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Intermolecular forces are known to precipitate adhesion events between solid bodies. Inspired by a macro-
scale experiment showing the hysteretic adhesion of a piece of flexible tape over a plastic substrate, we develop
here a model of far-field dry adhesion between two flexible sheets interacting via a power-law potential. We
show that phase transitions from unadhered to adhered states occur as dictated by a dimensionless bending
parameter representing the ratio of interaction strength to bending stiffness. The order of the adhesion transi-
tions, as well as their hysteretic nature, is shown to depend on the form of the interaction potential between the
flexible sheets. When three or more sheets interact, additional geometrical considerations determine the hier-
archical or sequential nature of the adhesion transitions.
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I. INTRODUCTION

As fabrication technology and nanoscale engineering in-
crease in complexity, it becomes vital to understand small-
scale interactions between material components. Surface-
tension-mediated forces play a large role in self-assembly not
only at the macroscale �1� but also for microelectromechani-
cal and nanoelectromechanical structures, and as such, a
large amount of work has been done in studying the adhesive
forces involved �2–4�. Carbon nanotubes �CNTs� have at-
tracted significant attention since they were discovered to
exhibit novel electrical and mechanical properties, and it has
been found that CNTs can adhere to each other under the
influence of capillary forces �5–7�. At these scales, fluid-
regulated forces are not the only factors that must be exam-
ined. Dispersion �or van der Waals� forces may become more
important than at larger scales, and the microscopic intermo-
lecular forces of extended media start to have a macroscopic
effect on structural stability �8,9�.

In addition to the progress in nanotechnology, many bio-
logical systems also display adhesion phenomena whose ori-
gins can be traced to intermolecular forces. Geckos are
known to adhere to smooth surfaces, without any liquid in-
terface. The microscopic arrays of hairs or setae on the base
of the gecko foot are therefore believed to be the source of
such effective dry adhesion �10–14�. In cellular biology, cy-
toskeletal morphogenesis is regulated by complex biopoly-
mer networks. This networked series of thin elastic filaments
adhere and interact with one another to form a scaffolidng
for eukaryotic cells. Mechanical properties of macromol-
ecules such as actin filaments or DNA can be measured by
force or deflection analysis at small scales, and polymers
adsorbed onto a surface or “zipped” to another molecule can
be peeled apart by applying optical tweezers or other exter-
nal pulling forces �15–18�.

Most of the research into interactions between materials at
these scales involve close range, contact, and sometimes cap-

illary forces, and this is the limit considered by many models
and experiments to date �15–17�. However, long-range forces
due to fixed charge distributions, polar, or even nonpolar
interactions can lead to adhesion events if the right condi-
tions are satisfied. Previous work has characterized the van
der Waals attraction between thin flexible objects, both theo-
retically �19,20� and experimentally �21�. In this paper, we
aim to develop an understanding of the physical mechanisms
by which long-range interaction forces compete with elastic-
ity in the adhesion of thin flexible structures. We first intro-
duce and motivate the prototypical system of interest using a
macroscale experiment showing the hysteretic adhesion of a
piece of flexible tape over a plastic substrate. We then de-
velop a model of far-field dry adhesion between two elastic
slender sheets, interacting via a power-law potential, and
study numerically their relative adhesion. We uncover that
phase transitions from unadhered to adhered states occur as
dictated by a dimensionless bending parameter representing
the ratio of interaction strength to bending stiffness, as well
as the form of the interaction potential between the flexible
sheets. We then generalize our model in order to study the
interactions between several sheets and show that additional
geometrical considerations determine the hierarchical or se-
quential nature of the adhesion transitions in that case.

II. MACROSCALE EXPERIMENT

An example of an adhesion transition between elastic
bodies due to long-range interactions may be demonstrated
using everyday materials, namely, a piece of adhesive tape
and a plastic substrate. As shown in Fig. 1, this tape can be
shown to exhibit complex adhesion properties. The tape is
first given a static charge distribution by applying it to a
piece of plastic and then removing it swiftly. The tape is
initially suspended at the distance shown in Fig. 1�a�, sticky
side away from an uncharged substrate. As the suspension
distance is slightly decreased �Fig. 1�b��, the tape becomes
weakly attracted to the surface. At a critical distance �Fig.
1�c��, the attraction suddenly pulls the tape completely to the
surface, where it lays flat along the majority of the substrate.
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As the tape is pulled away from the surface, the shape ex-
hibits hysteresis �Fig. 1�d��. As the top of the tape is returned
to its initial position, the shape remains stuck to the surface,
even past the distance where it first adhered.

This simple macroscale experiment allows us to introduce
some qualitative features of the adhesion transition, namely,
a competition between bending and long-range interaction, a
sharp transition in shape, and hysteresis. We present below a
numerical approach to quantify the behavior of similar, but
more general, systems. Note that there are other characteris-
tics of the macroscopic experiment that we will not attempt
to model in this work, namely, the presence of dynamic ef-
fects and force due to gravity.

III. THEORY

A. Setup

The system that we study is displayed schematically in
Fig. 2. Two sheets of length L, thickness a�L, and width d
�not shown� are clamped at their left-most edges separated
by a distance h and free to interact along their lengths. We
assume the deformations to be two dimensional and describe
each sheet by the vertical deformation of its centerline de-
noted yi, with i=1,2. While DNA and other semiflexible
polymers can become kinked, looped, and otherwise knotted,
this study will be limited to the case where the length ratio
�=h /L�1, i.e., the long-wavelength limit.

Under these assumptions, the total energy of the system is
given by

E =
1

2
B1�

0

L

y1��x1�2dx1 +
1

2
B2�

0

L

y2��x2�2dx2

+ �
0

L �
0

L

V�x1,x2,y1�x1�,y2�x2��dx1dx2, �1�

where Bi is the bending modulus of the ith sheet and xi is the
horizontal distance. The function V describes the interaction
potential-energy density between the two sheets, as yet un-
specified �note that the integration along the widths of the
sheets has already been performed formally in V�. Extremiz-
ing this functional yields mechanical equilibrium, as shown
by the following system of coupled integro-differential equa-
tions with boundary terms:

B1y1� + �
0

L

dx2
�V

�y1
= 0, �2�

B2y2� + �
0

L

dx1
�V

�y2
= 0, �3�

y1��y1�0
L = 0, y1��y1��0

L = 0, �4�

y2��y2�0
L = 0, y2��y2��0

L = 0. �5�

The boundary conditions are set by the physical conditions
of the sheets. While there are many possible cases that could
be examined, we will consider the common physical scenario
in which the sheets are fixed and clamped on the left
�y1�0�=h , y2�0�=0, yi��0�=0, i=1,2� and the right edges
of the sheets are force- and moment-free �yi��L�=yi��L�
=0, i=1,2�.

The potential V can be chosen to describe the physical
mechanism responsible for the adhesion between the sheets
�3,10,17�. In this paper, we are considering a general
long-range potential of the form V�1 /rn, where r
=��x1−x2�2+ �y1�x1�−y2�x2��2 and n is a positive integer.
More specifically, we set

(a) (b)

(c) (d)

FIG. 1. �Color online� An example of adhesion transition be-
tween flexible sheets. A piece of adhesive tape is charged electro-
statically and then moved slowly toward an uncharged surface, with
the adhesive side turned away from the surface. �a� The charged
tape is held far from the surface and no noticeable bending occurs;
�b� weak bending is exhibited just before the critical transition
point; �c� at a critical distance the tape moves rapidly toward the
surface; and �d� moving the tape away from the wall back to its
original position shows hysteretic behavior in the shape of the tape.

L

h
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x2

y1
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a

FIG. 2. A schematic representation of a two-dimensional cross
section for a system of two flexible sheets �see text for notation�.
Our analysis will be limited to the regime where �=h /L�1. The
thickness of each sheet is denoted a.

ARTHUR A. EVANS AND ERIC LAUGA PHYSICAL REVIEW E 79, 066116 �2009�

066116-2



V = 	
n=1

N
AnW�n


�x1 − x2�2 + �y1�x1� − y2�x2��2�n/2 , �6�

where � is the van der Waals-like radius, W is the strength of
the interaction, and N is the number of singular modes. The
sign of An determines whether the interaction is attractive or
repulsive. We will examine the more specific form of this
general potential where only two terms remain: an attractive
term n= p with Ap=−1 and a repulsive term n=q with Aq
=+1. This is the familiar Lennard-Jones-like potential that is
used to model intermolecular interactions �9�. We will also
work with the case that ��a, so no “true” contact between
the sheets will occur. In a related study, Oyharcabal and
Frisch �19� used a van der Waals-like medium-range poten-
tial with values of p=3 and q=9 to model the attraction
between a thin filament and a nonpolar substrate. Other ex-
amples include the van der Waals interaction between two
filaments �p=6, q=12�, polarized attraction between two
sheets �p=2, q� p�, Coulombic attraction �p=1, q� p�,
and many others �see Ref. �9� for a review�. In fact, a surface
with an arbitrary charge distribution can be represented by a
standard multipole expansion and, in a suitable far-field re-
gime, a charged polymer or conducting elastic sheet can be
modeled by this potential as well. Very generally, by speci-
fying the values of p and q, any number of potential interac-
tions can be represented, except in the rather exceptional
cases in which a power-law potential model is insufficient.

B. Dimensionless equations

The system described by Eqs. �2�–�5� is nondimensional-
ized by scaling the vertical displacements by h and horizon-
tal distances by L. In what follows, variables are understood
to be dimensionless. In that case, Eqs. �2�–�5� become

y1��x1� + �p,1I�x1,y ;p,2� − �q,1I�x1,y ;q,2� = 0, �7�

y2��x2� − �p,2I�x2,y ;p,1� + �q,2I�x2,y ;q,1� = 0, �8�

y1�0� = 1, y1��0� = y1��1� = y1��1� = 0, �9�

y2�0� = 0, y2��0� = y2��1� = y2��1� = 0, �10�

where �p,i= p�pL3−pW /Bi is a dimensionless quantity, and
where we have defined the integral I�xi ,y ;� ,k� as

I�xi,y ;�,k� = �
0

1 ydxk

��xi − xk�2 + �2y2��/2+1 , �11�

with y=y1�x1�−y2�x2�.

C. Asymptotics

We now take advantage of the long-wavelength approxi-
mation ���1� to simplify the integrals of the form
I�xi ,y ;� ,k�. Introducing the substitution x1−x2=�	, we ob-
tain

I�x1,y ;�,2�
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1

��+1�
−x1/�
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Expanding to leading order in �,
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��1 +
�

2

 + o� 1

��+1
 , �15�

where we have used u=	 / �y1�x1�−y2�x1��. The other inte-
grals in Eqs. �7� and �8� are evaluated similarly. Physically,
Eq. �15� expresses the fact that in the long-wavelength limit
L
h, each sheet sees the other one as being locally flat and
therefore, at leading order, the integration along the horizon-
tal direction can be performed first.

D. Identical sheets

Having derived above the general system of equations for
two interacting sheets, we now consider the simplified case
where the sheets are identical. Defining z�x� as the distance
between the sheets z�x�=y1�x�−y2�x�, Eqs. �7�–�10� become

z� + �� 1

zp −
�

zq
 = 0, �16�

z�0� = 1, z��0� = 0, �17�

z��1� = 0, z��1� = 0, �18�

where �= �2WJpL3�p� / �Bhp��, �= �� /h�q−pJq /Jp, and J�

=���1+�� /2� /��1+� /2�. Note that the divergent behavior
z=0 is prohibited thanks to the repulsive part of the potential
in Eq. �16�. The dimensionless quantity �, which we refer to
as the bending parameter, is a measure of the relative impor-
tance of the interaction forces to the elastic forces, while � is
a dimensionless van der Waals-like radius with a numerical
prefactor. Hence, the symmetric system is completely de-
scribed by the four parameters 
� ,� , p ,q�.

E. Numerics

The symmetric nonlinear system described by Eqs.
�16�–�18� is solved numerically on an adaptive grid to an
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absolute error tolerance 10−12, along with a standard
Newton-Raphson shooting method using MATLAB. A continu-
ation scheme in � and � allows an efficient computation of
nearby systems. This treatment is similar to that followed in
Ref. �19�.

IV. ADHESION TRANSITION

A. Main result

The main result of this paper is illustrated in Fig. 3. For
the particular values p=3, q=9, and �=0.05J9 /J3, we dis-
play the nondimensional bending energy of the sheets
EB—i.e., the sum of the first two terms in Eq. �1�—as a
function of the bending parameter �. Although here we have
chosen specific values for 
p ,q ,��, the results are similar for
other values, with some possible qualitative differences high-
lighted in the sections below.

The sudden shape changes quantified by the bending en-
ergy are reminiscent of the behavior observed experimentally
in Sec. II. For ��10−2, the two sheets are essentially free
standing, as indicated in Fig. 3�a�. As � is increased, the
sheets are attracted weakly to one another, resulting in a
small shape change �Fig. 3�b��. At a critical value of �, the
bending energy jumps discontinuously and the sheets

abruptly snap together �Fig. 3�c��. As � increases further, the
sheets become more tightly bound, with the unclamped por-
tion becoming smaller. If � is then decreased, the system
exhibits hysteretic behavior, with the sheets remaining ad-
hered as shown in Fig. 3�d� �dashed lines indicate the previ-
ous shape from Fig. 3�c��. As � is decreased further, still
there is another discontinuity in the energy, and the sheets
once again take on a qualitatively different shape �arclike�, as
displayed in Fig. 3�e�. Remarkably, there exists a second
�smaller� hysteresis loop on this branch of the energy profile.
The jump in the energy at this second hysteresis corresponds
to a large change in the contact between the sheet end points
and the slope of the sheets. Finally, for decreasing �, the
sheets return to the positions shown by Fig. 3�a� via another
sharp transition.

We also plot in Fig. 4 the dimensionless force y1��0� and
moment y1��0�, necessary to apply to the left edge of the first
sheet to maintain it clamped. For the values of 
p ,q ,�� con-
sidered �6, 12, and 0.15J12 /J6, respectively�, the system
models two filaments interacting via van der Waals forces.
Much like the shapes themselves, the forces and moments
undergo sharp transitions and exhibit hysteresis. Note that if
the sheets were free to interact, they would adhere along
their entire length, and a force would need to be applied to
one end in order to peel them apart. In essence, the same

EB

E0

(a)

(b)

(c)(d)

h

L

(e)

Ω
FIG. 3. �Color online� Dimensionless bending energy EB /E0 as a function of the bending parameter �, with p=3, q=9, and �

=0.05J9 /J3. Here, E0 is a typical bending energy E0=Bh2 /L3. Representative shapes of the two interacting sheets are shown in the different
regions. In �a�, the sheets are essentially straight. �b� The sheets are slightly bent due to the weak relative attraction. �c� Past a critical value
of �, the sheets abruptly adhere to one another. As � is decreased, the sheets retain their adhered character, although the shapes change, as
seen in �d� �dashed lines indicate the shape from �c��. There is also another sharp transition as � is decreased even more, and the sheets
detach into �e� a bent arclike shape. As � is decreased further, still there is a final sharp transition back to the original weakly attracted shapes
shown in �a�.
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effect is seen in our system. Hysteresis is known to occur in
the strong loading of cantilevers �22�, and recent experimen-
tal investigations into the peeling of CNTs from a substrate
have reported results qualitatively similar to ours �21�.

B. Phase transition and physical quantities

By viewing the shape change as a phase transition, where
the control parameter is � instead of temperature, we can
borrow several concepts from statistical physics in order to
further characterize our model system. The natural order pa-
rameter to assign is the distance between the sheets z�x�, as
z�x�=1 denotes totally unadhered sheets and z�x�=�1/�q−p�

corresponds to complete adhesion �see Eq. �16��. A natural
analogy exists between the energy functional given by Eq.
�1� and a one-dimensional magnetic system with two-
component spin subject to an external field �23�. In our sys-
tem, there is an energy penalty associated with deforming the
sheets �analogously, misaligning spins�, and there is an inter-
acting field that acts to order the system �analogously, the
external magnetic field�. It is known that even at zero tem-
perature, the magnetic system displays a phase transition at a
critical value of the ordering field �except in the thermody-
namic limit of the sheet length L→
�, and as such we could
expect such behavior from our system as the relative field
strength �i.e., �� is increased.

In analogy to the external field of the magnetic system,
we define an interaction energy density given by ��x�
=��−1 /zp+� /zq� and discuss the qualitative changes that
govern the phase behavior of the system by studying the

minima in the free energy �see Ref. �24� for a textbook treat-
ment�. When a local minimum appears or disappears along
the length of the sheets, we can expect a change in shape,
and whether this change is dramatic or smooth will corre-
spond to a first-order or second-order phase transition �first
order when �E /�� is discontinuous; second order when
�2E /��2 is discontinuous�.

In Fig. 5, we display a representative sampling of the
energy densities �bending and interaction energies� with their
associated shapes, for p=3, q=9, and �=0.05J9 /J3. We see
qualitatively different energy densities, confirming the tran-
sitions between three different phases. In Fig. 5�a�, the sheets
store little elastic energy and are only weakly attracted. Past
the critical adhesion point, the shape as displayed in Fig. 5�b�
now shows a large energetic favorability from the interaction
force, with large deformation energy penalties on the left
edges of the sheets and at the end of the unadhered length.
As the bending parameter is increased further, the spatial
location of the energy minima shifts, as displayed by Fig.
5�c�. The length of the adhered region �or domain wall� �
increases with � as ���−1/4, as expected from the boundary
layer scaling arising from Eq. �16�. This scaling is confirmed
by our numerical simulations �not reproduced here�. De-
creasing � and coming down on the hysteresis loop, at a
lower critical value of � the adhered sheets become arclike,
and the second local minimum in ��x� disappears �see Fig.
5�d��.

C. General behavior

Although our investigation to this point has considered
particular values for the parameters 
� , p ,q�, qualitative
changes in the hysteresis and transition behavior can be ob-
tained for different values of these parameters. Not only can
the hysteresis region be made to shrink, but it can also dis-
appear entirely. In addition, while the transitions seen so far
have been first-order, by tuning the model parameters this
transition can be made to become second-order.

These different behaviors are illustrated in Fig. 6, where
for convenience we have introduced the parameter b
=�Jp /Jq. As we saw above, there are three characteristic
shapes for the sheets that we will denote as weakly bent �W�,
adhered/clamped �C�, and arc shaped �A�. The areas that ex-
hibit each of these shapes are depicted in Fig. 6. In Figs. 6�a�
and 6�b�, we display the total energy �bending plus attrac-
tion� for a system with p=6 and q=12. These values model
the attraction between two thin nonpolar filaments, and the
characteristic shapes seen are similar to those in Fig. 3. If b
is increased, representing an increase in the minimum adhe-
sion distance between the fibers, the arc shapes and the as-
sociated phase transition vanish. Similarly for the case where
p=3 and q=9 �19�, increasing the value of b causes the
hysteresis region to shrink and the arc shape vanishes �Figs.
6�c� and 6�d��. Furthermore, the hysteresis region can be
made to disappear completely for p=2 and q=4 �Figs. 6�e�
and 6�f��.

The transformation of a first-order transition into a
second-order transition indicates that there may be a cusp
catastrophe in the parameter space we are exploring �25�. For

y���
1 (0)

y��
1 (0)

Ω
FIG. 4. �Color online� Dimensionless force y1��0� and moment

y1��0� on the left-hand side of the first sheet as a function of the
bending parameter � for values of p=6, q=12, and �=0.15J12 /J6.
Note the lack of a second hysteresis loop for these values of the
parameters.
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the case p=3 and q=9, we plot in Fig. 7 the bending energy
landscape as both � and b=�J3 /J9 are varied. For small
values of �, the first-order nature of the transition is appar-
ent. For a fixed value of �, increasing � decreases the area
of hysteresis until a critical value is reached where the hys-
teretic behavior vanishes completely.

D. Nonidentical sheets

We have considered so far the case where the two sheets
are identical. If we allow instead their bending rigidity to be
different, we now have two parameters �i= �2WJpL3�p� /
�Bih

p�� for i=1,2. In this case, the difference in rigidity
causes a change in both the equilibrium point of adhesion
and the critical values of �i. The different shapes can be
characterized by a phase diagram that maps the transition
points for different values of the two bending parameters, as
displayed in Fig. 8. Three distinct regions exist: multistabil-
ity of both arc shapes and weak bending �MS�, arc shapes
exclusively �A�, and adhered or clamped states �C�. As

shown in Fig. 8�a�, for small values of �2 and �1, weak
attraction occurs, unless the hysteretic regime has been en-
tered, in which case there will be adhesion �not shown�. As
�1 is increased past the fixed value of �2, the sheets adhere
in an asymmetric arc shape �Fig. 8�b��. This transition is of
first order, and the sheets snap together. As �1 crosses the
second-order transition threshold �dashed line in Fig. 8�, the
shapes smoothly evolve into a clamped phase �Fig. 8�c��. In
this final clamped state, the position of the adhered portion of
the sheets depends on the relative values of the bending pa-
rameters �Fig. 8�d��.

E. Adhesion of three sheets

We now consider the adhesion transition for an array of
multiple sheets and illustrate the complexity and richness of
the system considered on a few examples. Assuming the
nearest-sheet interaction for simplicity, with identical poten-
tials, we can easily extend the modeling approach offered
above to the case of N interacting sheets �26�. The equation

(a) (b) (c) (d)

Ψ(x)

[y��(x)]2

x x x x

FIG. 5. �Color online� Bending energy density �y��x��2 and interaction energy density ��x� for various sheet shapes �top� along the
hysteresis loop for p=3, q=9, and �=0.05J9 /J3. �a� Weak bending ��=0.5�, with ends of the sheets approximately straight �zero bending
energy�; �b� tightly clamped configuration ��=0.89� with the local minimum in the interaction energy density denoting the end of the
unclamped region. The local minimum in the interaction energy is in the same vicinity, but not at the same point; �c� hysteretic-clamped
shape ��=0.5�, with vertical dashed line indicating the position of the local maximum of the bending energy density, and the vertical dotted
line indicates where this local maximum was in �b�. The red �outer horizontal dashed� line in the upper inset denotes the weakly bent shape
from �a�, while the blue �inner horizontal dashed� line denotes the shape from �b�. �d� Arc shape ��=0.11�, with a notable small local
maximum in ��x� near the end point indicating localized adhesion.
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of shape for the ith sheet 1� i�N is then given by

yi� + �i	
j

sgn�i − j�� 1

�yi − yj�p
−

�

�yi − yj�q
� = 0, �19�

where the sum on j runs over nearest neighbors, and �i, p, q,
and � are defined as in the N=2 case.

For multiple sheets, any asymmetry in the system now
plays a role in determining the order in which sheets adhere
to one another. For three sheets, unless there is perfect sym-
metry between the top and bottom sheets, the adhesion
events always occur in a sequential fashion �see Figs. 9 and
10�. Specifically, two sheets first come together and then ad-
here to the third sheet for a further increase in the relevant
bending parameter. By locating the middle beam slightly
closer to one of its neighbors, this sequence can be made to
occur preferentially between two previously chosen sheets
�by changing the clamping distance, the competition between
bending and interaction energy changes, and in effect one of
the bending parameters gets a boost from the geometric
asymmetry�. For three identical sheets, as the bending pa-

p=3,q=9
b=0.3

p=6,q=12 p=3,q=9
b=0.15

p=6,q=12
b=0.3

p=2,q=4
b=0.3

p=2,q=4
b=0.15

(e)(a)

(b) (d) (f)

(c)

W

W W

W

W

W

A

A

A

C

C

C
C

A

Ω Ω Ω

Ω Ω Ω

E

E0

E

E0

b=0.15

FIG. 6. �Color online� A comparison of total energies for the system �bending+attraction energy� for different values of p, q, and �. For
convenience, we have introduced the parameter b=�Jp /Jq. �a� For p=6 and q=12, these values model the attraction between two thin
nonpolar filaments. Dotted lines denote sharp phase transitions, while dashed lines denote smooth transitions. This system displays all three
characteristic shapes �weakly bent �W�; clamped �C�; arc shaped �A��; �b� by changing the value of b so that the sheets do not come as close
during adhesion, the tightly clamped region is seen to disappear; ��c� and �d�� for p=3 and q=9, further qualitative changes shrink the
hysteresis region and cause the disappearance of characteristic shapes; ��e� and �f�� in the case where p=2 and q=4, the hysteresis can
disappear completely even in the presence of a transition.
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Ω
βJ3/J9

FIG. 7. �Color online� Bending energy landscape for p=3 and
q=9 over a range of � and �. Note that there is a distinct cusp in
this parameter space, indicative of the “catastrophic” behavior that
is associated with first-order phase transitions.
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rameters are increased, there is a transition from the weakly
attracted phase �Figs. 9�a� and 10�a�� to a regime where two
sheets adhere to each other �Figs. 9�b� and 10�b��. As the
bending parameters are further increased, a subsequent tran-
sition occurs where all three sheets come together �Figs. 9�c�
and 10�c��. As for the N=2 case, tuning the value of � can
change the nature of the first adhesion transition �a→b�
from first order �Fig. 9� to second order �Fig. 10�. The second
adhesion transition, however, remains first order.

F. Adhesion of four sheets

When a fourth sheet is added, the adhesion transitions can
be made to occur in either a hierarchical or a sequential
fashion. This is illustrated in Figs. 11 and 12.

We show in Fig. 11 an example of sequential adhesion for
four identical sheets, similar to the one discussed in the
three-sheet case. The values of p, q, and �, as well as the
geometric asymmetry, have been chosen so that there is a
mix of first-order and second-order transitions �see figure
captions�. The relative distances between the four sheets are
as follows. The top sheet is pinned at y=3h, the second high-
est at y=1.8h, the third highest at y=0.7h, and the final sheet
at y=0. As all four bending parameters are increased at the
same rate, the sheets start by a state of weak attraction, with
more bending exhibited by the sheets that are closer to one
another. Past a critical value of the bending parameters, there
is a second-order transition for these values of the model
parameters, and the two bottom sheets adhere �Fig. 11�b��.
As the bending parameters are increased further, another
second-order transition takes place and the lower three sheets
adhere �Fig. 11�c��. Finally, a final first-order transition oc-
curs when the four sheets adhere �Fig. 11�d��. Note the non-
monotonic variation of the bending energy in the second-
highest sheet �inset of Fig. 11�.

An example of hierarchical adhesion transition is dis-
played in Fig. 12, where we plot the total bending energy
profile for a symmetric four-sheet system �i.e., there is no
asymmetry in the relative distances between the sheets�. As
the bending parameters are increased, a second-order phase

MS

C
A

(a)

(a)

(b)

(b) (c)

(d)

(c)

(d)

Ω1

Ω2

FIG. 8. �Color online� Phase diagram of sheets with asymmetric
bending parameter for p=3, q=9, and �=0.15J3 /J9. There is a
region of multiple stability �MS� where arc shapes and weak bend-
ing are both possible, �a� arc shapes only and �c� tightly clamped
sheets. �a� In this region, the sheets are either bending weakly or, in
the hysteretic case, they exhibit arc shapes; �b� as �1 is increased,
the sheets snap together into an arc shape �a first-order transition�;
�c� as �1 increases further, there is a smooth variation from arc
shapes into clamped �i.e., a second-order transition �dashed line��;
and �d� if �1 remains fixed and �2 is decreased, the bottom sheet
will become relatively more rigid, producing a net shift in the equi-
librium adhesion position �the dashed lines indicate the adhesion
shape in �c��.

Ω1

(a)

(b)

(c)EBtot

E0

FIG. 9. �Color online� Sequential adhesion transition for three
sheets �1,1 ,1�→ �1,2�→ �3�. Two consecutive first-order transi-
tions occurring for the total bending energy of the sheets as a func-
tion of the �identical� bending parameters in the case p=3, q=9,
and �=0.35J9 /J3. An inherent asymmetry has been introduced in
that the middle sheet is pinned slightly closer to the bottom sheet
than to the top one �5% difference in height�. �a� Weak attraction;
�b� as the bending parameters are increased, a first-order adhesion
transition takes place where two of the three sheets adhere; and �c�
a second first-order transition occurs when the three sheets adhere.
Both transitions display hysteresis.
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(b)

(c)

EBtot

E0

FIG. 10. �Color online� Same as Fig. 9, but for �=0.45J9 /J3. In
contrast with the case depicted in Fig. 9, the first adhesion transition
is now of second order.
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transition leads to an adhesion between two pairs of sheets
�Fig. 12�a��. First-order transitions are also possible for other
values of the model parameters �not shown here�. As the
bending parameters are increased further, a first-order transi-
tion occurs and the four sheets all adhere to one another �Fig.
12�b��. Remarkably, in this case, the first-order transition
does not display any hysteresis.

V. CONCLUSION

In this paper, we have studied the prototypical dry adhe-
sion problem between flexible sheets or filaments and fo-
cused on their morphological transitions. Motivated by a
simple macroscale experiment showing hysteretic adhesion,
we have introduced a model of dry adhesion between two

elastic slender sheets, interacting via a power-law potential,
and studied numerically the transitions in their conforma-
tions. Given a particular form of the interaction potential, the
system is completely described by a single dimensionless
parameter quantifying the relative effect of the long-range
attraction and bending rigidity and governing the nature of
the adhesion transitions �first or second order�. We have also
generalized the model to multiple sheets, showing—in
particular—that additional geometric considerations dictate
the order in which structures adhere to each other. The physi-
cal systems modeled here include the interactions between
charged sheets or between nonpolar filaments. Future work
will focus on the presence of thermal fluctuations allowing
the adhered states to “jump” from one state to another. We
will also consider the case where the filaments are actuated
and will include the effect of hydrodynamic interactions. Fi-
nally, using an approach similar to ours, the adhesion of
three-dimensional structures such as coiled filaments or pla-
nar arrays could be investigated.
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