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When a liquid droplet is located above a super-hydrophobic surface, it only barely touches the solid
portion of the surface, and therefore slides very easily on it. More generally, super-hydrophobic
surfaces have been shown to lead to significant reduction in viscous friction in the laminar regime,
so it is of interest to quantify their effective slipping properties as a function of their geometric
characteristics. Most previous studies considered flows bounded by arrays of either long grooves, or
isolated solid pillars on an otherwise flat solid substrate, and for which therefore the surrounding air
constitutes the continuous phase. Here we consider instead the case where the super-hydrophobic
surface is made of isolated holes in an otherwise continuous no-slip surface, and specifically focus
on the mesh-like geometry recently achieved experimentally. We present an analytical method to
calculate the friction of such a surface in the case where the mesh is thin. The results for the
effective slip length of the surface are computed, compared to simple estimates, and a practical fit
is proposed displaying a logarithmic dependence on the area fraction of the solid surface. © 2009
American Institute of Physics. �doi:10.1063/1.3250947�

I. INTRODUCTION

Among the fascinating flow phenomena occurring on
small scales,1,2 super-hydrophobicity offers a unique bridge
between microscopic features and macroscopic behavior.3–6

Super-hydrophobic surfaces are nonwetting surfaces which
possess sufficiently large geometrical roughness that a liquid
droplet deposited on the surface would not fill the grooves of
the surface roughness, but instead remain in a fakir-like state
where the droplet only touches the surface at the edge of the
roughness �Fig. 1�a��. As a result, super-hydrophobic sur-
faces possess very high effective contact angles and display
remarkable macroscale wetting properties.3–6

One particularly interesting characteristic of super-
hydrophobic surfaces is their low viscous friction. Since fluid
in contact with the surface only barely touches it, but is
instead mostly in contact with the surrounding air, small
droplets can roll very easily, a phenomenon known as the
lotus-leaf effect. In general, super-hydrophobic surfaces are
expected to provide opportunities for significant drag reduc-
tion in the laminar regime, as has been confirmed by experi-
ments cited below. The effective viscous friction of a solid
surface is usually quantified by a so-called slip length, de-
noted here by �, which is the distance below the solid sur-
face where the no-slip boundary would be satisfied if the
flow field was linearly extrapolated, and the no-slip boundary
condition corresponds to �=0.7–9

At low Reynolds number, the only characteristics affect-
ing the friction of super-hydrophobic surfaces arise from
their geometry, specifically �a� the distribution of liquid/solid
and liquid/air contact at the edge of the roughness elements

of the surface, and �b� the shape of the liquid/air free surface.
For one-dimensional surfaces, i.e., surfaces which have one
homogeneous direction �Fig. 1�b��, significant drag reduction
can be obtained when the homogeneous direction is parallel
or perpendicular to the direction of flow, as demonstrated
experimentally10–16 and theoretically.15,17–23

For two-dimensional surfaces, an additional free param-
eter is the topology of the air/solid partition on the planar
surface, and two general types can be distinguished. In the
first type, the air is the continuous phase, and the liquid is in
contact with the solid only at isolated, unconnected, loca-
tions �Fig. 1�c��. This is the most commonly studied type of
super-hydrophobic surface, and arises for surface roughness
in the shape of bumps or posts on an otherwise flat solid
surface.10–12,16,22,24–26 The second type of surface, less stud-
ied, is one where the solid is the continuous phase, and the
liquid/air contact occurs on isolated domains �Fig. 1�d��.
These surfaces can be obtained by making holes in an oth-
erwise flat material26 and have been used to study the influ-
ence of the geometry of the liquid/air free interface on the
viscous friction of the surface.27–30

A super-hydrophobic surface with a continuous solid
phase can also be obtained by using an intertwined solid
mesh. Recently this method has been exploited experimen-
tally, using coated steel5,31 and coated copper32 as reproduced
in Figs. 2�a� and 2�b�. The resulting surface is also the rel-
evant geometrical configuration for flow past textile and fab-
ric material. In this paper, we present an analytical method to
calculate the friction of such a mesh-like �or grid-like� sur-
face in the case where the mesh is thin in the plane �mesh
aspect ratio ��1�. The analysis, based on a distribution of
flow singularities, leads to an infinite system of linear equa-
tions for the approximate Fourier coefficients of the flow
around the mesh, and gives results with relative error of or-
der � ln�1 /��. The results for the effective slip length of the
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surface are computed, compared to simple estimates, and
used to propose a practical fit displaying the expected loga-
rithmic dependence on the solid area fraction.17–19,22

II. SHEAR FLOW PAST A RECTANGULAR GRID

A. Calculation background

Our paper follows classical work on the broadside mo-
tion of rigid bodies at low Reynolds number in the
asymptotic limit for narrow cross sections.33,34 Here, we
build on the method of Leppington and Levine who studied
axisymmetric potential problems involving an annular disk
by using a distribution of singularities, and obtained an effi-
cient method in the limit where the radii difference of the
disk approaches zero.35 Roger and Hussey36 studied the flat
annular ring problem both experimentally and theoretically
using a beads-on-a-shell model to represent a distribution of
point forces. Subsequently, Stewartson37 showed that viscous
fluid exhibits a marked reluctance to flow through a thin
torus and the flux function has an essential singularity in the
limit in which the hollow boundary approaches a circle and
disappears. This “blockage” feature was further demon-
strated by Davis and James38 in considering flow through an
array of narrow annular disks placed in planes normal to the
flow in order to model a fibrous medium. Their analysis was
made tractable by retaining only the inverse square root term
in the force density function. A similar asymptotic estimate
was used by Davis in modeling the broadside oscillations of

a thin grid of the type discussed below.39 Since edgewise
motions induce the same edge singularity in the force den-
sity, we follow in this paper a similar analytical treatment.

B. Model problem

We consider a thin stationary planar square mesh in the
�x ,y� plane subject to a shear flow, with shear rate �̇, along
the x direction, which is one of the principal directions of the
mesh, as illustrated in Figs. 2�c� and 2�d� �shown here for
z�0�. The mesh has periodicity b and a small width �b. We
denote by ex and ey the unit vectors parallel to the mesh axes,
and ez is the third Cartesian vector. We further assume that
the shape of the interface between the liquid and the air
located underneath the mesh is planar, with no protrusion of
the mesh inside the fluid. Since the mesh is a super-
hydrophobic surface and presents to the flow a combination
of no-slip domains �the mesh� and perfectly slipping do-
mains �the free surfaces�, the effective flow past the surface
can be described as a slipping flow, and is given in the far
field by v= �̇��z�+��ex, where � is the effective surface slip
length ���0�. The goal of the calculation below is to present
an accurate analytic calculation for � in the limit where
��1.

In order to perform the calculation, we move in the
frame translating at the steady velocity Uex, with U= �̇�. In
that case, the problem is equivalent to the uniform translation
of an thin mesh in its own plane at velocity −Uex, and the
goal is to derive the value of the shear rate �̇ in the far-field,
�z��b. The slip length will then be given by �=U / �̇. Edge
effects are ignored by assuming an infinite mesh as then
periodic point force singularities can be used to describe the
fluid flow field. The rectangular grid naturally introduces
Fourier series with respect to Cartesian coordinates, and the
analysis establishes a set of integral equations with the same

b
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FIG. 2. �Color online� Mesh-like super-hydrophobic surface. �a� Coated
copper mesh at the micron scale �Ref. 32�. �b� The mesh from �a� is super-
hydrophobic �water droplet, volume about 4 �l� �Ref. 32�. �c� For our cal-
culation we consider a planar square mesh of periodicity b and width �b. �d�
A shear flow is set up in one of the principal directions of the mesh, with
shear rate �̇ �shown here for z�0�. The far-field flow is given by
v= �̇�z+��ex, where � is the effective slip length of the mesh. �a� and �b� are
reprinted with permission from S. T. Wang, Y. L. Song, and L. Jiang, Nano-
technology 18, 015103 �2007�. Copyright © 2007, IOP Publishing.

(a)

(b) (c) (d)

FIG. 1. �Color online� Typical topology of super-hydrophobic surfaces. �a�
Side view of a random super-hydrophobic surface, illustrating the contact of
the liquid �light� at the edge of the surface roughness �dark�. �b� Top view of
a one-dimensional surface. �c� Top view of regular two-dimensional surfaces
where the air �white� is the continuous phase. �d� Top view of regular two-
dimensional surfaces where the solid �dark� is the continuous phase. The
case illustrated on �d� �top� is the focus of the current paper.
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logarithmic dependence on the geometrical parameters of the
grid as in the flows described in the references discussed in
Sec. II A.

The Reynolds number of the viscous incompressible
flow is assumed to be sufficiently small for the velocity field
v to satisfy the creeping flow �Stokes� equations33,34

��2v = �p, � · v = 0, �1�

where � is the coefficient of viscosity and p is the dynamic
pressure. The prescribed grid velocity is given by

v = − Uex at z = 0, �x,y� � G . �2�

In a typical grid element 0	x, y	b, G is complementary
to the square hole bounded by the lines x or y= �1 /2��b or
�1− �1 /2���b �shown in black in Fig. 3�a��.

C. Solution using a superposition of singularities

Following the calculation for broadside oscillations of
the grid in Ref. 39, the fluid motion can be represented as
due to a distribution of tangentially directed Stokeslets over
the flat mesh G and the density functions must be both peri-
odic in two dimensions and symmetric with respect to the
sides of each square. The field due to a two-dimensional
square array, period b, of point forces of strength 4
�Ub
directed parallel to the mesh’s motion, is governed by

� · vA = 0 �3�

and

��2vA − �pA = 4
�Ubex��z�

� �
n1=−





�
n2=−





��x − n1b���y − n2b�

=
4
�U

b
ex��z�

� �
m1=−





�
m2=−





exp�2
i

b
�m1x + m2y�� .

�4�

With m=m1ex+m2ey, the m=0 term in Eqs. �3� and �4�
yields

��2v0 − �p0 =
4
�U

b
ex��z�, � · v0 = 0, �5�

whose solution,

v0 =
2
U�z�

b
ex, p0 = 0, �6�

exhibits the anticipated shear at infinity. Note that the sup-
pression of the immaterial arbitrary multiple of Uex in v0

ensures uniqueness below. The solution of

��2v − �p =
2�U

b
ex	

−





eikzdk�
m

�exp�2
i

b
m · r�,

� · v = 0, �7�

with a prime denoting that the m=0 term is omitted, is
readily found by Fourier transform techniques �see Ref. 40�.
Thus the flow governed by Eqs. �3� and �4� is compactly
expressed as

vA = U�
2
�z�
b

− S1�ex + �
�S2

�x
�, pA = �U

�S1

�x
, �8�

where

S1 = �
m

�
1

�m�
exp�2


b
�im · r − �m��z��� = �2S2, �9�

with

S2 = −
2

b
	

−





eikzdk�
m

�exp�2
i

b
m · r�

��
2
i

b
m�2

+ k2�−2

= −
b2

8
2�
m

�
1

�m�2
 1

�m�
+

2


b
�z��

�exp�2


b
�im · r − �m��z��� · �10�

Only the velocities at the mesh and at infinity are needed for
the subsequent analysis. The solution Eq. �8� shows that

x = 0 x = b

y = b

y = 0

(a)

(b)

FIG. 3. �Color online� A typical grid element �see text for details�.
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vA �
2
U�z�

b
ex = v0 as �z� → 
 , �11�

since all terms in Eq. �9� exhibit exponential decay, and

�vA�z=0 = Uex
− S1 +
�2S2

�x2 �
z=0

= − Uex�
m

�
1

�m�
exp�2
i

b
m · r�Cm, �12�

where, after substitution of Eqs. �9� and �10�, we have

Cm = 1 −
m1

2

2�m�2
· �13�

In particular, we see that

C�m1,0� = 1
2 , Cm → 1

2 as m1 → 
 , �14a�

C�0,m2� = 1, Cm → 1 as m2 → 
 . �14b�

The shaded region in Fig. 3�b� suffices for the
distribution of periodic point forces and the enforcement of
the prescribed mesh velocity �Eq. �2��. The hexagon in

Fig. 3�b� lying along the x-axis is given by �y�	 �1 /2��b,
�y�	x	b− �y�, or −1	w, s	1, in terms of new variables
�w ,s� defined by

w =
1
2b − x
1
2b − y

, y =
1

2
�bs, x =

1

2
b�1 − �1 − �s�w� . �15�

Here w may be identified as the tangent of an angle sub-
tended at the center of the square. The hexagon in Fig. 3�b�
lying along the y-axis is given similarly by interchanging x
and y in Eq. �15�. The flow generated by the translating mesh
can be written as

v =
1

4
	

−1

1 	
−1

1 
 fx�w,s�vA�x −
1

2
b�1 − w + �sw�,y −

1

2
�bs,z�

+ fy�w,s�vA�x −
1

2
�bs,y −

1

2
b�1 − w + �sw�,z��dwds ,

�16�

where fx and fy are dimensionless force densities. The pre-
scribed mesh velocity is then obtained by enforcing Eq. �2�
at each point of the two hexagons. Thus Eq. �16� gives

− Uex =
1

4
	

−1

1 	
−1

1 
 fx�w,s�vA�1

2
b�w − W + �SW − �sw�,

1

2
�b�S − s�,0�

+ fy�w,s�vA�1

2
b�1 − W + �SW − �s�,

1

2
b��S − 1 + w − �sw�,0��dwds , �17a�

− Uex =
1

4
	

−1

1 	
−1

1 
 fx�w,s�vA�1

2
b��S − 1 + w − �sw�,

1

2
b�1 − W + �SW − �s�,0�

+ fy�w,s�vA�1

2
�b�S − s�,

1

2
b�w − W + �SW − �sw�,0��dwds , �17b�

for all −1	W, S	1. We further note that the summation in Eq. �12� takes the simpler form

�
m

�
1

�m�
exp�2
i

b
m · r�Cm = �

m1=1



1

m1
cos

2


b
m1x + 2 �

m2=1



1

m2
cos

2


b
m2y

+ 4 �
m1=1




�
m2=1



1

�m1
2 + m2

2�1 −
m1

2

2�m1
2 + m2

2��cos
2


b
m1x cos

2


b
m2y , �18�

from which we note that large contributions to Eqs. �17� arise from summations of type

�
m=1



1

m
cos 
m��S − s� = ln�1

2
csc


�

2
�S − s�� � − ln�
��S − s�� . �19�

Substitution of Eq. �12� into Eqs. �17� and use of Eqs. �14� now yields, when terms that tend to zero as �→0 are neglected,
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1 =
1

4
	

−1

1 	
−1

1 
 fx�w,s�� �
m1=1



1

m1
cos 
m1�w − W� − 2 ln�
��S − s��

+ 4 �
m1=1




cos 
m1�w − W�� �
m2=1


 
 1

�m�
Cm −

1

m2
� − ln�
��S − s���� + fy�w,s�

�� �
m1=1



�− 1�m1

m1
cos 
m1W + 2 �

m2=1



�− 1�m2

m2
cos 
m2w + 4 �

m1=1




�
m2=1



�− 1�m1+m2

�m�
Cm cos 
m1W cos 
m2w��dwds , �20a�

1 =
1

4
	

−1

1 	
−1

1 
 fx�w,s�� �
m1=1



�− 1�m1

m1
cos 
m1w + 2 �

m2=1



�− 1�m2

m2
cos 
m2W

+ 4 �
m1=1




�
m2=1



�− 1�m1+m2

�m�
Cm cos 
m1w cos 
m2W� + fy�w,s�

��− ln�
��S − s�� + 2 �
m2=1



1

m2
cos 
m2�w − W� + 4 �

m2=1




cos 
m2�w − W�

�� �
m1=1


 
 1

�m�
Cm −

1

2m1
� −

1

2
ln�
��S − s�����dwds , �20b�

for all −1	W, S	1. All the w-integrals in these integral
equations can be expressed in terms of Fourier coefficients
defined as

�fxn�s�, fyn�s�� =
1

2
	

−1

1

�fx�w,s�, fy�w,s��cos n
wdw

�n � 0� , �21�

because the symmetric forcing ensures that the correspond-
ing sine coefficients are all zero, and where we use brackets
to define simultaneously two sets of Fourier coefficients. We
then identify Eqs. �20� as a pair of Fourier cosine series in W,
for each S in ��1,1�, and, by considering coefficients of
cos 
m1W and cos 
m2W in the respective series, we obtain

1 = − 	
−1

1

fx0�s�ln�
��S − s��ds

+ �
m2=1



�− 1�m2

m2
	

−1

1

fym2
�s�ds , �22a�

0 = 	
−1

1

fxm1
�s�� 1

2m1
+ 2 �

m2=1


 
 1

�m�
Cm −

1

m2
�

− 2 ln�
��S − s���ds +
�− 1�m1

2m1
	

−1

1

fy0�s�ds

+ 2 �
m2=1



�− 1�m1+m2

�m�
Cm	

−1

1

fym2
�s�ds, �m1 � 1� ,

�22b�

2 = − 	
−1

1

fy0�s�ln�
��S − s��ds

+ �
m1=1



�− 1�m1

m1
	

−1

1

fxm1
�s�ds , �22c�

0 = 	
−1

1

fym2
�s�� 1

m2
+ �

m1=1


 
 2

�m�
Cm −

1

m1
�

− ln�
��S − s���ds +
�− 1�m2

m2
	

−1

1

fx0�s�ds

+ 2 �
m1=1



�− 1�m1+m2

�m�
Cm	

−1

1

fxm1
�s�ds, �m2 � 1� ,

�22d�

for all −1	S	1. These two related sets of equations have
the form

	
−1

1

�fxn�s�, fyn�s��ln
 1

�S − s��ds = constant

= �An,Bn�ln 2 �− 1 	 S 	 1� , �23�

whose solution is

�fxn�s�, fyn�s�� =
�An,Bn�


�1 − s2�1/2 �− 1 	 s 	 1� , �24�

with the particular property
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−1

1

�fxn�s�, fyn�s��ds = �An,Bn� . �25�

Thus, as demonstrated more rigorously by Leppington and
Levine35 and exploited frequently elsewhere, the logarithmic
kernel obtained as an asymptotic estimate yields the inverse
square root function as the associated asymptotic solution.
The substitution of Eqs. �23� and �25� into Eqs. �22� finally
yields an infinite system of linear equations

1 = A0 ln
 2


�
� + �

m2=1



�− 1�m2

m2
Bm2

, �26a�

0 = Am1�ln
 2


�
� +

1

4m1
+ �

m2=1


 
 1

�m�
Cm −

1

m2
��

+
�− 1�m1

4m1
B0 + �

m2=1



�− 1�m1+m2

�m�
CmBm2

, �m1 � 1� ,

�26b�

2 = B0 ln
 2


�
� + �

m1=1



�− 1�m1

m1
Am1

, �26c�

0 = Bm2�ln
 2


�
� +

1

m2
+ �

m1=1


 
 2

�m�
Cm −

1

m1
��

+
�− 1�m2

m2
A0 + 2 �

m1=1



�− 1�m1+m2

�m�
CmAm1

, �m2 � 1� .

�26d�

D. Determination of the slip length

The flow at infinity is determined by substitution of Eq.
�11� into Eq. �16�, which gives

v �
2
U�z�

b
ex

1

4
	

−1

1 	
−1

1

�fx�w,s�

+ fy�w,s��dwds as �z� → 
 , �27�

whose simple form is due to the exponential decay of all

Fourier modes except m=0. Then Eqs. �21� and �25� show
that the shear rate at infinity is given by

�̇ =

U�A0 + B0�

b
, �28�

and therefore the slip length, �, is found to be

� �
U

�̇
=

b


�A0 + B0�
, �29�

which is proportional to the only other length scale in the
problem, namely, b. Notably, only the zeroth-order coeffi-
cients of Eqs. �26� contribute to the slip length. The system
given by Eqs. �26�, independent of b, is solved in truncated
form for various values of � in Sec. III.

E. Error estimate

An error estimate can be gleaned by retaining all terms
in proceeding from Eqs. �17� to Eqs. �22�. Although the
former suggests that the symmetry of each grid element im-
plies a mathematically even dependence on �, convergence
considerations prevent the error bound from being O��2�. For
example, the Fourier cosine series for �
−x�2 in �0,2
�
shows that

�
m=1



sin�m
�S�sin�m
�s�


2m2 =
�

2
min�s,S��1 − � max�s,S��

= O��� . �30�

Hence the �relative� error estimate is O�� ln�1 /���, as in vari-
ous sample calculations given by Leppington and Levine.35

Mathematically, its presence is due to an elliptic integral gen-
erated by the fundamental singularity.

III. NUMERICAL CALCULATION AND ANALYTICAL
ESTIMATE OF THE MESH SLIP LENGTH

A. Numerical results

We now solve numerically the infinite series given by
Eqs. �26� by truncating it at a finite value m1=m2=N. The
numerical results are displayed in Fig. 4�a�, where we plot
the dimensionless slip length, � /b, as a function of the aspect
ratio of the mesh, �, for a truncation size of N=102. The

10
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FIG. 4. �Color online� �a� Dimensionless effective slip length for the mesh-like super-hydrophobic surface, � /b, as a function of the aspect ratio of the mesh,
�. �b� Ratio between the slip length given by solving Eqs. �26� and the simple estimates provided by Eq. �33� �� /�1, blue, solid line� and Eq. �36� �� /�2, black,
dash-dotted line� as a function of the aspect ratio.
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exact size of the truncation has little influence on the final
computed results; for example, when �=10−3, the relative
change in the computed slip length is less than 0.01% be-
tween N=102 and N=103.

Our results show that the surface does show a reduction
in friction �i.e., ��0�, and the effective slip length, always
of the order of �but typically smaller than� the mesh size,
increases when the solid area fraction decreases. Since the
data on Fig. 4�a� are plotted on a semilog scale, we see that
we recover the expected logarithmic relationship between the
effective slip length of the mesh and its aspect ratio.17–19,22 A
least-squares fit to the data shown on Fig. 4�a� leads to the
empirical formula

�

b
= � ln � + � , �31�

where the values �=−0.107 and �=−0.069 give a result
with maximum relative error of 0.4%. Alternatively, if we
define the solid area fraction of the surface �s, it is easy to
see that �s=��2−��. A least-squares fit of the type

�

b
= �2 ln �s + �2, �32�

with the parameters �2=−0.107 and �2=0.003, leads to a
maximum relative error of 0.6%. As a matter of comparison,
the fit proposed in Ref. 26, based on numerical simulations
for �s�0.05, leads to a relative error of 5% with the
small-�s results obtained here; the asymptotic calculations
presented in this paper are therefore able to quantitatively
agree with the results of Ref. 26 which are valid for much
larger mesh sizes.

B. Comparison with simple estimates

An estimate of the mesh slip length can be obtained
analytically by performing the truncation by hand. If only
A0 ,B0, that is the mean values of the density functions with
respect to w are retained in Eqs. �26�, the surviving two
equations give the lowest-order estimate

�1

b
=

1


�A0 + B0�
=

1

3

ln
 2


�
� · �33�

We define here L=ln�2 /
�� for subsequent convenience.
Note that the slope of the relationship given by Eq. �33�
is 1 /3
�0.106, which is very close to the fitted value
���=0.107 in Eq. �31�.

Further, on writing Eqs. �26a� and �26c� as

3 = �A0 + B0�ln
 2


�
� + �

m=1



�− 1�m

m
�Am + Bm� , �34a�

− 1 = �A0 − B0�ln
 2


�
� − �

m=1



�− 1�m

m
�Am − Bm� , �34b�

and observing that the matrix elements in Eqs. �26� have L
only on the diagonal, it may be deduced that

�1

b
−

L

3

= O�L−1� . �35�

As an illustration of this result, the truncation of Eqs. �26� at
m1=m2=1 shows that the leading-order correction to Eq.
�33� leads to the improved estimate

�2

b
=

L

3

−

L +
1

2

6
�L2 +
1

4
L −

1

2
+

9

4�2

L +

1

2
�� · �36�

On Fig. 4�b�, we show the ratio between the actual slip
length �as calculated in Fig. 4�a��, and the simple estimates
from Eq. �33� �blue, solid line� and Eq. �36� �black, dash-
dotted line�. We see that these simple formulae overestimate
the slip length �by up to 10%�, but asymptotically converge
to the correct result when �→0. As expected, the second-
order solution, Eq. �36�, is quantitatively better than the first-
order one, Eq. �33�.

IV. CONCLUSION

In this work we considered a super-hydrophobic surface
in the shape of a square mesh and presented an analytical
method to calculate its effective slip length. Our analysis,
which is valid for asymptotically small aspect ratio of the
mesh, agrees also quantitatively with numerical calculations
valid for larger mesh width.26 The results we obtain show
that, for thin meshes, such surfaces can provide slip lengths
of the order of the mesh size. However, for realistic mesh
aspect ratio, say 10% or larger, the slip length is only a
fraction of the typical mesh length �see Fig. 4�. The increase
in the slip length with the solid-to-air ratio of the overall
surface is logarithmic, a universal feature of super-
hydrophobic coatings with long and thin no-slip
domains.17–19,22 Beyond such physical scaling, our results
provide a first analytical prediction for the resistance to shear
flow of the recently devised super-hydrophobic surfaces
made of metal wires,5,31 and more generally to geometries
with grid-like features such as fabric and textiles composed
of interwoven threads.

Although we considered here an idealized model system,
the analytical approach developed in the paper has the ad-
vantage that it provides the effective slip length of the sur-
face with relative error of the order of � log�1 /��, which is
significantly better than the more traditional but only loga-
rithmically correct slender-body approach.
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