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A fluid droplet located on a superhydrophobic surface makes contact with the surface
only at small isolated regions, and is mostly in contact with the surrounding air.
As a result, a fluid in motion near such a surface experiences very low friction, and
superhydrophobic surfaces display strong drag reduction in the laminar regime. Here
we consider theoretically a superhydrophobic surface composed of circular posts
(so-called fakir geometry) located on a planar rectangular lattice. Using a
superposition of point forces with suitably spatially dependent strength, we derive
the effective surface-slip length for a planar shear flow on such a fakir-like surface
as the solution to an infinite series of linear equations. In the asymptotic limit
of small surface coverage by the posts, the series can be interpreted as Riemann
sums, and the slip length can be obtained analytically. For posts on a square
lattice, our analytical prediction of the dimensionless slip length, in the low surface
coverage limit, is in excellent quantitative agreement with previous numerical
computations.
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1. Introduction

When a small droplet of liquid is deposited on a hydrophobic surface whose
geometry is sufficiently rough, in certain situations the liquid will not fill the roughness
grooves but will instead adopt a lower-energy configuration, sometimes called a fakir
state, where it remains on top of the surface topography (figure 1a). Exemplified by the
Lotus leaf, surfaces for which this situation occurs are referred to as superhydrophobic
(or more generally, super-repellent), and their geometrical and physical description
has been the subject of several recent studies (Onda et al. 1996; Bico, Marzolin &
Quére 1999; Feng et al. 2002; de Gennes F. Brochard-Wyart & Quéré 2004; Quéré
2008 ; Roach, Shirtcliffe & Newton 2008).

One of the remarkable properties of superhydrophobic surfaces is their low friction
opposing the flow (Rothstein 2010). Since the fluid next to such a surface makes
contact with the solid at only a few isolated points and is mostly in contact with
air, the shear stresses opposing fluid motion are small, and fluids in fakir states can
move very easily. In these situations, the surface friction is usually quantified by a
slip length, 4, which is the fictitious distance below the surface where the no-slip
condition would be valid on average (Neto et al. 2005; Bocquet & Barrat 2007;
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FIGURE 1. Fakir-like superhydrophobic surfaces and set-up for our calculation. (a) A
droplet deposited on surface composed of tall hydrophobic posts can remain in a fakir
superhydrophobic state where it partially sits on the posts and partially on the air. (b) Definition
sketches. A viscous fluid of shear viscosity w sits in a fakir state on a two-dimensional array of
circular posts. The posts have radius a, and are arranged on a rectangular lattice of periodicity
D and L along the x- and y-directions, respectively. A shear flow with shear rate y is imposed
in the fluid along the x-direction, and perpendicularly to the surface. In-between the posts, the
fluid—air interface is assumed to remain flat and parallel to the superhydrophobic surface.

Lauga, Brenner & Stone 2007); no-slip corresponds to 4 = 0, while superhydrophobic
surfaces with 4 > 0 have a lower effective friction than no-slip.

From a practical standpoint, many different methods exist to design and produce
superhydrophobic surfaces (Feng et al. 2002; Roach et al. 2008), and they lead to
surfaces with either random or controlled geometrical features. Surfaces with random
topography are known to show slip (Gogte et al. 2005; Choi & Kim 2006; Joseph
et al. 2006). Planar surfaces with controlled geometry are of two types. The first
type of surface is associated with one-dimensional features such as long grooves,
usually aligned parallel or perpendicular to the flow direction, and for which a lot
of experimental (Ou, Perot & Rothstein 2004; Ou & Rothstein 2005; Choi et al.
2006; Truesdell et al. 2006; Maynes et al. 2007; Tsai et al. 2009) and modelling
(Lauga & Stone 2003; Cottin-Bizonne et al. 2004; Davies et al. 2006; Maynes et al.
2007; Ng & Wang 2009; Teo & Khoo 2009) work has characterized their frictional
properties.

The second type of surface is associated with two-dimensional patterning, usually
a series of vertical posts distributed on a regular lattice, as illustrated schematically
in figure 1(a). Only a handful of studies have focused on the friction of this type of
surface, either experimentally (Lee, Choi & Kim 2008) or theoretically (Ybert et al.
2007; Ng & Wang 2010). In the limit of low solid fraction, these two-dimensional
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surfaces are expected, however, to display much lower friction (algebraic divergence
of the slip length) than one-dimensional surfaces (logarithmic divergence) (Ybert
et al. 2007), and it is thus important to be able to accurately predict their friction
properties. This is the goal of the present paper.

Previous theoretical work focusing on surfaces composed of posts on a lattice,
found that if ¢ < 1 denotes the areal density of the horizontal cross-section of the
posts, the effective slip length of the superhydrophobic surface, non-dimensionalized
by the typical distance, L, between the posts, behaves in the limit of low ¢, as

A A

L e
(Ybert et al. 2007; Ng & Wang 2010). In (1.1), the positive coefficients, A and B,
depend on the lattice and posts geometry but not ¢,, and can be fitted to numerical
computations, while the square-root scaling can be physically rationalized as follows.
The shear stress acting on the posts scales as © ~ ¢, uy;,, where w is the fluid viscosity
and y; is the typical shear rate around a post. If U is the typical fluid velocity between
the posts, and a is the typical post radius, we have p, ~ U/a, and since 4 ~ uU/t we
obtain 4 ~ a/¢,. As the solid fraction scales as ¢; ~ (a/L)?, we have a ~ L¢!/?, and
hence we obtain the square-root scaling of (1.1), namely /L ~ 1/¢* (Ybert et al.
2007).

In this study, we consider the simplest possible geometry for flow over a fakir-
like superhydrophobic surface, namely vertical posts with circular cross-section
located on a regular rectangular lattice, and we provide two results. Firstly, we
present an analytical method based on a linear superposition of flow singularities to
accurately determine the friction (i.e. the effective surface-slip length) for all surface
coverage. Secondly, by asymptotically considering the case of low solid fraction, ¢;,
we mathematically derive the scaling coefficients A and B governing (1.1), thereby
predicting analytically the effective surface-slip length. Our results are compared to
previous computational work, and show excellent agreement.

—B (1.1)

2. Calculation of the effective surface-slip length
2.1. Problem outline

Our geometry is illustrated in figure 1(b). A viscous fluid of viscosity u is located
in a fakir state on a two-dimensional array of circular posts. The posts have radius
a, and are arranged on a rectangular lattice of periodicity D and L along the x-
and y-directions, respectively, with 2a < min(D, L). A shear flow with shear rate y is
imposed in the far field by the prescribed velocity along the x-direction, with shear
perpendicularly to the surface along the z-direction. The prescribed velocity is thus
given by

v~ (pz+U)e, as z— o, (2.1)

where e,, e,, e, denote unit vectors parallel to the axes, and thus U denotes the
effective slip velocity at the fakir contact plane, z = 0. In-between the posts, the fluid—
air interface is assumed to remain flat and parallel to the underlying superhydrophobic
surface with no shear acting on it. The flow satisfies the no-slip boundary condition
on the top of the circular posts.

Our aim is to accurately estimate the effective slip length, that is, the mean
speed/mean shear ratio at the superhydrophobic plane. As in our recent calculation
for a moving grid (Davis & Lauga 2009), here the basic tool is the Stokes flow
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generated by a similarly periodic array of aligned, parallel point forces directed
in their plane. In addition, the force-density function is assumed, for the leading
approximation, to have an inverse square root rim singularity, as in the creeping flow
past a disk. The resulting linear system has matrix elements that are interpreted as
Riemann sums and the limit double integrals are easily evaluated. The dominant
error arises from the missing term in the double sum and thus precise estimates can
be obtained for the two coefficients in (1.1).

2.2. Calculation using a superposition of singularities

The Reynolds number of the viscous incompressible flow is assumed to be sufficiently
small for the velocity field v to satisfy the creeping flow (Stokes) equations (Happel
& Brenner 1965)

uViv = Vp, V-v=0, (2.2)

where p is the dynamic pressure. The fluid motion can be represented as due to a
distribution of tangentially directed Stokeslets over the circular regions, augmented
by the uniform flow Ue,. The density functions must be both periodic in two
dimensions and symmetric with respect to the sides of each rectangle. The field due
to a two-dimensional rectangular array, periods D and L, of point forces of strength
4npuU /DL directed parallel to the flow at infinity, is governed by

V"UA =0, (23)

V?vy —Vpa = dnuU/DLe,5(z) Z Z 8(x —n1D)8(y —n,L),

n1:—?C ny=—0o0 (24)
4 U
Tm ex (z) Z Z exp[2n1<@+@>}.
m|=—00 my=—00
The m; = 0 = m; term in (2.4) yields the anticipated shear at infinity and, as in

Davis & Lauga (2009), the flow generated by the oscillatory forcing is readily found
by Fourier transform techniques (Hasimoto 1959). Thus the flow governed by (2.4) is
compactly expressed as

2 3S 38
va=U K i —Sl>ex+V82}, pa = pU—1, (2.5)
X

DL dx

where, with a prime denoting that the m; = 0 = m, term is missing,

ZZ V/(mi/D) +(m2/L)2
imx  imsy mi\ 2 my\?2
2“( D T _Z\/<D> +(L>>] (2.6)

X exp

and

1 , 1 1
8n2/DL mzlmzz (my/D)?* + (my/L)? <\/(m1/D)2 + (m2/L)? T 2TEZ>

X exp {m <imD1x + imLzy — 2\/imi/DP + (mz/L)z)], (2.7)

S =~—
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with §; = V25,. Only the velocities at the posts and at infinity are needed for the
subsequent analysis. The solution (2.5) shows that

2nUz

vy~ ——e, as 7 — o0, 2.8
as well as
9%S
[Val:mo = Ue, < Si+ o 22)
=0

ZZ Com,my) p[zm(’%x + %)} (2.9)

mi my \/(ml/D)2+(m2/L)2
where, after substitution of (2.6) and (2.7),

_ (m/D)*
C(m1, I’I’lz) 1— E(m /D)2 T (mz/L)Z (210)

With suitably scaled force-density functions in the circular regions, the total flow
field is given by

v="Ue, + /7I /a [i: J?Eg;) coﬂnﬁ]
-nJO n=0

X valrcosd —acosB,rsinfd —asin B, zladadp, (2.11)

in which the symmetry conditions restrict the density function to even cosines. The
flow at infinity is determined by substituting (2.8) into (2.11), which gives

2UZ // [an(a)cos%ﬂ]adadﬂ as z— o0 (2.12)

v~Ue, +

Comparison with (2.1) then shows that the shear rate is given by

)'/= 4nU /fo(oz)ada (2.13)

Thus only the mean force density contributes to the required slip length, 4, given by

li JDL 2
_ slipspeed U _ a ' (2.14)

shear rate  y 4r / fole)a da
0

No-slip on the surface of the posts is achieved by enforcing v =0at z =0, r < a.
The substitution of (2.9) into (2.11) gives the condition

1 o C(m , M)
- naz\/ﬁ/n/o lan(a)cosznﬂ] Sy 2

mp  mz

X exp[2miM {r cos(0 — ) —asin(@ — ¢)}adadB (0<r <a,—m <0 <m), (2.15)

where we have defined
2

M(cos y, siny) = (% mf) . (2.16)
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We next make two uses of the integral
1 T
- / cos 2np exp[+2niMa cos(B — ¥)]dB = 2(—1)" Jr,(2nM«) cos 2ni, (2.17)

where J, refers to the Bessel function of the first kind of order p, first for a direct
evaluation in (2.15) which gives,

2 3 .  Clmy, m3)
- a2\/ﬁ/ an(a)( 1) ZZ m1 2 —— 1, (2nMa)

mp  my

X exp[2miMr cos(@ —Y)]cos2nyada (0<r<a,—n<6<m), (2.18)

and then to write down the Fourier coefficients in (2.18). Thus we obtain

2 & e ,C(my, my)
Sko = az\/ﬁ/o ;fu(a)(_l) kmzlmzz szjzn(szMa)

X Ju(2nMr)cos2kyr cos2npada (0<r <a,k =0), (2.19)

where §;,, denotes the Kronecker delta.
We next make two uses of the integral

1 x2n+1J2 (bx) \/7
L T dx = Jon b) n=0,b>0 2.20
A e T +12(0)  ( ), (2.20)

first by introducing the conveniently scaled, inverse square root approximations for
the force-density functions,

a2n Cn

fala) ~ (n=0), (2.21)

a1 a2 —a
whose substitution in (2.19) yields

Sko = ch( DA kzz C(ml’mz)J2n+1/2(2TCMa)

mp  ma

X Jy(2nMr)cos 2k1/f cos2ny (0<r<a, k=0). (222)

Then the immaterial r-dependence can be jettisoned by applying the operator,

a e 2k dr
/O(Q) T (2.23)

to (2.22), in order to obtain

Z n( l)n kzz C(ml’mz J2n+1/2(2TCMa)

mp  mp

X Jot12(2nMa) cos 2k cos 2nyr - (k = 0).  (2.24)

Equation (2.24) is a symmetric infinite system of linear equations for the coefficients
{ca;n = 0}. The substitution of (2.21) into (2.14) then leads to the slip length as

_ ¥DL (2.25)

47IC() '
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2.3. Asymptotic estimate of A in the low-¢, limit
An asymptotic estimate of the coefficients {c,;n > 0} is found by noting that

c
ZZ (’”1’ ”“ S ) e p(2Ma) Jags1 (2 M a) oS 2k cos 2n, (2.26)
with
2 2
C(my,my) =1—Lcos’y, Ma = \/<””Dl“> + (%) , (2.27)

is a Riemann sum, with increments (a/D, a/L) in (x, y). In terms of polar coordinates
(r, ¥), the integral has the separable form
3TE(S,,k
2¢,(4n + 1)’
(2.28)

T o0 dr
/ /0 (1 =1 cos® ¥) Jous1)2(2mr) Jogs1/2(21r) cos 2k cos anT dy =

where we have used Neumann’s symbol, ¢ = 1, €, = 2(n > 0). The corresponding
solution of (2.24) is

da

O 3 /DL’

whose substitution into (2.14) yields the dimensionless slip coefficient,

A N
N 3. /DL _ 3 T (230)

¢, =0(n > 0), (2.29)

DL 16a 16\ ¢,

where ¢, = ma?/DL is the fractional surface area covered by the circular regions. We
note that this leading order term is symmetric in (D, L), the respective periods along
and across the imposed shear flow, corresponding, therefore, to an isotropic surface
friction at this order.

The leading error in the estimate (2.30) is due to the absence of a term associated
with m; = 0 = m, in the Riemann sum. If the latter is regarded as having central
function values, then the integrable singularity at the origin can be handled by exact
integration over the rectangle centred at (0, 0), assisted by small argument estimates
of the Bessel functions. Then (2.28) has the additional term

Yqp2nt2k+1 a/2L  pa/2D 2 ) —

g2\ L2
<DL> ] . (231)

which is negligible unless n = k = 0. Evaluation for this case shows that (2.30) has

the more accurate form,
\/£ln D+\/1+22 —i—l Bln £+”1+£
D L 2V L D D?

(2.32)

=0

A 3 T l

JDL 16\ ¢, =

As a difference with the leading order term, the next-order term in (2.32) is not
symmetric in (D, L), and therefore, rectangular lattices display anisotropic friction.
Also note that this next-order term does not depend on the post radius a (and,
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FIGURE 2. Results of our model, and comparison with previous computational and
experimental work, in the case of a square lattice. Effective slip length, 4/L, as a function of
the solid surface fraction, ¢ (a), and as a function of 1/,/¢, (b). Solid line: simple asymptotic
low ¢, model (2.33), empty squares: computations by Ng & Wang (2010), filled squares:
computations by Ybert et al. (2007) and filled circles: experimental results by Lee et al. (2008).

therefore, ¢,). For a square array (L = D), (2.32) simplifies to

A 3 /n 3

T~ 16V s o In(1 4 v/2), (2.33)

in the limit of low ¢;.

3. Results and comparison with previous work

We now compare the results of our asymptotic model to previous work considering
circular posts organized on a square array. The comparison is displayed in figure 2,
where we show the effective slip length, /L, as a function of the solid surface fraction,
¢, (a) and as a function of 1/\/¢7S (b). The solid line is our model, namely (2.33). The
symbols are data from previous work. Specifically, empty squares are computations
by Ng & Wang (2010), filled squares are computations by Ybert et al. (2007) and
filled circles are experimental results by Lee et al. (2008).

The quantitative agreement between our model and previous numerical work
is remarkable. The square root dependence on ¢, evident in figure 2(b) is indeed
reproduced by our model. For the coefficient A in (1.1), here we predict A = 3ﬁ /16 ~
0.332. In their numerical simulations, Ybert et al. (2007) fit (1.1) to their results and
obtain A = 0.325, whereas Ng & Wang (2010) fit to A = 0.34, which are both within
about 2 % of our prediction.

For the second coefficient in (1.1), we showed above that a term independent
of ¢, is indeed the next-order term in the asymptotic expansion, and we obtained
B =3In(1+ ﬁ)/2n ~ 0.421. Ybert et al. (2007) fit B = 0.44, which is less than 5%
larger, while Ng & Wang (2010) obtain B = 0.468, a value about 10 % above our
result.

Evaluating the slip lengths at the same surface fraction, ¢, as in Ng & Wang (2010)
and Ybert et al. (2007), we find that the error between our simple model, (2.33), and
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the numerics from Ng & Wang (2010) is about 1.8 %, while the error between our
model and the computations of Ybert et al. (2007) is about 3.9 %.

Our geometry implies that ¢, < m/4, but the asymptotic estimate (2.33) loses
validity at lower values, as seen in the right-hand side of figure 2(a), and as illustrated
by its prediction of no-slip (4 = 0) at ¢, = n3/[8In(1 + ﬁ)]z ~ 62 %.

Regarding the comparison with the experiments of Lee et al. (2008), we see that our
model (and past computations) are able to predict the correct order of magnitude of
the slip length, but do not capture the exact dependence on the surface friction, which
appears to be weaker than inverse square root (see figure 2b). This disagreement is
likely due to the difference in flow field. Lee et al. (2008) measure the friction by using
a cone-and-plate rheometer with rotation axis perpendicular to the surface plane. As
a result, the flow in their device has circular streamlines, and is not always aligned
with the lattice periodicity. As a difference, in this study, as well as in Ybert et al.
(2007) and Ng & Wang (2010), the flow considered is a planar shear flow aligned
with the lattice period.

4. Conclusion

In this study, we considered theoretically shear flow past fakir-like
superhydrophobic surfaces composed of circular posts located on a doubly periodic
rectangular lattice. Using a superposition of point forces with suitably spatially
dependent strength, we obtained the total flow as an infinite series of linear equations.
In the asymptotic limit of small surface coverage by the posts, the series can be
interpreted as Riemann sums, which allowed us to derive analytically the effective
surface-slip length in the form of (1.1). In the case of a square lattice, our results were
found to be in excellent quantitative agreement with previous numerical computations.
Future work will focus on embedding such low-friction-fakir surface on a curved
substrate (for example, a sphere), and attempting to predict its mobility coefficient in
a viscous fluid.
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Science Foundation (Grant CBET-0746285 to E.L.).

REFERENCES

Bico, J., MARZOLIN, C. & QUERE, D. 1999 Pearl drops. Europhys. Lett. 47, 220-226.

BocquEr, L. & BaARrAT, J.-L. 2007 Flow boundary conditions: from nano- to micro-scales. Soft
Matter 3, 685-693.

CHoi, C. H. & Kim, C. J. 2006 Large slip of aqueous liquid flow over a nanoengineered
superhydrophobic surface. Phys. Rev. Lett. 96, 066001.

CHol, C. H., ULMaNELLA, U., Kim, J.,, Ho, C. M. & Kim, C. J. 2006 Effective slip and friction
reduction in nanograted superhydrophobic microchannels. Phys. Fluids 18, 087105.

COTTIN-B1ZONNE, C., BARENTIN, C., CHARLAIX, E., BOCQUET, L. & BaRrrart, J. L. 2004 Dynamics of
simple liquids at heterogeneous surfaces: molecular-dynamics simulations and hydrodynamic
description. Eur. Phys. J. E 15, 427-438.

DaviEs, J., MAYNES, D., WEBB, B. W. & WooLFORD, B. 2006 Laminar flow in a microchannel with
superhydrophobic walls exhibiting transverse ribs. Phys. Fluids 18, 087110.

Davis, A. M. J. & Lauca, E. 2009 The friction of a mesh-like super-hydrophobic surface. Phys.
Fluids 21, 113101.



Hydrodynamic friction of fakir-like superhydrophobic surfaces 411

Feng, L., L1, S. H, L1, Y. S, L1, H. J., ZHANG, L. J., ZHaAlL J., SONG, Y. L., Liu, B. Q., Jiang, L.
& Zuu, D. B. 2002 Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14,
1857-1860.

DE GENNES F. BROCHARD-WYART, P.-G. & QUERE, D. 2004 Capillarity and Wetting Phenomena:
Drops, Bubbles, Pearls, Waves. Springer.

GOGTE, S., VOROBIEFF, P.,, TRUESDELL, R., MaMMOLI, A., VAN SwoL, F., SHAH, P. & BRINKER, C. J.
2005 Effective slip on textured superhydrophobic surfaces. Phys. Fluids 17, 051701.

HaAPPEL, J. & BRENNER, H. 1965 Low Reynolds Number Hydrodynamics. Prentice Hall.

HasiMoro, H. 1959 On the periodic fundamental solutions of the Stokes equations and their
application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317-328.

JosepH, P., CoTTIN-BI1ZONNE, C., BENOIT, J. M., YBERT, C., JOURNET, C., TABELING, P. & BOCQUET, L.
2006 Slippage of water past superhydrophobic carbon nanotube forests in microchannels.
Phys. Rev. Lett. 97, 156104.

LAUGA, E., BRENNER, M. P. & StoNE, H. A. 2007 Microfluidics: the no-slip boundary condition. In
Handbook of Experimental Fluid Dynamics (ed. A. Yarin, C. Tropea & J. F. Foss), Chap. 19,
pp. 1219-1240. Springer.

LaucGa, E. & Stong, H. A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489,
55-717.

LEg, C., CHol, C. H. & KM, C. J. 2008 Structured surfaces for a giant liquid slip. Phys. Rev. Lett.
101, 064501.

MAavYNES, D., JEFrs, K., WooLFORD, B. & WEBB, B. W. 2007 Laminar flow in a microchannel with
hydrophobic surface patterned microribs oriented parallel to the flow direction. Phys. Fluids
19, 093603.

NEeto, C., Evans, D. R., BoNaccurso, E., Burt, H.-J. & CRraig, V. S. J. 2005 Boundary slip in
Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859-2897.

NG, C.-O. & WaNG, C. Y. 2009 Stokes shear flow over a grating: implications for superhydrophobic
slip. Phys. Fluids 21, 013602.

NG, C.-O. & WaNG, C. Y. 2010 Apparent slip arising from Stokes shear flow over a bidimensional
patterned surface. Microfluid Nanofluid 8, 361-371.

OnDA, T., SHIBUICH], S., SATOH, N. & Tsuii, K. 1996 Super-water-repellent fractal surfaces. Langmuir
12, 2125-2127.

Ou, J., Peror, B. & ROTHSTEIN, J. P. 2004 Laminar drag reduction in microchannels using
ultrahydrophobic surfaces. Phys. Fluids 16, 4635-4643.

Ou, J. & RoOTHSTEIN, J. P. 2005 Drag reduction and u-PIV measurements of the flow past
ultrahydrophobic surfaces. Phys. Fluids 17, 103606.

QUERE, D. 2008 Wetting and roughness. Annu. Rev. Fluid Mech. 38, 71-99.

RoacH, P, SHIRTCLIFFE, N. J. & NewTON, M. 1. 2008 Progress in superhydrophobic surface
development. Soft Matter 4, 224-240.

ROTHSTEIN, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89-1009.

Teo, C. J. & KHoo, B. C. 2009 Analysis of Stokes flow in microchannels with superhydrophobic
surfaces containing a periodic array of micro-grooves. Microffuid Nanofluid 7, 353-382.
TRUESDELL, R., MAMMOLI, A., VOROBIEFF, P., VAN SwoL, F. & BRINKER, C. J. 2006 Drag reduction

on a patterned superhydrophobic surface. Phys. Rev. Lett. 97, 044504.

Tsal, P. C., PETERS, A. M., PiraT, C., WESSLING, M., LAMMERTINK, R. G. H. & Lonsg, D. 2009
Quantifying effective slip length over micropatterned hydrophobic surfaces. Phys. Fluids 21,
112002.

YBERT, C., BARENTIN, C., COTTIN-B1ZONNE, C., JOSEPH, P. & BoCQUET, L. 2007 Achieving large slip
with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19, 123601.



