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Some Definitions and Derivations for AMES 101A

Definition of a vector:

A three component object v  is a vector if its components (v1,v2,v3) in coordinates x =
(x1,x2,x3) transform to components (vjlj1',v jlj2',v jlj3') in new coordinates x' , summing repeated
indices, where lji' is the cosine of the angle between the xj axis and the x'i axis.  An example is the
pressure gradient ∇p = (∂p/∂x1,∂p/∂x2,∂p/∂x3).  This is easily proved using the chain rule.  If the

coordinates are changed to x' , then ∂p/∂x' i = (∂p/∂xj)(∂xj/∂xi'), summing over j indices.  But

∂xj/∂xi' = lji', so the pressure gradient satisfies the definition of a vector.

Definition of a second order tensor:

Π is defined to be a second order tensor if its components Πij transform according to the equation

Πi'j' = Πmn lmi'lnj'

Higher order tensors are defined in a similar way.

An obvious example is the inertial stress tensor -ρvv , with components -ρvivj.  The
components in x'  coordinates are -ρvi'vj' = -ρvmlmi'vnlnj', which satisfies the definition.

Leibnitz' rule for differentiating integrals:

d
dt

f dV = 
CV

∂f

∂t
CV

  dV + f vs⋅ dS
CS

where f is some function of space and time, CV is an enclosed control volume, CS is its surface
with outward pointing surface vector dS , and the velocity of the surface at dS  is vS.

If f = ρβ, where β is the concentration of some conserved quantity per unit mass, then the
total quantity B in a system (specified quantity of matter) is given by the integral over the control
volume CV enclosing the system

B = ρβdV
CV .

By Leibnitz' Rule, the rate of change of B with time for the system is found by setting the
velocity of the surface vS equal to the fluid velocity v , since then, and only then, the control
volume always encloses the system.  For a general CV, we thus have the Reynolds transport
theorem

dB
dt

 = d
dt

ρβdV
CV

 + ρβ(v-vS)⋅ dS
CS

 ; or 
∂BSyst.

∂t
 = 

∂BCV

∂t
 + ρβ vr⋅ dS

CS

where vr = v - vS is the relative velocity of the fluid with respect to the CV surface.
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Derivation of energy conservation differential equations:
The first law of thermodynamics for a system is Q - W = E,  where Q is the rate of heat

addition to the system through its surface by thermal conduction down a temperature gradient, W is
the work being done on the surroundings by the system, and E is the rate of increase of the total
energy of the system, including internal, kinetic, and potential energy.  This "conservation of
energy" law may be applied to a control volume surrounding a system of fluid, recognizing that the
surface velocity of such a control volume moves with the velocity of the fluid v .  For the system,
Q is the integral over the system control surface in the first integral

Q = k∇ Τ ⋅ dS
CS

= ∇ ⋅ (k∇Τ)dV
CV

and the conversion is made to a volume integral using the divergence theorem in the second
integral, on the right.

The work rate on the surroundings is composed of shaft work WS, the pressure work rate
WP, and the viscous work rate WV.  We will neglect the shaft work.  The pressure and viscous
work rates are found by integrating the corresponding surface forces on the surroundings, equal
and opposite to the forces on the surface, dotted with the fluid velocity.  The pressure force on the
surface element dS  is -pdS , and the viscous force is τ ⋅ dS , by Cauchy's rule.  Therefore

WP = pv ⋅ dS =
CS

∇ ⋅ (pv)dV
CV

and

WV = -v ⋅  τ ⋅ dS = − ∇ ⋅ (v ⋅  τ )dV
CV

CS .

The rate of change of the total energy is given by

 E =  
∂(ρe)

∂t
dV

CV

 + ρev ⋅ dS 
CS

= 
∂(ρe)

∂t
 +∇ ⋅ (ρev)  dV

CV

 

.

Collecting all terms in the energy equation into a single volume integral gives

   
∂(ρe)

∂t
 +∇ ⋅ (ρev) − ∇⋅(v ⋅ τ) + ∇⋅(pv) − ∇⋅(k∇Τ)  dV

CV

 = 0

.

The control volume was chosen arbitrarily and can be very small surrounding any point in
the fluid.  All the terms in the bracket become constant within the control volume when CV is small
enough by the continuum hypothesis.  Therefore bracketed quantities must be zero everywhere;
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that is, identically zero, because the constant can be factored out of the integral giving [⋅ ]CV=0.
The differential equation expressing the conservation of energy is thus

 
∂(ρe)

∂t
 +∇ ⋅ (ρev) − ∇⋅(v ⋅ τ) + ∇⋅(pv) − ∇⋅(k∇Τ)  = 0

.

Expanding the first two terms and using the continuity equation and the definition of the
substantive derivative (following the fluid particle) gives

ρDe
Dt

− ∇ ⋅ (v ⋅ τ) + ∇ ⋅ (pv) − ∇ ⋅ (k∇Τ) = 0
.

Conservation of momentum:

Newton's law for a fluid system applied to the same fluid system gives

(-p δ )⋅ dS
CS

 +  τ ⋅ dS
CS

 + ρgdV
CV

 = 
∂(ρv)

∂t
dV

CV

 + ρvv ⋅ dS
CS

.

Converting the surface integrals to volume integrals and collecting terms, we find

   
∂(ρv)

∂t
 +∇ ⋅ (ρvv) − ∇⋅τ + ∇p − ρg  dV = 0

CV

 

where the bracketed term gives the differential equations of motion, expressing the conservation of
linear momentum for a fluid

∂(ρv)

∂t
+∇ ⋅ (ρvv) − ∇ ⋅ τ + ∇p − ρg = 0

,

which can also be written

ρDv
Dt

− ∇ ⋅ τ + ∇p − ρg = 0
.

Taking the scalar product of this equation with v  gives

ρD(ke+pe)
Dt

− v ⋅ ∇ ⋅ τ + v ⋅ ∇ p = 0

which is the mechanical energy equation.  Subtracting this from the first law energy equation above
yields
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ρDu
Dt

− τ:∇v + p∇ ⋅ v − ∇ ⋅ (k∇Τ) = 0
.

This shows that the internal energy of a fluid particle u changes by thermal conduction,
compression work, and viscous dissipation, taking the last three terms from right to left.

Vorticity:

Define the vorticity field ω ≡ curl v = ∇×v.  Note that the i component of the cross

product C = A×B of two vectors A and B  can be written

Ci = εijkAjBk

where  εijk is the alternating tensor, defined such that  εijk = 0 if any two indices are equal,  εijk = 1

if ijk = 123, 231 or  312,  and εijk = -1 if ijk = 132, 321 or 132.  Thus

ωi =  εijk∂vk/∂xj

is the i component of the vorticity vector.  An important identity relating εijk and the identity tensor

δij, where δij = 0 for i ≠ j and δij = 1 for i = j, is

εijkεklm = δilδjm - δimδjl .

Note that the curl of the gradient of any scalar field, such as a velocity potential φ or the
pressure p, is zero.  This is because curl grad φ = - curl grad φ as follows:

(curl grad φ )i = εijk(∂2φ/∂xj∂xk) = -εikj(∂2φ/∂xj∂xk) = -εikj(∂2φ/∂xk∂xj) = -εijk(∂2φ/∂xj∂xk)

where the dummy indices jk are first reversed in εijk to change the sign, then the order of the partial
derivative ∂2φ/∂xj∂xk is reversed, and finally the indices are relabeled so k→j and j→k.

Assuming ρ = constant, the equations of motion can be written

∂vi/∂t + vj∂vi/∂xj = -∂(p/ρ)/∂xi + gi + ν∇2vi   .
Taking the curl of this equation, the first term gives the time derivative of the vorticity and the
pressure term vanishes.  The gravity term also drops out since it can be expressed as the gradient
of the gravitational potential -gx3. The nonlinear term vj∂vi/∂xj is rewritten as

vj∂vi/∂xj = ∂(v2/2)/∂xi - (v×ω)i

so the gradient term can be eliminated under the curl operation.  This important vector identity is
proved by expanding the "vortex force" term (v×ω)i using εijkεklm = δilδjm - δimδjl

(v×ω)i = εijkvjεklm∂vm/∂xl = (δilδjm - δimδjl)vj∂vm/∂xl = ∂(v2/2)/∂xi - vj∂vi/∂xj

and the index substitution property of δjl; that is, vi = vjδji for example.

Taking the curl of the equations of motion then gives
∂ωi/∂t - εijk∂(εklmvlωm)/∂xl = ν∇2ωi ,
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which further reduces to
•    ∂ωi/∂t + vj∂ωi/∂xj = ωj∂vi/∂xj + ν∇2ωi ,   •

the conservation of vorticity equation for constant density fluid.  The left hand side is the
substantive derivative Dωi/Dt, the first term on the right is the vorticity production by vortex line
stretching, and the last term is the diffusion of vorticity by viscosity.

Gauss' Theorem:

Integrals may be converted by the expression (Gauss' Theorem)

∂Ajkl...

∂xiCV

 dV = niAjkl...

CS

 dS

where Ajkl... is a tensor and n is the outward pointing unit vector at elementary area dS of the
control surface CS surrounding the control volume CV.

An important special case of Gauss' Theorem is the divergence theorem

∂Ai

∂xiCV

 dV = niAi

CS

 dS

where A is a vector and its gradient tensor 
∂Aj

∂xi
 has been contracted to form the divergence 

∂Ai

∂xi
.

If A is the velocity v , then we can interpret the divergence of the velocity field ∇ ⋅ v  as the volume
flow rate per unit volume Q/V emerging from a small control volume surrounding a point,

∇ ⋅ v
CV

 dV = (∇ ⋅ v) V = v ⋅
CS

 dS = Q ; ∴ ∇ ⋅ v = Q/V

.

Therefore, ∇ ⋅ v = 0 for an incompressible fluid.

The net force of a uniform pressure pa on a control volume may be found from Gauss'
theorem as follows,

 Fp = - pan⋅ dS  = - ∇pa dV = 0

because the gradient of a constant is zero.

Derivation of Bernoulli's Equation:

Apply the conservation of mechanical energy equation
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ρD(ke+pe)
Dt

− v ⋅ ∇ ⋅ τ + v ⋅ ∇ p = 0

to the steady flow of fluid through a stream tube.  Rewriting the equation

ρ∂ke
∂t

 =  -ρv ⋅ ∇ ke  - v ⋅ ∇ p  - ρv ⋅ ∇ gx3 + v ⋅ ∇ ⋅  τ 

where ke is v2/2.  Assuming constant density and rearranging gives

∂ρke
∂t

 =  -∇ ⋅ ρ v(ke  + p/ρ + gx3) + ∇ ⋅ (v ⋅  τ ) -  τ :
∂v
∂x

which can be used to evaluate the rate of change of the total kinetic energy KE in the stream tube

dKE
dt

 = d
dt

ρ ke dV
CV

 = ρ 
∂ke
∂t

CV

 dV =   -∇ ⋅ ρ v(ke  + p/ρ + gx3) + ∇ ⋅ (v ⋅  τ ) -  τ :
∂v
∂x

 dV
CV

= -  ρv(ke  + p/ρ + gx3)⋅ dS
CS

 +  v ⋅  τ ⋅ dS
CS

 -  τ :
∂v
∂x

 dV
CV

= -  ρvB⋅ dS
CS

 - WV - ρε  dV
CV

using the divergence theorem to convert to surface integrals and defining B and ε as indicated.  For
steady state flow through the stream tube the left hand side is zero.  The first surface integral on the
right is the convection rate into the stream tube of the Bernoulli energy/mass B, and equals the
mass flow rate m times (B1 - B2).  The second surface integral is the rate of viscous working on
the streamtube -WV, and the third integral is the total rate of viscous dissipation within the volume.
This can be written as

B1 = B2 + WV
m

 + 
ρV ε

m
 = B2 + wV + wF

where the overbar indicates the volume average of the local viscous dissipation rate per unit mass
ε, where

ε ≡   τ 
ρ

 : 
∂v
∂x  .

If viscous forces are negligible, we find the simplest form of the Bernoulli equation

B1 = B2 ; v2

2
  + p/ρ + gx3

1
 = v2

2
  + p/ρ + gx3

2 .

Extended forms of the Bernoulli equation take into account frictional losses, viscous working, and
even time dependence.
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