt. (15)

Now consider the same succession of swimmer shapes, but
occurring at a different rate. This new history of shapes r′

S(t
′)

is related to the old by a mapping t ′ = f (t), with ti = f (ti)

for i = 0, 1 and r′
S(t

′) = rS(t) for all times. We now have

X ′ =
∫ t1

t0

U ′(t ′) dt ′ =
∫ t1

t0

U ′(f (t))f ′(t) dt, (16)

where the chain rule implies

U ′(t ′)f ′(t) =
∫∫

f (r′
S )

dr′
S

dt ′
f ′(t) · g(rS) dS

=
∫∫

f (rS )

drS

dt
· g(rS) dS. (17)

We see therefore that U ′(t ′)f ′(t) = U(t), and therefore
X = X ′. The net distance traveled by the swimmer does
not depend on the rate at which it is being deformed, but only
on the geometrical sequence of shape. One consequence of
this property is that many aspects of low Reynolds number
locomotion can be addressed using a purely geometrical point
of view [74–78].

The second important property of swimming without
inertia is the so-called scallop theorem: if the sequence
of shapes displayed by a swimmer deforming in a time–
periodic fashion is identical when viewed after a time-reversal
transformation, then the swimmer cannot move on average.
Note that the condition is not that the motion be strictly

time-reversal invariant, with the same forward and backwards
rate, but only that the sequence of shapes is the same when
viewed forward or backward in time. This class of surface
deformations is termed ‘reciprocal deformation’. The scallop
theorem puts a strong geometrical constraint on the type of
swimming motion which is effective at low Reynolds numbers.

An outline of the proof follows. Again, we consider
purely translational motion for simplicity. Let us consider a
swimmer deforming its body in a reciprocal manner between
times t0 and t1, with a sequence of shapes rS(t). Assume that
rS(t0) = rS(t1) so that the period of the surface deformation
is t1 − t0. Let t2 be the instant of time between t0 and t1 that
divides the sequence of shapes into the forward and backward
sequence. The sequence of shapes at time t ′ between t2 and
t1 is given by the map t ′ = f (t) for t between t0 and t2, with
t2 = f (t2) and t1 = f (t0): r′

S(t
′) = rS(t). The net distance

traveled by the swimmer over any interval is given by equations
similar to equations (14) and (15). Using the chain rule again,
we find that

X ′
t2→t1

=
∫ t1

t2

U ′(t ′) dt ′ =
∫ t0

t2

U(t) dt

= −
∫ t2

t0

U(t) dt = −Xt0→t2 , (18)

and the net distance traveled in a period vanishes, Xt0→t2 +
X ′

t2→t1
= 0. Reciprocal motion cannot be used for

locomotion at low Reynolds numbers. Note that we did
not need to assume anything about the geometry of the fluid
surrounding the swimmer; the scallop theorem remains valid
near solid walls, and more generally in confined environments.
However, the scallop theorem does not hold for a body
making reciprocal motions near a flexible object, such as a
wall or another swimmer, since in that case equation (10)
must be modified to include uS at the surface of the flexible
object [79, 80].

In his original article, Purcell illustrated the futility of
reciprocal motion with the example of a scallop, a mollusk
that opens and closes its shell periodically. Independent of the
rate of opening and closing, a low-Reynolds number scallop
cannot swim3. Another example of a reciprocal deformation
is a dumbbell, made of two solid spheres separated by time–
periodic distance. More generally, bodies with a single degree
of freedom deform in a reciprocal fashion, and cannot move
on average.

Successful low-Re swimmers therefore must display
non-reciprocal body kinematics. In his original paper,
Purcell proposed a simple example of non-reciprocal body
deformation, a two-hinged body composed of three rigid links
rotating out of phase with each other, now referred to as
Purcell’s swimmer [73]. Another elementary example is a
trimer, made of three rigid spheres whose separation distances
vary in a time–periodic fashion with phase differences [82].
More examples are discussed in section 9. Note that,
mathematically, the presence of non-reciprocal kinematics is a
necessary but not sufficient condition to obtain propulsion. A
simple counterexample is a configuration with two swimmers

3 A real scallop actually swims at high Reynolds number, a regime for which
the constraints of the theorem of course do not apply [81].
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which are mirror-images of each other and arranged head-to-
head; although the kinematics of the two bodies taken together
is non-reciprocal, the mirror symmetry forbids net motion of
their center of mass.

For biological bodies deforming in a continuous fashion,
the prototypical non-reciprocal deformation is a wave.
Consider a continuous filament of length L deforming with
small amplitude y(x, t) (i.e. for which |∂y/∂x| 
 1); in
that case, the propulsive force generated along the filament,
equation (13), is given by

Fprop ≈ (ξ⊥ − ξ‖)
∫ L

0

(
∂y

∂t

∂y

∂x

)
dx ex. (19)

If the filament deforms as a planar wave traveling in the
x-direction, y(x, t) = f (x − ct), the force is given by
Fprop = c(ξ‖ − ξ⊥)

∫
f 2(η) dη ex and propulsion is seen

to occur in the direction opposite to that of the wave:
cFprop < 0. Mathematically, a wave-like deformation allows
the product (∂y/∂t · ∂y/∂x) to keep a constant sign along
the entire filament, and therefore all portions of the filament
contribute to generating propulsion. In general, all kinds of
three-dimensional wave-like deformations lead to propulsion,
including helical waves of flexible filaments [83].

Finally, it is worth emphasizing that the scallop theorem
is strictly valid in the limit where all the relevant Reynolds
numbers in the swimming problem are set to zero. Much
recent work has been devoted to the breakdown of the theorem
with inertia, and the transition from the Stokesian realm
to the Eulerian realm is found to be either continuous or
discontinuous depending on the spatial symmetries in the
problem considered [84–91].

5. Historical studies, and further developments

In this section we turn to the first calculations of the swimming
velocities of model microorganisms. We consider two simple
limits: (1) propulsion by small-amplitude deformations of the
surface of the swimmer and (2) propulsion by the motion
of a slender filament. Although these limits are highly
idealized, our calculations capture essential physical aspects
of swimming that are present in more realistic situations.

5.1. Taylor’s swimming sheet

In 1951, Taylor asked how a microorganism could propel itself
using viscous forces, rather than imparting momentum to the
surrounding fluid as fish do [30]. To answer this question, he
calculated the flow induced by propagating transverse waves
of small amplitude on a sheet immersed in a viscous fluid.
In this subsection, we review Taylor’s calculation [30]. The
sheet is analogous to the beating flagellum of spermatazoa, but
since the flow is two-dimensional, the problem of calculating
the induced flow is greatly simplified. The height of the sheet
over the plane y = 0 is

h = b sin(kx − ωt), (20)

where the x-direction is parallel to the direction of propagation
of the wave, b is the amplitude, k is the wavenumber and ω is

the frequency of the oscillation. Note that we work in the
reference frame in which the material points of the sheet move
up and down, with no x-component of motion. The problem is
further simplified by the assumption that the amplitude is small
compared with the wavelength 2π/k. Note that the motion
descried by equation (20) implies that the sheet is extensible.
If the sheet is inextensible, then the material points of the sheet
make narrow figure eights instead of moving up and down;
nevertheless the extensible and inextensible sheets have the
same swimming velocity to leading order in bk.

To find the flow induced by the traveling-wave
deformation, we need to solve the Stokes equations with no-
slip boundary conditions at the sheet,

u(x, h(x, t)) = ∂h

∂t
ey = −bω cos(kx − ωt)ey, (21)

with an unknown but uniform and steady flow far from
the sheet,

lim
y→∞ u(x, y) = −U . (22)

Since we work in the rest frame of the sheet, U is the swimming
velocity of the sheet in the laboratory frame, in which the fluid
is at rest at y → ∞. Although it turns out in this problem
that the leading-order swimming speed is steady in time, other
situations lead to unsteady swimming speeds. In all cases we
are free to use non-inertial frames—even rotating frames—
without introducing fictitious forces, since inertia may be
disregarded at zero Reynolds number.

Although U is unknown, Taylor found that no additional
conditions are required to determine U ; instead, there is a
unique value of U consistent with the solution to the Stokes
equations and the no-slip boundary condition (21). It is also
important to note that although the Stokes equations are linear,
the swimming speed U is not a linear function of the amplitude
b, since b enters the no-slip boundary condition both on the
right-hand side of equation (21), and implicitly on the left-hand
side of equation (21) through equation (20). In fact, symmetry
implies that the swimming speed U must be an even function
of b. Replacing b by −b amounts to translating the wave (20)
by half a wavelength. But any translation of the wave cannot
change the swimming speed; therefore, U is even in b.

Taylor solved the swimming problem by expanding
the boundary condition (21) in bk, and solving the Stokes
equations order by order. We will consider the leading term
only, which, as argued above, is quadratic in b. Since the
swimming velocity U is a vector, it must be proportional to
the only other vector in the problem, the wavevector k = kex .
For example, if we were to consider the superposition of
two traveling waves on the sheet, propagating in different
directions, we would expect the swimming direction to be
along the vector sum of the corresponding wavevectors.
Dimensional analysis determines the remaining dependence
of U on the parameters of the problem: U ∝ ωkb2. Taylor’s
calculation yields the proportionality constant, with sign

U = − 1
2ωkb2. (23)

Note that dimensional considerations require the swimming
speed to be independent of viscosity. This result holds
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Figure 3. Physical interpretation of the swimming direction for Taylor’s swimming sheet. As the wave of deformation is traveling to the
right (blue solid lines and rightward arrows), it leads to vertical displacements of the material points on the sheet (black vertical arrows and
dashed line) which induce flow vorticity of alternating signs (curved red arrows), and a leftward motion of the sheet (red leftward arrows).

due to our assumption that the waveform (20) is prescribed,
independent of the load. However, the rate W that the sheet
does work on the fluid does depend on viscosity. The net force
per wavelength exerted by the sheet on the fluid vanishes, but
by integrating the local force per area (∼ηωbk) against the
local velocity (∼ωb), Taylor found

W = ηω2kb2. (24)

Note that only the first-order solution for the flow is required
to calculate W . In section 6 we consider more realistic models
that account for the internal mechanisms that generate the
deformation of the swimmer. Such models can predict a
viscosity dependence in the swimming speed, since the shape
of the beating filament may depend on viscosity [92–94].
And in section 8 we show how the speed of a swimmer in
a complex fluid can depend on material parameters, even for
the swimming problem with prescribed waveform.

According to equation (23), the swimmer moves in the
direction opposite to the traveling wave. It is instructive to
also consider the case of a longitudinal wave, in which the
material points in the frame of the sheet undergo displacement
δ(x, t) = b sin(kx − ωt), yielding the no-slip boundary
condition

u(x + δ(x, t), y = 0) = ∂δ

∂t
ex = −bω cos(kx − ωt)ex.

(25)

For a longitudinal wave, the swimming velocity is in the same
direction as the traveling wave.

The direction of swimming of Taylor’s sheet can be
understood on the basis of the following simple arguments.
Let us consider a sheet deforming as a sine wave propagating
to the right (figure 3). Consider the vertical displacements
occurring along the sheet as a result of the propagating wave.
During a small interval of time, the original wave (figure 3,
thick blue line) has moved to the right (figure 3, thin blue
line), resulting in vertical displacements given by a profile
which is π/2 out of phase with the shape of the sheet. Indeed,
wherever the sheet has a negative slope, the material points go
up as the wave progresses to the right, whereas everywhere
the sheet has a positive slope, the material points go down
as a result of the wave. The resulting distribution of vertical
velocity along the sheet is illustrated in figure 3 by the black
dashed line and vertical arrows. This velocity profile forces the
surrounding fluid, and we see that the fluid acquires vorticity
of alternating sign along the sheet (illustrated by the curved

red arrows in figure 3). The vorticity is seen to be positive near
the sheet crests, whereas it is negative near the sheet valleys.
The longitudinal flow velocities associated with this vorticity
distribution allow us to understand the swimming direction. In
the case of positive vorticity, the velocity of the induced vortical
flow is to the left at the wave crest, which is the current position
of the sheet. In the case of negative vorticity, the induced flow
velocity is to the left in the valleys, which is also where the
sheet is currently located. As a consequence, the longitudinal
flow field induced by the transverse motion of the sheet leads
to flow contributions which are to the left in all cases, and the
sheet is seen to swim to the left (straight red leftward arrows).
Note that if the sheet were not free to move, then it would create
an external flow field that cancels the sheet-induced flow, and
the net flow direction would therefore be to the right—the sheet
acts as a pump.

There are many generalizations to Taylor’s 1951
calculation. Taylor himself considered the more realistic
geometry of an infinite cylinder with a propagating transverse
wave [95]. In this case, there is a new length scale a, the radius
of the cylinder, and the calculation is organized as a power
series in b/a rather than bk. In the limit ak → 0, the swimming
velocity has the same form as the planar sheet [95]. With a
cylinder, we can study truly three-dimensional deformations
of a filament, such as helical waves. A helical wave can
be represented by the superposition of two linearly polarized
transverse waves, with perpendicular polarizations and a phase
difference of π/2. If these waves have the same amplitude,
speed and wavelength, then the swimming velocity is twice the
velocity for a single wave. Although the hydrodynamic force
per unit wavelength acting on the waving filament vanishes,
there is a non-vanishing net hydrodynamic torque per unit
wavelength, which is ultimately balanced by the counter-
rotation of the head of the organism [95].

The Taylor sheet calculation may also be extended to finite
objects. For example, to model the locomotion of ciliates
such as Opalina and Paramecium, Lighthill introduced the
‘envelope model,’ in which the tips of the beating cilia that
cover the cell body are represented by propagating surface
waves [96–98]. Perhaps the simplest version of the envelop
model is the two-dimensional problem of an undulating circle
in the plane, which may equivalently be viewed as an infinite
cylinder with undulations traveling along the circumferential
direction [98]. Recall that a rigid infinite cylinder towed
through liquid at zero Reynolds number suffers from the Stokes
paradox: there is no solution to the Stokes equations that
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satisfies the no-slip boundary condition at the cylinder surface
and has finite velocity at infinity [60, 66, 99]. The undulating
cylinder does not suffer from the Stokes paradox, since the total
force on the cylinder is zero. The problematic solutions that
lead to the Stokes paradox are the same ones that lead to a net
force, as well as a diverging kinetic energy, and are therefore
eliminated in the swimming problem [98]. Furthermore, and
in contrast with the Taylor sheet problem where the swimming
speed emerges self-consistently, the condition of vanishing
force is required to determine the swimming speed of the
undulating cylinder.

In three dimensions, the swimming speed is also
determined by the condition of vanishing total force [96, 97],
but since the solution to the problem of towing a sphere with an
external force is well behaved, we may also consider solutions
with non-zero force. These solutions must be well behaved
if we are to apply the reciprocal theorem of section 3, which
gives perhaps the shortest route to calculating the swimming
speed [72]. We can also gain additional insight into why the
swimming speed for a prescribed deformation of the surface is
independent of viscosity. Using the linearity of Stokes flow, at
any instant we may decompose the flow field generated by the
swimmer into a ‘drag flow’ and a ‘thrust flow,’ v = vd +vt [3].
The drag flow is the flow induced by freezing the shape of
the swimmer and towing it at velocity U with a force F , to
be determined. The thrust flow is the flow induced by the
swimmer’s motion at that instant when it is prevented from
moving by an anchoring force Fanchor, which is determined by
the shape and the rate of change of shape of the swimmer at that
instant. Superposing the two flows, and adjusting F to cancel
Fanchor yields the swimming speed U . Since the linearity of
Stokes flow implies that both F and Fanchor depend linearly
on viscosity, the swimming velocity U does not depend on
viscosity. Note that the same conclusion follows from an
examination of the reciprocal theorem formula, equation (10).

Finally, in the sheet calculation, it is straightforward to
include the effects of inertia and show that if flow separation
is disregarded, the swimming speed decreases with Reynolds
number, with an asymptotic value at high Reynolds number
of half the value of Taylor’s result (23) [100–102]. At zero
Reynolds number, the effect of a nearby rigid wall is to increase
the swimming speed as the gap between the swimmer and the
wall decreases, for prescribed waveform [100]. However, if
the swimmer operates at constant power, the swimming speed
decreases as the gap size decreases [100].

5.2. Local drag theory for slender rods

All the calculations of the previous subsection are valid
when the amplitude of the deflection of the swimmer is
small. These calculations are valuable since they allow us to
identify qualitative trends in the dependence of the swimming
velocity on geometric and, as we shall see in section 8,
material parameters. However, since real flagella undergo
large-amplitude deformations, we cannot expect models based
on small-amplitude deformations to give accurate results.
Fortunately, we may develop an alternative approximation that
is valid for large deformations by exploiting the fact that real

Figure 4. Model for a rod subject to an external force along the rod
(a) or perpendicular to the rod (b). The arrows represent stokeslets.
Only the flow field of the central stokeslet is shown. Each stokeslet
induces a similar flow field that helps push the rest of the rod along.

flagella are long and thin. The idea is to model the flow induced
by a deforming flagellum by replacing the flagellum with a line
of singular solutions to Stokes flow of appropriate strength.
In this subsection and the following subsection we develop
these ideas, first in the simplest context of local drag theory,
also known as resistive force theory, and then using the more
accurate slender-body theory.

To introduce local drag theory, we develop an intuitive
model for calculating the resistance matrix of a straight rigid
rod of length L and radius a. Our model is not rigorous, but
it captures the physical intuition behind the more rigorous
theories described below. Suppose the rod is subject to an
external force Fext. Suppose further that this force is uniformly
distributed over the length of the rod with a constant force
per unit length. Our aim is to find an approximate form for
the resistance matrix, or equivalently, the mobility matrix,
with errors controlled by the small parameter a/L. To this
end, we replace the rod with N stokeslets equally spaced
along the x-axis, with positions xj = (jL/N, 0, 0). Each
stokeslet represents the leading-order far field flow induced by
a short segment of the rod. According to our assumption of
uniformly distributed force, the strength of each stokeslet is
Fext/N . If there were no hydrodynamic interactions among
the different segments of the rod, then each segment would
move with velocity u = Fext/ξseg, where ξseg ∝ ηa is the
resistance coefficient of a segment. Instead, the motion of each
segment induces a flow that helps move the other segments
along (figure 4).

To calculate the flow uj induced by the j th segment, we
use equation (7), where

uj (x) = 1

8πη|x − xj | (1 + exex) · (Fext/N). (26)

Since each segment moves with the local flow, we identify the
velocity of the ith segment with the superposition of the flow
induced by the force F /N at xi and the flows induced by the
forces at all the other segments

u(xi ) = Fext/ξseg +
∑
j �=i

uj (xi ). (27)
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Since N � 1, we replace the sum over i by an integral, noting
that the density of spheres is L/N , and taking care to exclude
a small segment around xi from the region of integration

u(xi ) = Fext

ξseg
+

1

8πη

∫ ′
1

|xi − x| (1 + exex) · Fext
dx

L
, (28)

where the prime on the integral indicates that the region of
integration is from −L/2 to L/2 except for the interval around
xi with size of order a. Evaluation of the integral yields

u(xi ) = Fext

ξseg
+

1

4πη
ln

(
L

4a

)
(1 + exex) · Fext

L
, (29)

where we have disregarded end effects by assuming |xi | 
 L.
Keeping only the terms which are leading order in ln(L/a),
and using the fact that u(xi) is constant for a rigid rod, we find

u = ln(L/a)

4πη
(1 + exex) · fext, (30)

where fext = Fext/L is the externally imposed force per
unit length. In our model, the only forces acting between
any pair of segments is the hydrodynamic force: there are
no internal cohesive forces. Therefore, drag per unit length
f = −fext, and

f⊥ = −ξ⊥u⊥, f|| = −ξ||u||, (31)

where ⊥ and || denote the components perpendicular and
parallel to the x-axis, respectively, and ξ⊥ = 2ξ|| =
4πη/ ln(L/a). Once again, we encounter the anisotropy
already mentioned for slender bodies (section 3.2) and
stokeslets (section 3.3) that is necessary for drag-based thrust
(section 4.3).

In our derivation of equation (31), we assumed zero
deformation since the filament was straight. Turning now to
deformed filaments, suppose that the filament is gently curved,
κa 
 1, where κ2 = |∂2r/∂s2|2, and r(s) gives the position
of the centerline of the filament with arclength coordinate s. In
the limit of very small curvature, it is reasonable to assume that
the viscous force per unit length acting on the curved filament
is the same as the viscous force per unit length acting on a
straight rod of the same length. Since local drag theory is an
expansion in powers of 1/ ln(L/a), it is valid for filaments that
are ‘exponentially thin.’ That is, to make 1/ ln(L/a) of order
ε with ε 
 1, we need a/L ∼ exp(−1/ε). In section 5.3,
we introduce slender-body theory, which has the advantage of
being accurate for thin (a/L ∼ εp) rather than exponentially
thin filaments.

Slender-body theory also more accurately captures the
hydrodynamic interactions between distant parts of a curved
filaments. To see the limitations of the resistive force theory
coefficients of equation (31), consider a rigid ring of radius R

and rod diameter 2a, falling under the influence of gravity in a
very viscous fluid. Suppose the plane of the ring is horizontal.
Compare the sedimentation rate of the ring with that of a
horizontal straight rod with length L = 2πR. In both cases,
each segment of the object generates a flow which helps push
the other segments of the object down. But the segments of
the ring are closer to each other, on average, and therefore the

ring falls faster. Using the coefficients of local drag theory
from equation (31) would lead to the same sedimentation rate
for both objects. This argument shows the limitations of our
local drag theory. One way to improve our theory is to use a
smooth distribution of stokeslets and source dipoles to make a
better approximation for the flow induced by the motion of the
rod. Applying this approach to a sine wave with wavelength λ,
Gray and Hancock found [31, 32]

ξ|| = 2πη

ln(2λ/a) − 1
2

, (32)

ξ⊥ = 2ξ||. (33)

In [12], Lighthill refined the arguments of [31] and gave more
accurate values for ξ⊥ and ξ||. Despite the limitations of local
drag theory, we will see that it is useful for calculating the
shapes of beating flagella and the speeds of swimmers.

In the rest of this section, we describe some of the
applications of local drag theory to the problem of swimmers
with prescribed stroke. To keep the formulae compact,
we work in the limit of small deflections, although local
drag theory is equally applicable to thin filaments with large
deflections. Consider the problem of a spherical body of radius
Rb propelled by a beating filament with a planar sine wave [83]

h(x, t) = b sin(kx − ωt). (34)

As in our discussion of the Taylor sheet, section 5.1, we work
in the frame of the swimmer. Thus, the problem is to find
the flow velocity U that yields zero net force and moment
on the swimmer. To simplify the discussion, we suppose
that external forces and moments are applied to the head to
keep it from rotating or moving in the y-direction. In real
swimmers, there is a transverse component of the velocity and
a rotation, which both play an important role in determining the
swimmer’s trajectory and the shape of the flagellum [103, 104].

Equation (31) gives the viscous forces per unit length
acting on the filament. The total force per unit length
has a propulsive component, equation (19), arising from the
deformation of the filament, and also a drag component, arising
from the resistance to translating the swimmer along the x

direction. Integrating this force per length to find the total
x-component of force, writing the drag force on the sphere as
ξ0RbU = 6πηRbU , and balancing the force on the sphere with
the force on the filament yields

U = (ξ⊥ − ξ||)
∫ L

0 ḣh′ dx

ξ||L + ξ0Rb
· (35)

Note that only the perpendicular component of the rod velocity
leads to propulsive thrust; the motion of the rod tangential to
itself hinders swimming. Inserting the sinusoidal waveform
(34) into equation (35) and averaging over a period of the
oscillation yields

〈U〉 = −ξ⊥ − ξ||
2ξ||

ωkb2

1 + (ξ0Rb)/(ξ||L)
· (36)

The form of equation (36) is similar to the result for a
swimming sheet, equation (23); when L � Rb and ξ⊥ = 2ξ||,
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Figure 5. Forces on a helical segment pulled through a viscous fluid
with speed U . Half of a helical pitch is shown. The helix is
prevented from rotating by an external moment along x.

the two expressions are identical. For L � Rb, the swimming
speed is independent of L for fixed k and b, since lengthening
the filament increases the drag and propulsive forces by the
same amount.

Since the swimmer has finite length, we can define the
hydrodynamic efficiency as the ratio of the power required to
drag the swimmer with a frozen shape though the liquid at
speed U to the average rate of work done by the swimmer4.
In other words, the efficiency is the ratio of the rate of
useful working to the total rate of working. To leading order
in deflection, the efficiency e is given for arbitrary small
deflection h by

e = (ξ||L + ξ0Rb)U
2

ξ⊥
∫ L

0 〈ḣ2〉 dx
· (37)

For the sinusoidal traveling wave (34) with ξ⊥ = 2ξ||,

e = k2b2/2

1 + (ξ0Rb)/(ξ||L)
· (38)

For small deflections, kb 
 1, and the hydrodynamic
efficiency is small. Biological cells displaying large-amplitude
planar deformation typically have hydrodynamic efficiencies
of about 1% [3, 11, 105], which is close the value for optimally
designed swimmers (see section 9).

We now turn to the case of a rotating helix, such as the
flagellar filament of E. coli. The body of the cell is taken to be a
sphere of radius Rb. For simplicity, suppose the radius R of the
helix is much smaller than the pitch of the helix, or equivalently,
that the pitch angle α is very small (figure 5). Expressions
relevant for large amplitudes may be found in [28, 106, 107].
We also assume that the axis of the helix always lies along the
x-axis, held by external moments along y and z if necessary.
The helix is driven by a rotary motor embedded in the wall of
the body, turning with angular speed �m relative to the body.
The helix rotates with angular speed � in the laboratory frame,
and the body must counter-rotate with speed �b to ensure the
total component of torque along x of the swimmer vanishes.
The angular speeds are related by �b + � = �m.

To calculate the force and moment acting on the helical
filament, we use equation (5), which is simplified to include
only components along x-axis:(

F

M

)
=

(
A B

B C

)
·
(

U

�

)
, (39)

4 Note that the total efficiency is given by the product of the hydrodynamic
efficiency and the efficiency of the means of energy transduction.

where F and M are the external force and moment,
respectively, required to pull the helix with speed U and
angular rotation rate �. To leading order in α, and with the
assumption that L � Rb, R, the resistance coefficients are
approximately

A ≈ ξ||L, (40)

B ≈ −(ξ⊥ − ξ||)αRL, (41)

C ≈ ξ⊥R2L. (42)

These values are deduced by applying equations (31) to
special cases of motion. The coefficient A may be found by
considering the case of a helix pulled at speed U but prevented
from rotating. Likewise, C may be found by examining a helix
that rotates about x but does not translate along x. To find B,
we may examine the moment required to keep a helix pulled
with speed U from rotating (figure 5). Or we may also examine
the force required to keep a helix rotating at angular speed �

from translating. The equivalence of these two calculations
is reflected in the symmetry of the resistance matrix, which
ultimately stems from the reciprocal theorem, equation (4).
Note that the sign of the coupling B between rotational and
translational motions is determined by the handedness of the
helix.

To find the swimming speed U and the rate of filament
rotation, we equate the external forces and moments on the
filament to the forces and moments acting on the cell body,

F = −ξ0RbU, (43)

M = −ξrR
3
b�b, (44)

where we have introduced a resistance coefficient ξr = 8π for
the rotation of the sphere. Solving for the three unknowns U ,
� and �b, we find

U ≈ α
ξ⊥ − ξ||

ξ||

(
ξr

ξ⊥

) (
R3

b

RL

)
�m, (45)

�b = �m + O(Rb/L) and � ≈ �m(ξr/ξ⊥)R3
b/(R

2L). The
resistance ξ0 of the body does not enter since we assume
L � Rb. The speed is linear in α since the sign of the speed
is given by the handedness of the helix, which is given by
the sign of α. Note the contrast with the planar wave. If
Rb = 0, then the velocity (45) vanishes: propulsion by means
of a rotating helix requires a body. In contrast, a planar wave
does not require a body for propulsion (see equation (36)).
For the helical filament, the swimming speed decreases with
increasing L for fixed body size Rb and fixed motor speed �m,
since torque balance forces the filament to rotate more slowly
with increasing L. Also, since the resistance to rotation of a
helix scales as R2, the helix rotates sufficiently faster as the
radius decreases to overcome the reduced thrust force implied
by the linear dependence of B on R, leading to a speed that
increases like 1/R for decreasing R. It is important to note that
the motor speed �m of a swimming bacterium is not directly
observable with current techniques; typically the approach
just described is used to make a prediction for the relation
between observables such as U and �, which is then compared
with measurements [28, 108]. To conclude we note that for
swimming using a rotating helix, a hydrodynamic efficiency
can be defined with analogy with the planar case; for E. coli,
this efficiency is slightly less than 2% [28].
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Figure 6. Lighthill’s singularity construction for the slender-body theory of flagellar hydrodynamics. To compute the flow field at a point s0

along the flagellum, Lighthill picks an intermediate length scale q such that a 
 q 
 λ and represents the flow by a distribution of
stokeslests at a distance further away than q from s0 (outer problem) and a distribution of stokeslets and source dipoles within q of s0 (inner
problem). The dipole strengths in the inner problem are obtained by requiring that the result be independent of q.

5.3. Slender-body theory

The local drag theory illustrated in the previous section allows
an intuitive presentation of the scaling laws for flagella-based
locomotion. As we saw, this theory is quantitatively correct
only for exponentially slender filaments. Let λ be the typical
length scale along the flagellum on which its variations in
shape occur, such as the wavelength, and a the flagellum
radius. The local drag theory assumes that 1/ log(λ/a) 
 1.
Since real biological flagella have aspect ratios on the order
a/λ ∼ 10−2, an improved modeling approach is necessary
[12, 109]. The idea, termed slender-body theory and pioneered
by Hancock [31], is to take advantage of the slenderness of the
filaments and replace the solution for the dynamics of the three-
dimensional of the filament surface by that of its centerline
using an appropriate distribution of flow singularities. Two
different approaches to the method have been proposed.

The first approach consists of solving for the flow as a
natural extension of the local theory, and approximating the full
solution as a series of logarithmically small terms [110–112].
Physically, the flow field close to the filament is locally two-
dimensional, and therefore diverges logarithmically away from
the filament because of Stokes’ paradox of two-dimensional
flows [62]. The flow far from the filament is represented
by a line distribution of stokeslets of unknown strengths,
and diverges logarithmically near the filament due to the line
integration of the stokeslet terms which behave like 1/r in the
near field. Matching these two diverging asymptotic behaviors
allows the determination of the stokeslet strengths order by
order as a series of terms of order 1/(log λ/a)n. The leading-
order term in this series, of order 1/ log(λ/a), is the local
drag theory, and gives a stokeslet distribution proportional to
the local velocity. The next order term is in general non-
local and provides the stokeslet strength at order 1/(log λ/a)2

as an integral equation on the filament shape and velocity.
Terms at higher order can be generated in a systematic fashion
[110–112]. This approach to slender-body hydrodynamics is
the logical extension to the local drag theory, and all the terms
in the expansion can be obtained analytically which makes
it appealing. However, the major drawback to this approach
is that each term in the expansion is only smaller than the
previous term by a factor 1/(log λ/a), so a large number of
terms is necessary in order to provide an accurate model for
the flow.

A second approach, asymptotically more accurate
but technically more involved, consists of bypassing the
logarithmically converging series by directly deriving the
integral equation satisfied by the unknown distribution of
singularities along the filament. Such an approach has been
successfully implemented using matched asymptotics [113]
or uniform expansions [114], and leads to results accurate at
order a/λ. This approach is usually preferable since instead of
being only logarithmically correct it is algebraically correct.
This improved accuracy comes at a price, however, and at
each instant an integral equation must be solved to compute
the force distribution along the filament. An improvement
of the method was later proposed by accurately taking into
account end effects and a prolate spheroidal cross-section, with
a relative accuracy of order (a/λ)2 log(a/λ) [115].

In his John von Neumann lecture, Lighthill proposed an
alternative method for the derivation of such integral equations.
Instead of using asymptotic expansions, he used physical
arguments to derive the type and strength of the singularities
located along the filament [12, 116]. By analogy with the flow
past a sphere, Lighthill first proposed that a line distribution of
stokeslets and source dipoles should be appropriate to represent
the flow field induced by the motion of the filament. He then
demonstrated that the strength of the dipole distribution should
be proportional to the stokeslets strengths using the following
argument (see figure 6). Consider a location s0 along the
filament. By assumption of slenderness, it is possible to find
an intermediate length scale q along the filament such that
a 
 q 
 λ. The flow field on the surface of the filament at
the position s0 is then the sum of the flow due to the singularities
within a distance q from s0 (‘inner’ problem) and those further
away than q from s0 (‘outer’ problem). Since q � a, the
contribution at s0 from the outer problem is primarily given by
a line distribution of stokeslets (the source dipoles decay much
faster in space). In the inner problem, Lighthill then showed
that it was possible to analytically determine the strength of
the dipoles to ensure that the complete solution (sum of the
inner and outer problems) was independent of the value of q.
The dipole strength is found to be proportional to the stokeslet
strength, and the resulting value of the velocity of the filament
at s = s0 is given by the integral equation

u(s0) = f⊥(s0)

4πη
+

∫
|r0−r|>δ

G(r0 − r) · f(s) ds. (46)
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In equation (46), f is the local strength of the unknown
stokeslet distribution, with dimensions of force per unit length;
G is the Oseen tensor from equation (7); δ = a

√
e/2

the natural cutoff, regularizing the divergences arising from
self-interaction; and f⊥ represents the normal component
of the stokeslet distribution, i.e. f⊥ = (1 − tt) · f if t

is the local tangent to the filament. Note that Lighthill’s
slender-body analysis is less mathematically rigorous than
those presented in [113, 114], and consequently gives results
which are only valid at order (a/λ)1/2 [3]. His derivation
provides, however important physical insight into a subject, the
topic of flow singularities, that is usually very mathematical.
The resulting integral formulation, equation (46), is relatively
simple to implement numerically, and can also be used to
derive ‘optimal’ resistance coefficients for the local drag theory
(see section 5.2). His modeling approach has been extended
for filament motion near a solid boundary [117–120], and an
alternative approach based on the method of regularized flow
singularities [121] has also been devised [122].

6. Physical actuation

In this section we describe common mechanisms for the
generation of non-reciprocal swimming strokes. In addition
to biological mechanisms such as rotating helices or beating
flagella, we also describe simple mechanisms that do not seem
to be used by any organism. These non-biological systems
are useful to study since they deepen our understanding of
the biological mechanisms. For example, the modes of an
elastic rod driven by transverse oscillations at one end are
useful for understanding the shape of a beating flagellum driven
by motors distributed along its entire length. An important
theme of this section is the fluid–structure interaction for thin
filaments in viscous liquid.

6.1. Boundary actuation

We begin with the case of boundary actuation, in which an
elastic filament is driven by a motor at its base. The rotary
motor of the bacterial flagellum is a prime example of such
a biological actuating device [20, 37, 123, 124]. The steady-
state relation between motor torque and motor speed is shown
in figure 7 [37]. At low speeds, the motor torque is roughly
constant; at higher speeds it decreases linearly with speed,
reaching zero torque at about 300 Hz at 23 ◦C. To determine
the speed of the motor from the motor torque-speed relations,
we use torque balance and equate the motor torque with the load
torque. By the linearity of Stokes flow, the load torque is linear
in rotation speed. In the experiments used to make the graph of
figure 7, the flagellar filament of E. coli was tethered to a slide,
and the rotation of the body was observed. A typical body of
1 µm radius has a substantial resistance, leading to the steep
load curve on the left of figure 7 and a correspondingly low
rotation speed. A smaller load, such as that of a minicell, leads
to a load curve with smaller slope, and higher rotation speed.
The torque-speed characteristic M(�m) allows us to go beyond
the artifice of the previous section where we calculated the
swimming speed U in terms of the motor speed �m. Solving

Figure 7. The torque-speed characteristic for the flagellar motor of
E. coli for three different temperatures (bold lines). Also shown
(thin lines) are the load lines for a cell body with radius of 1 µm
(left), and a minicell with effective radius of about 0.3 µm (right).
Figure reprinted from [37], courtesy of Howard Berg and by
permission from Annual Reviews, copyright 2003
(doi:10.1146/annurev.biochem.72.121801.161737).

equations (39) and (43)–(44) along with M = M(�m) yields
the swimming speed in terms of the geometrical parameters
of the flagellum, the cell body, the drag coefficients and the
properties of the motor.

In the previous section we described how a rotating
helix generates propulsion. Since the flagellar filaments
of E. coli and S. typhimurium are relatively stiff, a helical
shape is necessary to escape the constraints of the scallop
theorem, since a straight rod rotating about its axis generates
no propulsion. Indeed, mutant E. coli with straight flagella
do not swim [125]. If the rate of rotation of a straight
but flexible rod is high enough for the hydrodynamic torque
to twist the rod through about one turn, then the rod will
buckle into a gently helical shape that can generate thrust
[126–128]. However, the high twist modulus of the filament
and the low rotation rate of the motor make this kind of
instability unlikely in the mutant strains with straight flagella.
On the other hand, a rotating helix with the dimensions of
a flagellar filament experiences much greater hydrodynamic
torque since the helical radius (micrometers) is much greater
than the filament radius (≈10 nm). The handedness of the
helix also breaks the symmetry of the response to the sense
of rotation of the motor: counter clockwise rotation of a
left-handed helix in a viscous fluid tends to decrease the
pitch of a helix, whereas clockwise rotation tends to increase
the pitch [129]. There is no noticeable difference between
the axial length of rotating and de-energized flagella for
counter-clockwise rotation [130]; calculations of the axial
extension [129] based on estimates of the bending stiffness of
the flagellar filament [131] are consistent with this observation.
However, the hydrodynamic torque for clockwise rotation is
sufficient to trigger polymorphic transformations, in which a
right-handed helical state invades the left-handed state by the
propagation of a front [132, 133] (see also [134–137]).

Now consider the case of an elastic filament driven
by a mechanism that oscillates the base of the filament in
the direction normal to the tangent vector of the filament.
Although we know of no organism that uses this mechanism
to swim, study of this example has proven instructive. In
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Figure 8. A bent elastic rod. The darkly shaded part of the rod
exerts a force F (x) and moment M(x) on the lightly shaded part
through the cross-section at x.

early work, Machin [138] pointed out that the overdamped
nature of low-Re flow leads to propagating waves of bending
with exponential decay of the amplitude along the length
of the filament. Since the observed beating patterns of
sperm flagella typically have an amplitude that increases with
distance from the head, Machin concluded that there must
be internal motors distributed along the flagellum that give
rise to the observed shape. This problem has served as the
basis for many subsequent investigations of fluid–structure
interactions in swimming [94, 104, 138–144], and has been
applied to the determination of the persistence length of actin
filaments [145, 146], so we now present a brief overview of its
most important results.

Consider a thin rod of length L constrained to lie in the
xy-plane, aligned along the x-axis in the absence of external
loads. We will consider small deflectionsh(x) from the straight
state. When the rod is bent into a curved shape, the part of the
rod on the outside of the curve is under tension, while the
part of the rod on the inside of the curve is under compression
(figure 8). Therefore, the section of the rod to the right of x

exerts a moment M = Aκ(x) ≈ A∂2h/∂x2 on the section
to the left of x, where A is the bending modulus and κ(x) is
the curvature of the rod at x [147]. Working to first order in
deflection, balance of moments on an element of length dx of
the rod implies

∂M

∂x
+ Fy = 0, (47)

or Fy = −A∂3h/∂x3 for the y-component of the force
exerted through the cross-section at x. Thus, if the rod has a
deflection h(x), then an elastic force fydx = (∂Fy/∂x)dx =
−(A∂4h/∂x4)dx acts on the element of length dx at x.
Balancing this elastic force with the transverse viscous force
from resistive force theory yields a hyper-diffusion equation

ξ⊥
∂h

∂t
= −A

∂4h

∂x4
· (48)

The shape of the rod is determined by solving equation (48)
subject to the appropriate boundary conditions, which are
typically zero force and moment at the far end, x = L. At
the near end, common choices are oscillatory displacement
h(0, t) = b cos(ωt) with clamping ∂h/∂x|x=0 = 0, or
oscillatory angle ∂h/∂x|x=0 = θ cos(ωt) with h(0, t = 0),
where b/L 
 1 and θ 
 1 [138, 140].

The appearance of ∂h/∂t in equation (48) causes the
breakdown of kinematic reversibility: even for a reciprocal
actuation such as h(0, t) = b cos(ωt), equation (48) implies
that the rod shape is given by damped bending waves.

Physically, the breakdown of kinematic reversibility occurs
because flexibility causes distant parts of the rod to lag the
motion of the rod at the base. We saw in section 3 that zero-Re

flow is effectively quasistatic since the diffusion of velocity
perturbations is instantaneous. When the filament is flexible,
the time it takes for perturbations in shape to spread along
the rod scales as ξ⊥L4/A. Since the shape of the rod does
not satisfy kinematic reversibility, the flow it induces does not
either, and a swimmer could therefore use a waving elastic rod
to make net progress [104].

The wavelength and the decay length of the bending
waves is governed by a penetration length, � = [A/(ξ⊥ω)]1/4.
Sometimes this length is given in the dimensionless form of
the ‘sperm number’, Sp = L/� = L(ωξ⊥/A)1/4. If the
rod is waved rapidly, the penetration length is small � 
 L

and propulsion is inefficient since most of the filament has
small defection and contributes drag but no thrust. For small
frequencies, we get L 
 � so the rod is effectively rigid;
kinematic reversibility is therefore restored and there is no
average propulsion in this limit. Thus, we expect the optimum
length for propulsion is � ≈ L, since at that length much of
the rod can generate thrust to compensate the drag of pulling
the filament along x [140, 104]. Note that our discussion of
flexibility may be generalized to other situations; for example,
the deformation of a flexible wall near a swimmer is not
reversible, leading to a breakdown of the scallop theorem even
for a swimmer that has a reciprocal stroke [79]. In this case
the average swimming velocity decays with a power of the
distance from the wall, and therefore this effect is relevant in
confined geometries.

An interesting variation on the Machin problem is to rotate
a rod which is tilted relative to its rotation axis. If the rod is
rigid, then it traces out the surface of a cone. But if it is
flexible, then the far end will lag the base, and the rod has
a helical shape. As long as the tilt angle is not too small,
this shape may be determined without considering effects of
twist [148, 149]. If the driving torque rather than speed is
prescribed, there is a transition at a critical torque at which the
shape of the rod abruptly changes from gently helical to a shape
which is much more tightly wound around axis of rotation, with
a corresponding increase in thrust force [150–152].

6.2. Distributed actuation

We now consider distributed actuation, in which molecular
motors are distributed along the filament. Eukaryotic flagella
and cilia use distributed actuation. Figure 9 shows a cross-
section of the axoneme, the core of a eukaryotic flagellum.
As mentioned in the introduction, the axoneme consists of
nine microtubule doublets spaced along the circumference
of the flagellum, with two microtubules running along the
center. In this review we restrict our attention to the case of
planar beating, although many sperm flagella exhibit helical
beat patterns, and nodal cilia have a twirling, rotational beat
pattern [153, 154]. The bending of the eukaryotic flagellum
arises from the relative sliding of neighboring microtubule
doublets [155–158]. The sliding is caused by the action of
ATP-driven dynein motors, which are spaced every 24 nm

16



Rep. Prog. Phys. 72 (2009) 096601 E Lauga and T R Powers

Figure 9. Cross-section section of an axoneme from wild type
Chlamydomonas, courtesy of Steve King. The diameter is
approximately 200 nm. Note that the plane containing the active
motors is perpendicular to the plane defined by the beating filament.

along the microtubles [92]. Since the relative sliding of the
microtubules at the end near the head is restricted [159],
and since each microtubule doublet maintains its approximate
radial position due to proteins in the core of the flagellum,
the filament must bend when the motors slide microtubule
doublets. For example, in figure 10, motors have slid the lower
doublet to the right relative to the upper doublet.

A simple approach to understanding how the sliding of
the microtubules generates propulsion is to prescribe a density
of sliding force and deduce the shape of the flagellum and
therefore the swimming velocity from force and moment
balance. This approach is taken in [94, 160], where the effects
of viscosity and viscoelasticity are studied. A more complete
model would account for how the coordination of the dynein
motors arises [92, 93]. Over the years, several different models
for this coordination have been suggested. Since sea urchin
sperm flagella continue to beat when they have been stripped
of their membranes with detergent [161], it is thought that
the motor activity is not coordinated by a chemical signal
but instead arises spontaneously via the mechanics of the
motors and their interaction [162, 163]. A detailed discussion
of molecular motors and the different mechanisms that have
been put forth for controlling the beat pattern would take us
too far afield [164–168]. Instead we review regulation by
load-dependent motor detachment rate as presented by Riedel-
Kruse and collaborators, who showed that this mechanism is
consistent with observations of the flagellar shape [159].

The first step is to simplify the problem by considering
planar beating and projecting the three-dimensional flagellum
of figure 9, with nine internal circumferential filaments, onto
a planar flagellum with only two internal filaments, such as
that shown in figure 10. Since the lateral spacing between the
two filaments is a constant, a, the amount that the top filament
slides by the bottom is given by

(x) = 0 + a[θ(x) − θ(0)], (49)

where 0 is the sliding displacement at the base of the
flagellum where x = 0, and θ(x) is the angle the tangent
of the flagellum centerline makes with the x-axis. In figure 10,
0 = 0, and  < 0 except at either end of the flagellum.
We will forbid sliding at the base, but it is straightforward
to allow such sliding in our model, and measurements of the
shape of bull sperm flagella suggest that 0 ≈ 55 nm [159].
Equation (49) in the case 0 = 0 is most easily deduced when
the two filaments form the arcs of concentric circles, but it
holds for more general curved shapes as well. Also, we will
work in the limit of small deflection, but equation (49) is valid
even for large deflection.

Now consider the forces between the two internal
filaments. Let f (x, t) denote the force per unit length along x

that the bottom filament exerts on the top filament. This force
per unit length could arise from passive resistance to sliding
as well as motors. The internal moment, M , acting on a cross-
section has a contribution from bending and an additional piece
from f

M = A
∂2h

∂x2
− a

∫ L

x

f dx. (50)

Moment balance on an element of the flagellum yields the
transverse force acting on a cross-section, Fy = −A∂3h/

∂x3 − af , which with force balance yields the equation of
motion for the filament as

ξ⊥
∂h

∂t
= −A

∂4h

∂x4
− a

∂f

∂x
· (51)

For example, if the motors are not active and there is only
elastic resistance to sliding, f = −K, then the shape
equation is

ξ⊥
∂h

∂t
= −A

∂4h

∂x4
+ Ka2 ∂2h

∂x2
· (52)

Even if the bending stiffness A vanishes, the elastic resistance
to sliding provides a restoring force that tends to restore the
straight state. More generally, the passive resistance will have
a viscous as well as an elastic component: f = −K − λ̇.

Now consider an active component to f . As in the case
of the bacterial rotary motor, the speed of a dynein motor
is thought to decrease with load. One end of the dynein is
strongly attached to a microtubule doublet, while the other
end randomly attaches to and detaches from the neighboring
doublet. The motor only does work when attached. The
proposal of [92, 93, 163] is that oscillations in force arise
spontaneously since the detachment rate increases with load.
To see that a load-dependent detachment rate leads to positive
feedback, consider a collection of motors sliding one filament
past another. If there is a perturbation in which the sliding
rate increases, then the load on each individual motor must
decrease, according to the force-speed motor characteristic.
On the other hand, the decrease in force per motor leads
to an reduction in the detachment rate, which in turn leads
to more attached motors and a greater total sliding force,
and ultimately, an increase in sliding velocity. Working in
the frequency domain, we may define a susceptibility χ via
f̃ = −χ(ω)̃. For the passive elements mentioned above,
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Figure 10. Simple model for a planar flagellum actuated by sliding filaments. The dotted line is the center of the flagellum when it is
straight. The solid lines represent the two microtubule doublets that the active motors slide relative to each other. The two solid curves and
the dotted line all have the same length; the dots divide each curve into quarters as measured along the contour.

χ = K + iωλ. A simple quantitative model with load-
dependent detachment rate leads to a susceptibility χ that can
have a negative effective elastic constant or a negative effective
drag term [159]. By using equation (51) to relate the shape of
the beating flagellum to the susceptibility χ , Riedel-Kruse and
collaborators showed that the passive components of χ were
small compared with the active components; in other words,
the forces and moments induced by the motors are balanced by
viscous drag and bending forces, rather than internal resistance
to sliding. Since the oscillations arise spontaneously in this
model, the calculation of the beating filament shape amounts
to solving an eigenvalue problem [92, 93].

We close this section by noting that there are several
other distinct means of actuation. The bacterium Spiroplasma
has an internal helical ribbon that is thought to undergo
contractions that in turn cause the body to change shape.
The shape change amounts to the propagation of kinks down
the body, where the kinks are generated by a change in the
handedness of the cell body [49, 169]. Spirochetes such as
the Leptospiracae have internal flagella that wrap around the
periplasmic space between the cell body and an outer sheath.
The flagellar filaments emerge from motors at either pole of
the cell, but the rotating flagella distort the body in a non-
reciprocal way that leads to locomotion [170, 171]. These
swimmers have inspired recent table-top experiments in which
rigid superhelices sediment in a very viscous fluid [172]. The
helical shape causes the superhelices to rotate as they fall. An
important finding of [172] is that for tightly coiled superhelices
the local drag theory theory is inadequate.

7. Hydrodynamic interactions

7.1. Interactions between cells

Microorganisms swimming in viscous fluids typically do so
within semi-dilute or dense cell populations. As an organism
swims, it sets up a flow which is felt by the cells nearby.
These flows can affect the dynamics at the level of the
entire population. For example, spermatozoa involved in
human reproduction may swim in population sizes as high
as millions of cells [2]. Bacterial suspensions are known
to display so-called ‘bacterial turbulence,’ where large-scale
intermittent motion in the forms of swirls and jets is set up
when the cells become sufficiently concentrated [173–181].
Even for small numbers of cells, hydrodynamic interactions
are suspected to play an important role, in particular in

reproduction. Such is the case for spermatozoa of the wood
mouse which aggregate, and thereby swim faster [182]. The
pairing of the opossum spermatozoa enable them to swim more
efficiently in very viscous fluids [183]. Fishfly spermatozoa
cluster in dense bundles for similar reasons [184]. Recently,
sea urchin sperm cells were observed to arrange into periodic
vortices [185]. Finally, it has been conjectured that flows
driving the aggregation of the algae Volvox at surfaces enhance
the probability of fertilization [186].

Let us consider the interactions between two swimming
cells. The flow field created by the first organism (cell A) will in
general lead to two types of passive hydrodynamic interactions
with its neighbor (cell B). First, cell B will feel the velocity
field created by cell A, and will be carried along by this flow
as a result. In addition, cell B will also feel the gradients
in the velocity field created by cell A, which tend to change
the orientation of B and thereby affect its future swimming
direction.

The first type of hydrodynamic interaction can be
intuitively understood by considering the far-field flow created
by a swimming cell (figure 11). As discussed in section 3.3,
since a cell is force-free, the velocity in the far field is typically
a force dipole, decaying as 1/r2. Two different types of
force dipoles can in general arise, leading to significantly
different physical pictures. Consider a microorganism with
an elongated body and let e be a unit vector attached to the
cell and pointing along the swimming direction, which is also
along the elongated direction of the cell. Usually, the force
dipole p will also be in the swimming direction, p = pe, but
it can have either a positive or negative sign. Cells for which
p > 0 are called ‘pushers,’ and include typical swimming
spermatozoa, or bacteria such as E. coli. Pushers repel fluid
from the body along the long axis, and draw fluid in to the sides
(figure 11(a); the red solid arrows represent local forcing from
the cell on the surrounding fluid and the blue dotted arrows
represent the flow direction in the fluid). Cells with p < 0
are called ‘pullers,’ the prototypical example of which is the
alga Chlamydomonas (see also the artificial swimmer in [187]).
Pullers draw fluid in along the elongated direction, and push
fluid out from the sides (figure 11(b)). Note that Caulobacter
cells alternate between pusher and puller mode when they
reverse the direction of flagellar rotation. Mathematically, the
flow induced at a distance r from the dipole p = pe is given by

u(r) = p

8πηr3

[
3 cos2 θ − 1

]
r, (53)
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Figure 11. The flow field created by a swimmer at low Reynolds
number. (a) Cells which are pushers have a positive force dipole
(p > 0, see text) and induce a flow field directed away from the cells
along their swimming direction (repulsion) and a flow field directed
toward the cells along their sides (attraction) (red solid arrows
represent local forcing from the cell on the surrounding fluid, and
blue dotted arrows represent the flow direction in the surrounding
fluid); (b) Pullers have a negative force dipole (p < 0), inducing an
attractive flow field along their swimming direction and a repulsive
flow field along their sides (in figures (a) and (b) the swimming
direction of the cell are indicated with a thick gray arrow); (c) two
pushers on a converging course reorient each other, tending toward a
configuration with cells parallel and swimming side-by-side (h is
the separation distance between the cells, and θ is the angle between
the cell direction and the direction normal to their separation);
(d) two pullers on a diverging course reorient each other, tending
toward a configuration in which the cells are antiparallel, swimming
away from each other.

where θ is the angle between the dipole direction, e, and the
flow position, r. Physically, the dipole strength scales as
|p| ∼ ηUL2 where U is the swimming speed of the cell, and
L its typical length scale. From equation (53), we see that two
similar cells swimming side-by-side (θ = π/2) experience a
relative velocity scaling as uside ∼ −p/ηr2. Therefore two
side-by-side pushers attract each other, while two side-by-side
pullers repel each other [188]. Conversely, the relative velocity
of two swimmers aligned along their swimming direction, with
one following the other (θ = 0), scales as ualigned ∼ p/ηr2,
with the opposite sign of attraction or repulsion.

The second effect of the hydrodynamic interaction
between two cells is reorientation due to velocity gradients.
The vorticity field induced by the cell is found by taking the
curl of equation (53),

ω = ∇ × u = 3p

4πη

(e · r)(e × r)

r5
· (54)

A sphere subject to this flow will rotate at a rate of half
the vorticity, Ω = 1

2ω, to leading order in the ratio of
the sphere size and the separation of the sphere from the
microorganisms inducing the flow [61]. For interacting cells,
which are typically not spherical, an additional component
for Ω arises from the symmetric part of the rate of strain,
E = 1

2 [(∇u) + (∇u)T]. Non-spherical cells tend to align
with the principal axis of strain, with Ω ∝ e × (E · e).
The sign of the proportionality constant and thus the sense
of the rotation depends on the shape of the cells, with a

positive constant for prolate cells and a negative constant for
oblate cells [61, 71]. As in the case of the attraction and
repulsion between cells, both ω and E change sign with p,
and qualitatively different rotational behaviors are expected
to occur for pushers versus pullers. Nearby pushers on a
converging course induce flow fields on each other that reorient
them in the side-by-side configuration (figure 11(c)). If the
cells are separated by a distance h, and are oriented with an
angle θ with respect to the distance perpendicular to their
separation, the reorientation takes place with a rotation rate
� ∼ −pθ/ηh3. In contrast, pullers induce the opposite flow
field, which leads to a reorientation of the cells in the elongated
direction (figure 11(d)). Interestingly, for both pushers and
pullers, the final configuration is one for which cells induce
attracting flow fields on each other. As discussed below, similar
results govern the orientation of cells near boundaries.

The results above describe the leading-order hydrody-
namic interactions between cells. Higher-order effects can
be considered with various levels of modeling accuracy, two
of which we address here. First, there is an active component
to hydrodynamic interactions. The physical reason is the fol-
lowing: in the flow field created by cell A, cell B induces its
own disturbance flow (just as a solid body sets up a distur-
bance flow when located in a shear flow), which then influ-
ences the velocity and orientation of cell A. This ‘reflection’
is a weaker effect than the direct interaction considered above,
since it decays faster in space. However it is important for
artificial swimmers with no permanent dipoles [189]. Higher-
order reflections can be considered in a similar manner. In
addition, the flow induced by a cell is only dipolar at leading
order, and includes also higher singularities that decay faster,
such as source dipoles and force quadrupoles. The quadrupolar
contribution is important because it dominates the pair veloc-
ity correlations, as recently demonstrated experimentally for
swimming E. coli [190].

Beyond the simple physical picture presented above, a
few studies have looked in detail at hydrodynamic interactions
between more realistic models of swimming cells. Interactions
between two cells were studied analytically and numerically
for two different cases, spherical squirming (swimming motion
where all surface deformation occurs tangentially to the
swimmer surface) [191, 192] and swimming with a single
helical flagellum [193]. Detailed experiments were also
carried out to study hydrodynamic interactions between the
protozoan Paramecium [192]. In all cases, the far-field
physical picture described above is correct, but the details of
hydrodynamic interactions at short range are also important,
and in many cases lead to an instability of the side-by-side
configuration for pushers, and unsteady three-dimensional cell
trajectories.

Beyond the dilute limit, dense cell suspensions display
remarkable complex dynamics. Oriented suspensions of
swimmers are found to be unstable to perturbations of
long wavelength [194, 195], with persistence of short-range
order [195], leading to nonlinear states of jets and swirls [196]
similar to those observed experimentally [173–180] (see [197]
for a two-dimensional study). Isotropic suspensions have also
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been found to be unstable [196]. As a result of the large-
scale motion in dense suspensions, swimming cells undergo a
remarkable decrease in effective diffusivity [198–201].

One final important feature of cell suspensions is their
rheological characteristics [202, 203]. In the limit where cells
do not interact with each other hydrodynamically, the response
of a cell population to an external shear can be quantified using
Batchelor’s theory for suspensions of force-free bodies [68].
For simplicity, let us consider spherical cells with radius L,
described by force dipoles p = pe, and distributed with
volume fraction c 
 1 in a Newtonian fluid of viscosity
η. If an external shear flow with shear rate γ̇ is applied to
the suspension, the effective viscosity of the population ηeff

differs from the background viscosity of the Newtonian fluid
at leading order in c by the amount

ηeff

η
= 1 +

[
5

2
+

3τs〈e1e2〉
4πηγ̇

]
c + O(c2). (55)

In equation (55), the coefficient 5/2 is the Einstein contribution
to the viscosity [66], 〈· · ·〉 denotes averages over the
cell population, e1 and e2 refer to the components of
the swimming direction along the external flow and shear
directions respectively, and τs = p/L3 is the typical active
stress created by the swimming cell. Physically, equation (55)
states that the dissipation in the fluid is different from that in
the background Newtonian solvent due to two effects. One
is the passive resistance of the cells to the shear flow, and the
second is the active flow created by the swimming cells. Since
the direction e of each cell will rotate as a result of the external
shear, the effective viscosity of the population, equation (55), is
expected unsteady and shear-dependent. When τs 
 ηγ̇ , the
viscosity is dominated by the passive (Einstein) response of
the cells, whereas when τs � ηγ̇ the rheology is expected
to be governed by active stresses. For swimming E. coli,
p ≈ (0.1–1) × 10−18 N m [204] and L ≈ 1–10 µm, so
τs ≈ 10−4–1 Pa. In addition, anisotropy in the distribution of
swimming cells (e.g. orientationally ordered state [202]) leads
in general to non-isotropic pressures, and therefore normal
stress differences with normal stress coefficients, �1 and �2,
scaling as [205–213]

�1 = 3τs

4πγ̇ 2
〈e1e1 − e2e2〉c,

�2 = 3τs

4πγ̇ 2
〈e2e2 − e3e3〉c.

(56)

A detailed study of the rheological characteristics of non-dilute
suspensions of cells was carried out for spherical squirmers
[203]. Hydrodynamic interactions give rise to time-varying
cell–cell configurations, and affect therefore the rheological
properties at order O(c2) [68].

7.2. Interactions between cells and boundaries

Just as other nearby cells influence the dynamics of
a swimming microorganism, the presence of boundaries,
and more generally confinement, has a significant impact
on cell locomotion. In addition to affecting the

concentration of chemical species that influence the motility of
microorganisms [214], boundaries modify the hydrodynamic
stresses acting on the cells, and near-wall motility is
therefore both biologically and physically different from
bulk motility. Biological locomotion near boundaries
includes surface-associated bacterial infections [215, 216],
biofilm formation [217, 218], spermatozoa locomotion at the
uterotubual junction [2] and surface-associated behavioral
change [219]. In this section, we focus on the fluid mechanics
of locomotion near walls.

Four distinct aspects of cell locomotion are modified by
the presence of nearby boundaries. The first is the change
in the swimming speed near a wall, which was addressed
theoretically by a number of studies [13, 100, 220–222]. Since
viscous drag increases as a body comes closer to a boundary
(see section 3.3), it might be expected that a cell would slow
down. However, since the propulsion method is also drag-
based, a closer look is necessary. Indeed, for the Taylor sheet
geometry, we mentioned in section 5.1 that the presence of a
nearby wall leads to an increase in the swimming speed for a
swimmer with a prescribed waveform. Here we consider this
matter further for a swimmer that has no head, and swims using
planar waves on a flagellum. As was shown in equation (35),
for a given waveform of the flagellum, the swimming speed
of the cell is an increasing function of the ratio between the
perpendicular (ξ⊥) and parallel (ξ‖) drag coefficients. Both
coefficients are found to increase near a wall, but ξ⊥ increases
faster than ξ‖, leading to an increase in the ratio ξ⊥/ξ‖ and
therefore the swimming speed. Physically, for fixed waveform,
the drag-based propulsive force generated by the flagellum
increases near the wall, and so does the resistive drag on the
swimmer, but the propulsion increase is stronger, and therefore
the swimming speed goes up. Associated with the increase in
the speed is an increase in the rate of working that the swimmer
has to provide in order to maintain the same waveform near
the wall [13, 100, 220–223]. If alternatively the swimmer is
assumed to swim with constant power, then the presence of a
boundary leads in general to a decrease in the swimming speed,
resulting in a decrease in the swimming efficiency except for
some special flagellar waveforms [100, 220].

The second type of wall-influence on the swimming
kinematics of some microorganisms is a change in their
trajectories. This is most famously the case for swimming
bacteria with helical flagella, such as E. coli, which change
their swimming trajectory from straight to circular near a
surface (figure 12(a)). In an infinite fluid E. coli swims, on
average, in a straight line, with a swimming speed found
by balancing flagellar propulsion by drag (see section 5.2).
The chiral shape of the flagella is important for propulsion
generation, but since the propulsive force is axisymmetric
when averaged over on period of flagella rotation, the motion
occurs on a straight line. Near a wall, the chiral propulsion
mechanism leads a breaking of the time-averaged axisymmetry
of the propulsive force because new non-zero components
arise in the motility matrix of the helix [224]. For a helix
parallel to a surface, the presence of a boundary leads to a
non-zero coupling between the rotation of the helix around
its axis (figure 12(b), blue dotted arrow), and the force on
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Figure 12. Bacteria swimming in circles near a boundary. (a) Circular trajectories for smooth-swimming E. coli bacteria near a glass
surface. The motion of each bacterium is tracked for eight seconds (picture courtesy of Willow DiLuzio). (b) Physical mechanism for
swimming in circles; the rotation of the bacterial flagella near the surface (blue dotted arrow) induces a net force on the flagella parallel to
the surface but perpendicular to the flagella axis (red arrows, solid); an equal and opposite force is acting on the cell body due to its
counter-rotation, resulting in a wall-induced torque acting on the cell, and a circular swimming trajectory (black arrow, dashed).

the helix in the direction perpendicular to the helix axis and
parallel to the surface (figure 12(b), red solid arrow). In other
words, when the helical flagella rotate, they create a net force
on the cell at a right angle with respect to the motion and
parallel to the surface. There is an exact and opposite force
acting on the cell body, which rotates in the opposite direction
as the flagella (figure 12(b), red solid arrows), and the net
effect is a wall-induced torque. If the cell were to continue
swimming in a straight line, it would have to apply a net
torque on the surrounding fluid. Since a swimming bacterium
is in fact torque-free, the cell cannot swim straight but instead
rotates at a rate such that the viscous torque from that rotation
exactly balances the wall-induced torque, and therefore swims
along circles on the surface (figure 12(b), black dashed arrow).
For a cell using a left-handed helix for propulsion, such as
E. coli, this effect causes the cells to constantly turn to the
right [224–229].

The third influence of boundaries on swimming cells is
analogous to the attraction and reorientation induced by cell–
cell interactions and discussed in section 7.1. Consider a single
cell moving near a solid wall. As the cell is swimming, it sets
up a dipolar flow field, but this flow field in general does not
satisfy the no-slip boundary condition on the wall, and images
are necessary on the other side of the surface (see section 3.3).
Because of the presence of images, a cell described by a
dipole strength p, located at a distance h from the surface, and
pointing at an angle θ from the surface direction (figure 13(a))
is subject to the gradients of the image flow field, and as
a result rotates with speed � ∼ −pθ/ηh3 in the direction
parallel to the surface and perpendicular to the cell body [204].
The 1/h3 scaling originates from the leading-order vorticity
of the image flow field, which is also dipolar. The rotation
occurs as if the cell is interacting hydrodynamically with a
mirror-image cell located on the other side of the surface, and
the rotation rate is therefore analogous to that quantified by
equation (54)5. If the cell is a pusher, the wall-induced rotation
rate, � = dθ/dt , tends to align the swimming cell in the
direction parallel to the surface (θ = 0, figure 13(a)). As a

5 The effect of a flat boundary is mathematically equivalent to the presence
of a mirror-image cell instantaneously located on the other side of the surface
if the surface is a no-shear interface (e.g. a free surface). If instead it is a
no-slip surface, the analogy is not quite exact mathematically, but it remains
qualitatively correct.

Figure 13. Wall-induced rotation of swimming cells. A swimming
cell is located at a distance h from a solid surface, and at an angle θ
with respect to the direction of the surface. (a) Pushers are
reoriented hydrodynamically in the direction parallel to the surface
(equilibrium, θ = 0); (b) pullers are reoriented in the direction
perpendicular to the surface (equilibrium, θ = ±π/2).

result of this parallel configuration, the cells will swim in a side-
by-side configuration with their image cell, and are therefore
attracted to the surface with an attractive speed scaling as u⊥ ∼
p/ηh2 (see equation (53)). This physical picture explains the
accumulation of swimming cells near surfaces observed in
many biological experiments [198, 204, 223, 230–234]. Note
that this wall-induced reorientation might be relevant to cell-
sorting and accumulation in funnel-like geometries [235].
Note that rotational diffusion also plays an important role
[236]. In contrast, cells which are pushers are rotated in the
opposite direction, and their stable configuration is instead
at a right angle with respect to the surface (θ = ±π/2,
figure 13(b)). In a confined environment, these cells are
therefore always swimming toward one surface, a result which
also leads to their accumulation. The physical origin is
however different, and instead of being attracted by an image
cell as pushers are, pullers simply swim into the wall.

The fourth hydrodynamic effect of boundaries, less
studied, is a potential reduction of cell–cell hydrodynamic
interactions near solid surfaces. Indeed, in many cases, a flow
singularity at a distance h from a solid surface is canceled out
in the far field by its images on the other side of the surface.
Thus, for distances greater then h, the overall flow decays
faster in space than the original singularity. For example, a
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Figure 14. Hydrodynamic interactions between eukaryotic flagella and cilia. (a) Nearby swimming cells with arbitrary phase difference;
(b) phase locked nearby swimming cells; (c) the asymmetric beat pattern of a cilium (sequence 1 to 10); (d) schematic representation of the
metachronal waves of collective beating displayed by arrays of cilia.

stokeslet near a wall has a dipolar behavior in the far field
if the stokeslet is parallel to the surface, and a quadrupolar
decay if it is perpendicular to it [69, 70]. Swimming cells
typically behave as force dipoles in an infinite fluid, but when
near a solid surface, configurations exist where the total flow
field (dipole + images) ends up decaying as 1/r3 or 1/r4, and
hydrodynamic interactions with other cells are weaker as a
result. In that case, the distance h between the swimming cell
and the wall acts therefore effectively as a cutoff for cell–cell
interactions.

7.3. Interactions between flagella

7.3.1. Eukaryotic flagella and cilia. We now decrease
our length scales, and discuss hydrodynamic interactions
between cellular appendages. The first historical evidence of
important hydrodynamic effects between nearby eukaryotic
flagella were observations by James Gray of in-phase beating
of spermatozoa flagella, later cited by Taylor [30]. Similar
observations have been made since then, such as the
synchronous beating of Fishfly spermatozoa [184]. Why
would organisms phase lock in such a manner? Exploiting
the swimming sheet model, Taylor showed that two swimmers
with the same prescribed waveform (figure 14(a)) dissipate the
least amount of mechanical energy for swimming when the
waves are exactly in phase (figure 14(b)), and the dissipation
goes up monotonically with phase difference. Using high-
amplitude numerical simulations, these results were later
revisited [237]. Two sheets with same waveform but different
phases are seen to swim with different velocity, and their
phase difference φ evolves until they are either perfectly in
phase (φ = 0) or perfectly out of phase (φ = π ), with both
configurations being stable [237]. Recent theoretical work
showed that such phase-locking originates in the front-back
asymmetry of the flagellar waveform of swimming cells [238].

Two nearby swimmers therefore display phase locking,
but the locked state can be that of maximum dissipation,
in contrast with what is observed experimentally. For real
eukaryotes, the flagellar waveform is however not fixed but
is found as a solution to a mechanical problem, as explained
in section 6: the shape arises from a balance between internal
forcing from molecular motors inside the flagellum, passive
elastic or even viscoelastic resistance from the axoneme, and

viscous resistance from the outside fluid. When there is a
second swimmer located nearby, the fluid forces are modified,
changing the balance of force and thus the flagellar shape.
Through this neighbor-induced change in the waveform, cells
are expected to be able to perfectly phase lock, as is observed
in the synchronization of nonlinear oscillators [239].

Most of the work related to hydrodynamics-induced
waveform change and phase locking was concerned with cilia,
which are short eukaryotic flagella (a few micronmeters long),
found in densely packed arrays and involved in many important
biological functions, including sensing, fluid transport,
locomotion, and development [3, 13, 21, 59, 240–242]. An
individual cilium deforms in a non-reciprocal fashion, with
a typical high-friction power strokes (sequence 1 to 3 in
figure 14(c)) and a low friction recovery stroke (sequence
4 to 8 in figure 14(c)). The internal actuation of each
cilium is independent from that of its neighbors, and they do
not communicate with each other except through the fluid.
However, when they are closely packed on surfaces, cilia arrays
display collective behavior, termed metachronal waves. The
deformation of each cilium is locked in phase with that of its
neighbor, with a small constant phase difference, leading to
propagating waves of deformation (figure 14(d)) [59].

The physical origin of coordinated beating is the central
question of ciliary dynamics, which a number of theoretical
studies have attempted to answer [117–120, 243–246]. Two
different approaches have been proposed. In the first one, the
mechanics of each cilium is modeled as accurately as possible,
and numerical simulations are used to compute the collective
beating [117–120]. The crucial ingredient in that approach is
to correctly model the internal load-dependent force generation
in the axoneme (without load dependence, or feedback, there
is no phase locking as can be expected [246]). With that
approach, it is found that two cilia starting randomly end up
beating in perfect synchrony within two beating cycles [119].
If instead there are a large number of cilia, waves arise naturally
as a result of hydrodynamic interactions [119]. Subsequent
work showed that as the waves develop from arbitrary initial
conditions the rate of work done by the cilia as they are beating
is decreasing [120]. Physically, because of viscous drag, it
is energetically advantageous for one cilium to beat in the
presence of a neighboring cilium with a similar phase.

The second approach considers simplified models for the
dynamics of the cilia, providing analytical insight into the
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(a) (b) (c) (d)

Figure 15. Bundling of bacterial flagella. During swimming, the bacterial flagella are gathered in a tight bundle behind the cell as it moves
through the fluid ((a) and (d)). During a tumbling event, the flagella come out the bundle (b), resulting in a random reorientation of the cell
before the next swimming event. At the conclusion of the tumbling event, hydrodynamic interactions lead to the relative attraction of the
flagella (c), and their synchronization to form a perfect bundle (d).

necessary conditions for phase locking [243–246]. An early
study considered a regular lattice of cilia, where the direction
of the beating plane is assumed to obey a balance between
rotational Brownian motion and rotation induced by the flow
created by all other cilia. For small enough temperature, a
transition is observed between a state with no average net flow,
and a state where all cilia point in the same direction and drive
a net flow [245]. Further modeling is provided by considering
a simplified load-dependent internal molecular engine. In that
case, metachronal waves arise only if a constant phase shift is
assumed to exist between each cilium and its neighbor [245].

Motivated by nodal flows in development [242], a second
study considered cilia whose tips perform three-dimensional
trajectories over a surface. Each cilium is modeled by a sphere
subject to an active load-dependent force, and interacting
hydrodynamically with a second cilium. Depending on the
relative position and orientation of the two cilia models, in-
phase (φ = 0) or out-of-phase locking (φ = π ) arise
from random initial conditions [244]. A similar model
with two sphere-like cilia rotating due to an applied torque
near a wall was recently proposed. In that case, in-phase
locking is obtained provided that the circular trajectory of
each cilium is allowed to vary in response to hydrodynamic
interactions [246].

A recent table-top experiment has been used to examine
the physics of hydrodynamic synchronization [247]. In
this work, a pair of centimeter-sized rectangular paddles are
immersed in silicone oil with a viscosity 100 000 times that of
water. The paddles are rotated by motors that deliver constant
torque. In accord with the theoretical results of [246], a small
compliance was required for phase locking. The time scale for
synchronization was long compared with the paddle rotation
period, and is governed by the strength of the hydrodynamic
interaction between the paddles. To achieve steady phase
locking, the driving torques had to be closely matched.

7.3.2. Bacterial flagella. Hydrodynamic interactions
between flagella also play a pivotal role for bacterial
locomotion. In that case, the phenomenon of interest is
flagellar bundling [248, 249]. Wild-type swimming bacteria,
such as E. coli, typically display ‘run-and-tumble’ behavior
during their locomotion. During runs, the bacterium swims
along a roughly straight path, and its flagellar filaments

are bundled together tightly behind the cell (figure 15(a)
and (d)). Near the end of a run, one or more motors
reverses, and the corresponding filaments unwind from the
bundle (figure 15(b)). Viscous stresses lead to polymorphic
transitions, in which a flagellum changes from a left-handed to
a right-handed helix. There are also polymorphic transitions
between different right-handed helices. These transitions are
correlated with changes in swimming direction. Once the
motors reverse again, the full bundle forms (figure 15(c),
then (d)), and the cell heads off in a new direction [23]
(figure 15(d)). Since the flagella, which are randomly
distributed along the cell’s surface, do not communicate except
through the fluid, it has long been postulated that bundling
occurs because of hydrodynamic interactions.

During bundling, two different physical mechanisms are
involved: (1) the attraction between the rotating flagella and
(2) the phase locking of nearby flagella. Concerning the
attraction between the rotating flagella, two different scenarios
have been proposed, and both play a role. One is purely
kinematic, and relies on the simple observation that as the cell
starts swimming, the drag on all the flagella naturally sweeps
them behind the cell [248]. Under this scenario, the flagella are
not so much attracted by each other, but are simply passively
dragged behind the cell body. The wrapping of the filaments is
then achieved in a passive manner by the body rotation arising
from overall torque balance (see section 5.2) [248, 250]. The
second attraction scenario relies on hydrodynamic interactions
between the flagella, in which each helix induces a flow which
causes the other to bend and twist about its neighbors. Even
without the counter-rotation of the body, the flows induced
by rotating flexible helices can cause bundling [251]. The
geometry of the helices is critical for this scenario. The role of
this geometry has been studied with macro-scale experiments
using flexible helices in air [249]. In these experiments,
the bundling was forced by means of guides at the distal
ends of the helices. It was found that left-handed helices
rotating counter-clockwise as viewed from the distal end (the
same handedness and rotation sense as a bacterium on a run)
can maintain a steadily rotating bundle, without jams, when
the helices are wrapped around each other in a right-handed
sense. Later, macro-scale experiments using polymeric helices
in highly viscous silicon oil were developed to study how
hydrodynamic interactions could lead to bundling [251, 252].
There it was shown that induced flow from rotating helices
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naturally causes tight bundling of pairs of left-handed helices
driven counter-clockwise. The only other combination that led
to bundling was its mirror image, with right-handed helices
driven clockwise [251]. The induced flows cause the helices
to bend and cross each other with the centerlines of each
helix slightly curved along helical paths. Once the helices
touch, they quickly wrap up to form a tight bundle, which is
maintained indefinitely as long as the rotation speed is not too
high. The time for bundling in the experiment was observed
to scale with the rotation speed of the helix, rather than the
relaxation time of flexible helices in a viscous fluid. Bundling
has also been studied computationally using a regularized
version of slender-body theory [253]. For three left-handed
helical flagella driven at constant torque and rotating counter-
clockwise, hydrodynamic interactions lead to a bundling of
the filaments, although not as tight a bundle as observed
experimentally [253].

The issue of synchronization between helices driven
with constant torques was addressed numerically [254, 255].
Perhaps surprisingly, two nearby rotating helices are seen
to not synchronize if the helices are perfectly rigid [254],
and some mechanical flexibility is necessary for flow-based
synchronization to occur [255]. In bacteria, this flexibility is
likely to be provided by the flagellar hook which connects the
rotary motor to the helical flagellum [256, 257]. The contact
forces that arise between different helices as the bundle forms
likely also play a role in the phase-locking of flagella in a
bundle.

8. Swimming in complex fluids

Biological fluids are often laden with polymers and therefore
have non-Newtonian rheology. For example, mucus is found
at the cervix and throughout the rest of the mammalian female
reproductive tract [2]. The nature of the cervical mucus
influences the likelihood of fertilization in humans: there is a
good correlation between the hydration of the cervical mucus
and the incidence of pregnancy [258]. Although cervical
mucus is a complex, heterogeneous gel, some simple trends
have been observed. There is an inverse relation between
the degree of viscoelasticity of the mucus and the ability
of sperm to penetrate the mucus [259–262]. Human sperm
flagella in cervical mucus have a higher beat frequency, smaller
amplitude, and shorter wavelength than when in semen [263].
The swimming speed is the same in both media, but the
sperm swim along straighter paths in cervical mucus [263].
In addition to the mucus at the cervix and in the uterine cavity,
sperm must also penetrate the matrix coating the ovum, known
as the cumulus oophorus, which is a viscoelastic actin-based
gel [264]. Spermatozoa can undergo an internal change known
as hyperactivation in which the beat pattern changes from
a symmetric to asymmetric form; hyperactivated cells have
better motility in viscoelastic media [265–269].

Rheological measurements show that cervical mucus
is highly viscous, with a viscosity of ≈100 Pa s [270].
The viscoelasticity is characterized by a relaxation time of
λ ≈ 1–10 s [261, 271–273] and an elastic modulus of ≈0.1–
10 Pa s [261, 273]. These properties depend strongly on the

phase of the menstrual cycle as well as hydration. Since
the typical beat frequency of a flagellum is ω/(2π) ≈ 20–
50 Hz [13], the Deborah number ωλ is easily larger than one,
indicating that viscoelastic effects are important.

There are several other important examples of swimming
or transport in complex fluids. The cilia that line the human
upper airway lie in a thin layer of Newtonian liquid, which in
turn is coated with a high-viscosity layer of mucus [59]. Again,
since the Deborah number for this system is large [274], elastic
effects are important. Bacteria also encounter viscoelastic
fluids: the ulcer-causing bacterium Helicobacter pylori swims
through mucus lining the stomach [275], and spirochetes move
through the connective tissue of the host during infection [276].

In our discussion of swimming in a complex fluid, we use
continuum mechanics to model the fluid. This simplification
is necessary for making progress, but it is important to realize
that the size scale of the microstructure of the fluid can
be comparable to the size of the swimmer, and therefore a
different approach may be necessary to accurately capture the
interactions between the swimmer and the polymers. Complex
fluids display a vast array of non-Newtonian effects, such
as stress relaxation, normal stress differences and shear-rate
dependent viscosity [206–213]. Our approach is to illustrate
some of the distinctive properties of swimmers in complex
fluids by focusing on one class of models, fluids with fading
memory. These models apply to polymer solutions.

When a polymer solution is subject to shear, the polymers
stretch out. The resulting loss of entropy of the polymers
leads to an effective elastic force tending to recover the initial
configuration of the polymers. The balance of the entropic
force and the viscous drag on the polymer sets the time
scale λ over which the fluid has memory. The appearance
of this new time scale gives polymeric liquids a completely
different character relative to viscous Newtonian fluids. First,
the property of kinematic reversibility is lost, even if the
Reynolds number is vanishingly small, since growth or decay
of stress can lag the change in shape of a swimmer by the
time scale λ. Second, the new time scale implies that the
constitutive relation for a polymer solution depends on the
rate of change in stress with time, which automatically leads
to nonlinear terms. This fact may be seen by invoking
material frame indifference, a fundamental assumption of
continuum mechanics [205, 207], or by deriving the continuum
theory directly from a microscopic theory of the polymers
in solution [211, 213]. Many of the properties of Stokes
flow that we have invoked in our study of swimming have
explicitly relied on the linearity of the equations of motion. The
nonlinearity of the equations of motion for a polymeric liquid
generally implies that the scallop theorem does not hold. The
loss of linearity spoils superposition, and therefore we may not
use the singular solutions of section 3.3 to construct a slender-
body theory. Hydrodynamic interactions between distant cells
will have a different character than in Stokes flow, since the far
field form of the velocity field due is changed. These features
of polymeric liquids make the study of swimming in complex
fluids a daunting challenge, but also an area of opportunity.
Except for a few early works [277–279], the area is largely
unexplored.
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To examine these issues, we review the calculation [274]
of the swimming velocity of the Taylor sheet of section 5.1 for
a fluid described by the Oldroyd-B model [207]. In this model,
the deviatoric stress τ = p1 + σ is the sum of a contribution
from the polymer solute τ p and a contribution from the
Newtonian solvent τ s = 2ηsE, where E = 1

2 (∇u + ∇uT).
The polymer contribution relaxes to the viscous stress over the
time scale λ1,

τ p + λ1

�
τ p= 2ηpE, (57)

where ηp is the polymer contribution to the viscosity, and

�
τ= ∂τ

∂t
+ u · ∇τ − τ · ∇u − (∇u)T · τ (58)

is the upper-convected derivative of τ . The upper-convected
derivative of a tensor τ is the expression in general coordinates
of the rate of change of the tensor calculated in a frame that
translates and deforms with the local fluid velocity [205, 207].
Using τ = τ p + τ s and eliminating τ p from equation (57)
yields the Oldroyd-B model,

τ + λ1
�
τ= 2η(E + λ2

�
E), (59)

where η = ηp + ηs and λ2 = ηsλ1/η < λ1. The equation of
motion is −∇p+∇·τ = 0 with ∇·u = 0. Note that the explicit
presence of the time derivatives as well as the nonlinear terms
in equation (59) spoils kinematic reversibility and violates the
assumptions of the scallop theorem.

The solution to the swimming problem for a sheet
with prescribed traveling wave (20) proceeds just as in the
Newtonian case. The velocity field, stress and boundary
conditions are expanded to second order in amplitude b, and
the governing equations are solved subject to the boundary
conditions (21) and (22). To first order, the flow field is
identical to the flow field of the Stokes problem. However, due
to the relaxation time λ, the first-order component of the stress
field τ has a lag relative to the Stokes stress field. Through
the nonlinear terms of equation (59), this stress field drives a
second-order flow that leads to the swimming speed [274]

|U | = 1

2
ωkb2 1 + ω2λ2

1ηs/η

1 + ω2λ2
1

· (60)

Since ηs < η, the swimmer in an Oldroyd-B fluid is slower
than in a Stokes fluid. Note that unlike the Stokes case, the
swimming speed (60) depends on material parameters such
as λ1, ηs and η. The Oldroyd-B constitutive equation is
inapplicable to flows with large extension rates. Nevertheless,
the result (60) continues to hold for more accurate fading
memory models such as FENE-P, the Johson–Segalman–
Oldroyd model and the Giesekus model [274]. The expression
for the speed, equation (60), also continues to hold for a
cylindrical filament with a traveling wave, in the limit in
which the radius of the cylinder is much smaller than the
lateral displacement of the cylinder [160, 280]. Further work
extended these small-amplitude calculations to the case of
three-dimensional finite-size bodies and derived an integral
theorem quantifying the swimming kinematics for locomotion
in an arbitrary complex fluid [281].

As a result of the presence of nonlinear evolution
equations, locomotion in complex fluids escapes the
constraints of the scallop theorem, from two different distinct
origins. The first breakdown occurs through rate-dependence,
as illustrated by the nonlinear dependence of the swimming
speed on the frequency in equation (60). To see why the
theorem is no longer valid, first consider the Newtonian limit
λ1 → 0, in which all elastic effects vanish and the speed
is proportional to ω. Now consider a situation in which a
traveling wave of wave number k and frequency ω travels
rightward on the sheet for a period (2π/ω)/3, and then
leftward with frequency ω/2 and period 2(2π/ω)/3 [280].
The deformation of the sheet is reciprocal, with a rightward
wave of speed c1 = ω/k, followed by a leftward wave of
speed c2 = c1/2. From the scallop theorem, the sheet will
have zero net displacement after this process. Now consider
this waveform for a sheet in an Oldroyd-B fluid. Suppose
the sheet has periodically been executing these motions long
enough that transients from startup from rest have died away.
Since the speed now depends nonlinearly on ω, the translation
in each segment of the motion is different: the sheet moves
faster during the leftward motion with the smaller frequency.
Thus, there is a net displacement. This argument disregards
the memory of the fluid, since the stress during each stroke is
effected by the previous stroke. Accounting for these memory
effects leads to a slightly smaller net displacement, but it still
has the same qualitative dependence on ωλ1.

The second breakdown of the scallop theorem occurs
through the presence of nonlinear rheological properties. In
that case, even in the limit of a periodic motion occurring at
the same rate back and forth, the stretching of the polymeric
molecules in the fluid leads an additional tension along the
flow streamlines, resulting in additional normal stresses scaling
quadratically with the imposed shear [207]. Such nonlinear
rheological properties mean that net forces and flow can be
created out of a purely sinusoidal motion [282]. For example,
the small-amplitude periodic flapping of a semi-infinite plane
in an Oldroyd-B fluid leads to the development of net time-
averaged stresses, 〈δf〉, acting along the flapper and scaling as

〈δf〉 ∼ ε2 λ1ω

1 + (λ1ω)2

(
1 − ηs

η

)
ηω, (61)

where ε is the amplitude of the flapping angle [282]. Similarly,
a spherical swimmer of radius R subject to a small-amplitude
tangential motion varying sinusoidally in time moves with a
time average speed, 〈U〉, scaling as

〈U〉 ∼ ε2 λ1ω

1 + (λ1ω)2

(
1 − ηs

η

)
Rω, (62)

where ε is the relative amplitude of the tangential motion [281].
For both cases, in the Newtonian limit we have λ1 = 0 and
the scallop theorem is recovered (〈δf〉 = 〈U〉 = 0) but for
all other cases the time-reversible motion induces non-zero
time-averaged forces and speeds.

The properties of the medium can affect not only the speed
of a swimmer with a prescribed stroke, but also the shape of a
beating flagella. For example, as the viscosity of the solution
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Figure 16. Artificial swimmers with discrete degrees of freedom: (a) Purcell’s three-link swimmer (red arrows indicate change in
conformation of the swimmer shape); (b) macro-scale experimental realization of Purcell’s swimmer (photo courtesy of Brian Chan and
Peko Hosoi); (c) three-sphere swimmer; (d) micro-scale realization of a three-sphere pump [285]; (e) two-sphere swimmer with shape
change; (f ) two scallops together can make a non-reciprocal sequence of shapes, leading to net displacement. Picture in figure 16(d)
adapted from [285] courtesy of Marco Cosentino Lagomarsino, and reproduced by permission of The Royal Society of Chemistry, copyright
2009 (doi:10.1039/b812393d).

increases, the wave form of a human sperm flagellum flattens
along most of its length, with most of the deflection taking
place at the distal end [283]. Thus it is natural to model
the dependence of the shape on material parameters such as
viscosity and relaxation time. As we learned in section 6, the
small-amplitude shape is determined by an equation which is
first order in amplitude. Thus, we only need the fluid force
to first order. For the Oldroyd-B fluid, the calculations for
the filament geometry show that this fluid force has the form
of resistive force theory, with complex frequency-dependent
effective viscosity [94]. Denoting Fourier components with a
tilde, the shape equation for an Oldroyd-B fluid is

iωξ⊥(1 + iλ2ω)

1 + iλ1ω
h̃ = −A

∂4h̃

∂x4
− a

∂f̃

∂x
, (63)

where f is the sliding force density. By prescribing the force
density, imposing the boundary conditions and using linear
superposition (valid to first order), we may calculate the shape
of the filament as a function of material parameters. The
result is that this model gives patterns that look qualitatively
similar to the experimental observations [94]. Since the
shape of the filament determines the swimming velocity, the
dependence of shape on relaxation time gives an additional
correction to the swimming velocity of the prescribed
sheet.

A natural next step is to extend the study of swimming to
large-amplitude deflections. Recent numerical work on large-
amplitude peristaltic pumping of an Oldroyd-B fluid in two
dimensions has shown similar qualitative differences with the
Newtonian case, such as reduced pump rate, dependence on
material parameters and loss of kinematic reversibility [284].
The application of numerical methods such as these to
swimmers will be crucial for understanding finite-size effects
such as the role of the shape of the cell body or the end of
the flagellum, since large normal stresses can develop at such
regions of high curvature.

9. Artificial swimmers and optimization

In this final section, we look beyond the biological realm and
survey the bioengineering advances in design and optimization
of artificial swimmers and bio-inspired systems.

9.1. Designing artificial swimmers

A number of designs have been proposed and tested for
artificial swimming devices at low Reynolds number. They
can be sorted in three different categories. The first category
includes all swimmers which deform their shape with only
a finite number of degrees of freedom, actuated in a non-
reciprocal fashion. At least two degrees of freedom are
needed for swimmers in this category. The original example
is Purcell’s three-link swimmer, which posseses two hinges
varying in time with phase differences (figure 16(a) and (b))
[14, 78, 73, 286]. A second related design is that of a three-
sphere swimmer (figure 16(c)): the distances separating the
spheres vary in time and with phase differences, leading to
locomotion [82, 187, 287–290]. The extension to N spheres
was also proposed theoretically [291]. The three-sphere design
was implemented experimentally using optical tweezers, and
the out-of-phase motion of the three colloidal beads leads to
fluid pumping (figure 16(d)) [285]. A third design only needs
two spheres, but is coupled with a change in shape of one of the
spheres, leading to non-reciprocal kinematics (figure 16(e)).
As the sphere increases in size, it serves as an anchor against
which the swimmer can push, and rectify a time–periodic
change in size [292]. A related idea using rotating two-sphere
swimmers, was also proposed [293]. Finally, if the phases of
nearby bodies individually undergoing reciprocal motion are
suitably adjusted so that together the sequence of shapes is non-
reciprocal [294], then hydrodynamic interactions between the
body can lead to net propulsion (figure 16(f )). The resulting
collective swimming speeds depend on the separation distance
between the swimmers as well as their relative position and
orientation [80, 295].
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Figure 17. Artificial swimmers with continuous deformation: (a) synthetic flagella made of actuated micrometer-scale magnetic
filaments [296]; (b) macro-scale swimming by boundary actuation of an elastic filament [297]; (c) toroidal swimming; (d) swimming by
surface treadmilling. Picture in figure 17(a) adapted from [296] courtesy of Remy Dreyfus and by permission from Macmillan Publishers
Ltd, copyright 2005 (doi:10.1038/nature04090).

The second category of artificial swimmers consists of
bodies deforming in a continuous fashion. In an experimental
breakthrough, a team has been able to exploit the response of
paramagnetic filaments to external magnetic fields to construct
the first artificial micrometer-long swimmer (figure 17(a))
[296], thereby motivating a number of theoretical studies
[298–302]. In this work, an ac magnetic field is applied in
the direction perpendicular to the filaments, and the presence
of a body (here, a red blood cell) breaks the right-left symmetry
in the continuous response of the filament. The result is a wave
of deformation traveling from the tip of the filament to the body
it is attached to, and locomotion flagella-first [296]. A second
type of swimmer with continuous deformation exploits the
boundary actuation of elastic filaments to generate propulsive
forces (see section 6) and locomotion (figure 17(b)). In a
macro-scale experiment, the forces arising from such elastic
swimming were measured [143], and the actuation method was
implemented successfully to obtain swimming [144, 297]. A
third type of swimmers with continuous deformation are those
with a special mode of surface deformation called ‘surface
treadmilling’, for which the shape of the swimmer is fixed and
where its body undergoes a continuous tangential displacement
along its surface (figures 17(c), (d)). Taylor proposed such
design in the shape of a torus undergoing continuous surface
rotation (figure 17(c)) [95], an idea recently analyzed in detail
[303–305]. If the body is slender and displays directed
tangential displacement all along its surface, so that a material
source is present on one side of the body, and a sink on the
other side (figure 17(d)), the resulting locomotion can occur
with arbitrarily high efficiency [306].

The final category of artificial swimmers uses chemical
reactions to power locomotion, a case investigated both
experimentally [285, 307–314] and theoretically [315–318].
The prototypical setup is a body composed of two materials,
one that is inert and one that is a catalyst or reactant for
a chemical reaction. The presence of a chemical reaction
leads to a concentration gradient for some of the reactants
and/or products of the reaction, leading to slip velocities at
the particle surface and relative motion between the particle
and the fluid [319, 318]. An example of the trajectory of such
chemical swimmer is illustrated in figure 18.

9.2. Exploiting low-Re locomotion

The physical mechanisms of propulsion at low Reynolds
number can be exploited in a number of ways beyond biological
or synthetic locomotion. In a pioneering experiment,
suspensions of swimming bacteria were seen to provide an
effective high-temperature thermal bath for suspended inert
particles [176]. Similar results were obtained for diffusive
mixing of two fluids containing swimming cells [320], and
for the motion of colloidal particles above surfaces covered
with attached bacteria (figure 19) [321]. A second utilization
of swimming is cargo-towing, with potential applications
in biomedical devices. Experiments were performed with
solid bodies covered with attached bacteria, with successful
translational and rotational towing [321]. A related method
was also devised to transport micrometer-size objects at the
single-cell level [322], and a theoretical framework for towing
by swimming now exists [323]. A final application of flagella
motion is pumping. Indeed, swimming and pumping are
dual problems, and in general a tethered swimmer acts as a
pump [324]. One approach, studied numerically, uses elastic
filaments attached to a solid surface and actuated by external
time-varying torques [325]. Experiments were also conducted
on surfaces covered with filaments made of self-oscillating gels
and displaying wave-like motion [326].

9.3. Optimization

Motivated by the optimal tuning of synthetic micro-swimmers,
as well as possible insight into evolutionary processes,
significant work has been devoted to the optimization of
locomotion at low Reynolds number. Since time can be
scaled out of all low Reynolds number swimming problems
in Newtonian fluids, optimizing swimming speeds is not, in
general, a well-posed mathematical problem. For example, if
a given swimmer is made to deform its surface twice as fast,
it will swim twice as much per unit time, and hence would be
seen to be a better swimmer, yet the geometry of its swimming
gait would not have changed. To render optimal swimming a
well-posed mathematical problem, a form of normalization
is required. The first approach consists of optimizing the
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Figure 18. Locomotion powered by chemical reactions [313]. Polystyrene colloidal spheres in a solution of water and hydrogen peroxide
([H2O2]) with increasing concentration. Top: control experiment (inert spheres). Bottom: experiment where the spheres are half-coated by
platinum, a catalyst for the reduction of [H2O2] into oxygen and water, which leads to directed swimming of the spheres (coupled to
Brownian rotational diffusion). Picture reproduced from [313] courtesy of Ramin Golestanian and by permission from the American
Physical Society, copyright 2007 (doi:10.1103/PhysRevLett.99.048102).

Figure 19. Enhanced diffusion near a carpet of swimming cells [321]. Trajectory of fluorescent particles over a 10 s interval when located
above a flat surface coated with attached bacteria (two-dimensional view from above the surface). (a) The particles are located 80 µm above
the surface, and move by Brownian motion. (b) When the particles are located 3 µm above the surface, their effective diffusion is
significantly larger than Brownian motion [321]. Picture reproduced from [321] courtesy of Kenny Breuer and by permission from the
Biophysical Society, copyright 2004 (doi:10.1016/S0006-3495(04)74253-8).

distance traveled by the swimmer per unit period of its time–
periodic body deformation [286], thereby explicitly making the
optimality question a geometrical problem. A second method,
more traditionally used, consists of defining a swimming
efficiency as the ratio of the useful to the total rate of working
of the swimmer against the viscous fluid (see section 5.2). The
optimization problem becomes a maximization problem for the
efficiency [11], and is equivalent to finding the swimmer with
the largest swimming speed for a given amount of mechanical
energy available. Since both rates of working are quadratic
in the rate of deformation of the swimmer, this method also
effectively solves the normalization issue. In the paragraphs
below we use the term ‘optimization’ to refer to the problem
of swimming with maximum efficiency.

Two types of optimization questions can be asked, related
to either the waveform or the overall geometry of the swimmer.
The first problem was formulated by Lighthill as the following:
if a flagellum is being distorted as a planar traveling wave,
what would be its optimal waveform [11]? Assuming an
infinitely long flagellum, and within the framework of the
local drag theory, the optimized flagellum is a sawtooth wave,
where each branch of the sawtooth makes an angle ±θ with
the horizontal, with θ = arccos[(1 + (ξ‖/ξ⊥)1/2)−1/2] [11].
Since ξ‖/ξ⊥ ≈ 1/2, the optimal angle for the sawtooth is

θ ≈ 40◦, leading to an optimal value for the product of
the wave amplitude, b, and the wavenumber, k, as bk ≈
1.3. The resulting optimal hydrodynamic efficiency is about
8% [11], significantly above the efficiency of about 1%
typically displayed by biological cells [3, 11, 28, 105]. Note
that the optimal value for θ is insensitive to the exact value
of the ratio ξ‖/ξ⊥, or on the possible presence of a cell
body [11]. Numerical simulations for sawtooth patterns
revealed the optimal criterion of Lighthill to remain valid
for finite-size swimmers [327]. In addition, flagella with the
optimal sinusoidal deformation have very similar geometrical
characteristics: bk ≈ 1.26 using the local drag theory [328],
and bk ≈ 1 using slender-body theory [329]. Similar
results are obtained by numerical optimization of the flagellar
waveform [105].

The existence of an optimal angle between the direction of
swimming and the direction of the flagellum can be understood
on the basis of the physical picture we introduced for drag-
based propulsion (figure 2). Indeed, we see from equation (13)
that the propulsive force arising from the local motion of the
flagellum scales with its orientation as fprop ∼ sin θ cos θ .
If the work done by the flagellum were not a function of its
orientation, the optimal angle would therefore be the one for
which sin 2θ ∼ 1, or θ ∼ 45◦. Because ξ⊥ > ξ‖, some energy

28

http://dx.doi.org/10.1103/PhysRevLett.99.048102
http://dx.doi.org/10.1016/S0006-3495(04)74253-8


Rep. Prog. Phys. 72 (2009) 096601 E Lauga and T R Powers

can be saved by decreasing the angle, thereby promoting
tangential over perpendicular motion, which explains why
the optimal angle is close to, but below, 45◦. In the case
of planar waves, the optimal flagellum waveform is therefore
kinked like a sawtooth pattern, and the slope angle alternates
between +θ and −θ . In the case of a three-dimensional helical
filament, a constant angle between the local tangent along the
flagellum and the swimming direction can be accommodated
while keeping a smooth waveform if (and only if) the flagellum
takes the shape of a helix. In that case, the optimal angle
was determined numerically using slender-body theory to be
θ = 45◦ [330] (see also [65, 331]).

A second design feature which can be optimized is the
overall geometry of the swimming cell, in particular the ratio
of the length L of its flagellum and the radius a of its body,
which is assumed to be spherical for simplicity. In the case
of swimmers exploiting planar waves, this problem can only
be studied if hydrodynamic interactions between the body and
the flagellum are properly taken into account, as otherwise the
presence of a body always decreases the swimming efficiency
(see equation (38)). This problem was analyzed in detail
using slender-body theory for sinusoidal waveforms, and the
optimal flagellum length to body size ratio was found to be
L/a ≈ 25 [329]. Subsequent work determining the optimal
flagellar waveforms showed that the optimal ratio is close to
L/a ≈ 24 [105]. In the case of helical waves, an optimal body
size can be determined even in the absence of hydrodynamic
interactions. Indeed, we saw in section 5.2 that cells with
helical flagella need a body in order to be able to move. A small
body prevents the swimmer from moving and is not efficient,
whereas a large body presents too large a drag to the overall
cell, and is not efficient either: an optimal size must therefore
exist. When hydrodynamic interactions are also taken into
account, the optimal ratio has been determined numerically to
be L/a ≈ 10 using slender-body theory [330] and ≈12 using
three-dimensional boundary elements [332] (see also [65]).
Other biologically relevant optimization problems that have
been addressed include the optimization of feeding current
for tethered cells [333], and the influence of the body shape
on the optimal flagellar waveform [105] and overall cell
geometry [332].

Finally, work has been devoted to the optimization
of simple artificial swimmers. For bodies with discrete
degrees of freedom, the actuation of Purcell’s swimmer
(figure 16(a)) was optimized numerically [78, 286]. More
formal mathematical work was devoted to the optimization
of the three-sphere swimmer (figure 16(c)) using a control-
theory framework [334] and axisymmetric swimmers in
general [335]. For swimmers with continuous degrees
of freedom, the geometrical approach to swimming at
low Reynolds number was used to derive optimal low-
amplitude swimming by surface deformation of spheres and
cylinders [74–76], and was later extended to large-amplitude
deformation of two-dimensional bodies [336]. In the case of a
spherical swimmer with time–periodic tangential deformation,
the hydrodynamic efficiency was proven to be bounded
by 3/4 [72].

10. Conclusion and outlook

In this paper, we have illustrated the basic physical and
fluid mechanical framework necessary to understand fluid-
based locomotion on small scales. After an overview of
the fundamentals of biological swimming motility and low
Reynolds number hydrodynamics, we have reviewed classical
theoretical work on both the external hydrodynamics of
organisms—with an emphasis on swimming kinematics—and
their various internal actuation mechanisms. We have then
outlined areas of current research, including hydrodynamic
interactions, locomotion in complex fluids, the design of
synthetic swimmers and the search for the optimal swimmer.
All along this review, we have attempted to focus on the simple
physical picture, and to emphasize how swimming provides a
unifying theme for problems arising in disparate fields.

Since new experimental methods promise to reveal
the mechanisms for biological locomotion with ever more
quantitative detail, future work in the field is likely to be
significant. We believe, in particular, that there is great
opportunity for theorists, since—as we have emphasized
throughout the review—simple calculations are usually
sufficient to gain fundamental insight into the mechanisms of
locomotion. Detailed numerical computations will also play
a crucial role, since many of the issues we discussed, such as
hydrodynamic interactions in dense suspensions of swimmers
and locomotion in complex fluids, involve nonlinear processes.
A further challenge will be to integrate the understanding of
basic mechanisms across multiple scales, from the levels of
molecular motors to individual cells to large populations of
cells. Finally, many of the implications of the ideas sketched
in this review have yet to be realized in important areas such
as the ecology of marine bacteria, the formation of bacterial
biofilms and the mechanics of reproduction.
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