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Abstract

We suggest that large-scale turbulence dissipation is concentrated along caustic
networks (that appear due to vortex sheet instability in three-dimensional space),

leading to an effective fractal dimension Deff = 5/3 of the network backbone and a
turbulence intermittency exponent µ = 1/6. Actually, Deff < 5/3 and µ > 1/6 due
to singularities on these caustic networks. It is shown (using the theory of caustic
singularities) that the strongest (however, stable on the backbone) singularities lead
to Deff = 4/3 (an elastic backbone) and to µ = 1/3. Thus, there is a restriction of

the network fractal variability: 4/3 < Deff < 5/3, and consequently: 1/6 < µ <
1/3.

Degeneration of these networks into a system of smooth vortex filaments: Deff =
1, leads to µ = 1/2. After degeneration, the strongest singularities of the dissipation
field, ε, lose their power-law form, while the smoother field lnε takes it. It is shown

(using the method of multifractal asymptotics) that the probability distribution of
the dissipation changes its form from exponential-like to log-normal-like with this
degeneration, and that the multifractal asymptote of the field lnε is related to the
multifractal asymptote of the energy field.

Finally, a phenomenon of acceleration of large-scale turbulent diffusion of passive
scalar by the singularities is briefly discussed.

All results are based on experimental data.

1 Introduction

The turbulence intermittency exponent µ can be defined from the spectral density of the

dissipation field ε [1]

Eε ∼ k−1 (Lk)µ (1)
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where k is the wave number and L is the largest space scale of the turbulence. This expo-

nent is rather well measured and could be a useful characteristic of turbulent intermittency

(if one could relate it to the geometrical characteristics of the dissipation field). Numer-

ous turbulence experiments give two ‘attracting’ values of the index: µ ' 0.25± 0.10 and

µ ' 0.45±0.05 (see, for example, [1] - [4]). Comparative analysis of different experimental

data (performed in [5]) indicates that the first ‘attractive’ value of µ characterizes rela-

tively large space scales while the second characterizes relatively small scales. It should

be noted, however, that both scale intervals satisfy the condition Lk À 1 (which is signif-

icant for the following considerations). One might expect that these two ranges of scales

reflect differences in the geometrical (fractal) structure of the dissipation field. In fact, we

show in the paper that this difference can be related to different classes of singularities

in the dissipation field. Moreover, the above mentioned variability of µ for the large-scale

range may also be related to different types of singularities within a class.

To obtain relations between the intermittency exponent µ and the fractal (singular)

characteristics of the dissipation field let us recall that turbulent dissipation is concen-

trated on manifolds with dimensions that are much less than three (in three-dimensional

space): vortex sheets and vortex filaments. However, vortex sheets are unstable in three-

dimensional space. The instabilities have a large-scale wave nature (see for example [6]).

The stochastic waves themselves have an intermittent structure and it is natural to sug-

gest that the main part of the dissipation is concentrated along the boundaries between

subregions with a complicated wave structure (due to an interference phenomenon), and

subregions without these waves. Such boundaries are called caustics.

When caustic networks are formed various geometrical singularities appear in the dissi-

pation field. These singularities strongly affect dissipation spectra and the effective fractal

dimension of the networks. If a passive scalar field like temperature is also concentrated

along the caustics a phenomenon of accelerated turbulent diffusion by the singularities

takes place. Degeneration of these networks leads to dramatic changes in all of these

processes.
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2 Eikonal representation

The spectral density Eε is defined as

Eε =
1

8π3

∫

|k|=k
dk

∫
dr e−ik·r Rε(r) (2)

where the space autocorrelation of energy dissipation is

Rε(r) = 〈ε(x)ε(x + r)〉. (3)

For k → ∞ the multiplier exp(−ik · r) in (2) is a rapidly oscillating function, and the

principal contribution to the asymptotic behavior of Eε(k) is given by Rε(r) with small

r. Let us recall that we consider the case Lk À 1 even when we speak about relatively

large scales. The idea of an eikonal approximation (see, for example, [7]) is to study

the critical points of a corresponding eikonal function φ(r) instead of the behavior of the

autocorrelation Rε(r) at small r. The eikonal representation for k → ∞ is

Eε(k) ∝
∫

|k|=k
dk

∫
dr e−ik·r Rε (r) →

∫
dr f(r)eikφ(r) (4)

where f(r) is an infinitely differentiable function of compact support and φ(r) is a smooth

function. By a stationary phase principal, the main contribution to the asymptotic be-

havior of the integral as k → ∞ is given by neighborhoods of the critical points of φ [7].

Recall that a critical point of a smooth function is a point at which the differential of

the function is equal to zero. A critical point is non-degenerate (generic) if the second

differential is a non-degenerate quadratic form. Functions in general position have only

non-degenerate critical points [7]. If the function φ(r) is a function of general position

then integral (4) has a simple (power-law) asymptote with k → ∞ [7]:

Eε(k) ∝ k−D/2 (5)

where D is the dimension of the space support in the vicinity of the critical point. It

should be noted that every degenerate critical point splits into several non-degenerate

critical points under a small perturbation (the famous Morse theorem) [7]. Generally,
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D is the fractal dimension, and has different values in neighborhoods of different critical

points. Let us assume that D is the same in small neighborhoods of all critical points.

This assumption is consistent with a multifractal picture if all critical points belong to

some specific manifold. One can see from (5) that for vortex sheets, D = 2, we obtain

from (5) spectrum (1) with µ = 0, while for smooth vortex filaments, D = 1, it follows

from (1) and (5) that µ = 0.5.

3 Singularities on caustics

If the critical points belong to the caustics, but are generic nonsingular ones, than the

integral (4) has an asymptotic estimate in the form [7]

Eε(k) ∝ k−D/2+1/6. (6)

Thus, for a quasi two-dimensional situation (arising due to the large-scale wave instability

of vortex sheets)

Eε(k) ∝ k−1+1/6, (7)

i.e., µ = 1/6 (cf. (1)). One can obtain an effective fractal dimension of caustic networks

by comparison (5) and (7): Deff/2 = 5/6 so Deff = 5/3. This fractal dimension is close

to the fractal dimension of so-called backbones of percolation networks [8] and there are

fundamental reasons for such closeness (see, for example, [9]-[12]).

The existence of singularities on caustics can lead to an apparent variability of µ and

Deff . Moreover, in this case µ > 1/6 [7] and, consequently, Deff < 5/3. There are only

four types of stable caustic singularities in three-dimensional space (every more compli-

cated type of caustic singularity will break down into these simplest ones if the generic

position is disturbed slightly). These singularities are called: cusp ridge, swallowtails,

pyramid and purse points [7]. Values of µ = 1/4 for ordinary points along a caustic cusp

ridge; µ = 0.3 for swallowtails; and for pyramid and purse points, µ = 1/3 [7]. The

exponent µ measures the degree to which dissipation is concentrated toward the caustic.

Thus, one can see that the minimal effective fractal dimension Deff = 4/3 is given by
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pyramid and purse singularities. At a pyramid singularity, three (smooth) cusp ridges are

mutually tangent while in the neighborhood of a purse point, the caustic comprises two

surfaces with similar singularities, intersecting along a pair of curves (the cusp ridges of

the two surfaces continue each other, forming a single smooth curve). Three-dimensional

topological possibilities are necessary for the existence of these singularities. Correspond-

ing minimal effective fractal dimension Deff = 4/3 is close to the fractal dimension of

the so-called elastic backbone of percolation networks in three-dimensional space [13] (cf.

also [9],[11]). This coincidence is also quite clear because the elastic backbone of a cluster

can be defined as being the sites that lie on the union of all the shortest paths between

two points on the cluster [13] (see also Discussion).

In this way we obtain an upper bound for the caustic intermittency index 1/6 <

µ < 1/3 which corresponds to the minimal Deff = 4/3 (defined by the pyramid and

purse caustic singularities). This range of µ-variability coincides with the corresponding

large-scale range of experimentally observed values of µ mentioned in the Introduction.

4 Caustic network degeneration, multifractality and

probability distributions

New (sharper) stable singularities can appear only with degeneration of the caustic net-

works. A limiting situation that can occur with this degeneration is a system of smooth

vortex filaments with effective fractal dimension Deff = 1 and µ = 1/2 (see Section 2).

In [17] a relation between the vortex-tube filamentation process and multifractality of

dissipation fields has been considered and the existence of a multifractal asymptote (i.e.,

D∞, see below) of the dissipation field has been related to this filamentation process. If,

however, the vortex filaments occur due to caustic network degeneration (i.e., without the

filamentation process) then the corresponding singularity of the dissipation field can be

so strong that there is no definite value of D∞. In this case the smoother field lnε can

assume multifractal properties with a definite value of the D∞. In this section we will

study such a situation.
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In the paper [14] self-similar behavior of subregions with large values of energy, energy

dissipation and vorticity (enstrophy) were established based on experimental turbulence

data. Namely, let us divide a region occupied by a turbulent flow into a set of subvolumes

Vi with characteristic scale r and define a local mean of some (positive) scalar field g(x)

over each volume

gi(r) = r−d
∫

Vi

g(x)dx (8)

and a q-moment as

〈gq
r〉 = (L/r)−d

∑

i

gi(r)
q (9)

where d is the dimension of space and L is a characteristic scale of the region. The

multifractal hypothesis for the field g is the suggestion that for (r/L) → 0 [15]

〈gq
r〉 ∼ (r/L)−µq (10)

where

µq = (d − Dq)(q − 1) (11).

(Dq is the so-called generalized dimension). For q > 0 the value of Dq ≤ d. It has

been shown in [14] (for moderate values of Reynolds number) that the subregions with

large values of gi (where g is the turbulent energy, energy dissipation or enstrophy) have

self-similar behavior and, therefore, one can define the multifractal asymptote

large gi(r) ∼ rD∞−d. (12)

This asymptote corresponds to the strongest power-law singularity in the field g(x) since

D∞ ≤ Dq for all q.

In the following we will deal only with large gi(r). Therefore, for convenience, we will

not write large in the corresponding places. It is well established that the probability

density function (PDF) for turbulent energy has an exponential form for L/r À 1 (at

least for large enough values of energy; see, for example, [14] and references therein). This

allows us to use the exponential asymptote of the energy PDF as a standard

P (g(e)) ∼ e−ag(e)

(13)
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where g(e) = u2. The multifractality of turbulent energy fluctuations was first studied in

the paper [16]. In [14] the existence of a multifractal asymptote for turbulence energy

fluctuations was shown; that is, the singular (power-law) estimate

g(e)
r ∼ r(D

(e)
∞ −d) (14)

was found for large enough values of g(e)
r . An analogous estimate was also established in

[14] for large fluctuations of turbulence energy dissipation ε (at least for moderate values

of Reynolds number, see also [17])

εr ∼ r(D
(ε)
∞ −d). (15)

The simplest approach is to use asymptotic representations (14) and (15) to obtain an

asymptotic PDF of the ε-field from the standard asymptotic PDF for large energy fluc-

tuations (13). In this case, the space scale r plays an intermediary role. Thus one can

obtain

P (ε) ∼ exp{−bεγ} (16)

where

γ =
D(e)

∞ − d

D
(ε)
∞ − d

. (17)

If we take experimental values for D(ε)
∞ − d ' −2/3 and for D(e)

∞ − d ' −1/3 ([14]) then

we obtain from (17)

γ ' 1

2
. (18)

This value of γ is in good agreement with the corresponding value obtained in numer-

ous experiments with moderate Reynolds number (see, for example, [18] and references

therein). An analogous situation also takes place with the enstrophy field (cf. [14] and

[18]).

It should be noted that another multifractal asymptotic can also be realized for the

energy dissipation field ([14],[17]): D(ε)
∞ −d ' −1/2. In this case one obtains from (9) that

γ ' 2/3. One can also use the Meneveau relationship [16]

D(e)
∞ =

D
(ε)
2/3 + 2D(ε)

∞

3
. (19)
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Substituting (19) into (17) gives

γ =
D

(ε)
2/3 + 2D(ε)

∞ − 3d

3(D
(ε)
∞ − d)

. (20)

Thus, multifractal asymptotics can be used to obtain PDF asymptotics and vice versa.

Clearly with increasing Reynolds numbers the character of dissipation field singulari-

ties may become increasingly sharp; that is, the dissipation field can ‘lose’ its multifractal

asymptote with a definite value of D(ε)
∞ . In this case, however, a smoother (positive) field

g(x) = [lnε(x)]2

assumes the power-law singular (multifractal) form (10)-(11) with a definite value of

D([lnε]2)
∞ . Then, analogously to (16), we obtain (for large enough values of [lnε]2)

P (ε) ∼ exp{−b[lnε]2γ} (21)

where

γ =
D(e)

∞ − d

D
([lnε]2)
∞ − d

. (22)

(cf. (17)). As far as we know there is no information about the multifractality of the field

[lnε]2. There is, however, information on the PDF of this field for large Reynolds number

(see, for example, [1],[4],[5]). It follows from this information that the value of γ ' 1.

Then (22) leads to

D(e)
∞ ' D([lnε]2)

∞ , (23)

so for large Reynolds numbers the strongest singularities in the field lnε are the same as

in the energy field.

5 Discussion

1. Analogous problems with log-normal-like probability density functions also appear for

other extended systems with fractal (multifractal) behavior. These are (for example): the

problem of large oceanic waves [19]; percolation in porous formations [20] and percolation
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of random resistor networks (backbones) [21],[22]. The simple hierarchical models (such

as the Novikov-Stewart model for turbulence [1] and the de Arcangelis et al. model for

backbones of critical percolation clusters [21]) have analytically calculated multifractal

asymptotics (i.e., definite D∞ values) and, therefore, cannot be described in terms of log-

normal-like PDFs (which cannot lead to definite D∞). For the appearance of log-normal-

like PDFs, strong (enough) singularities should appear in the field under consideration.

For percolation networks (backbones) this phenomenon is related to their topology, and

the cross-over to log-normal PDFs is related to topological changes in the networks.

2. On the other hand, one can expect that this cross-over could permit application of

the Wyld ([23] ) partial summation of the Feynman diagram series for corresponding fields

(in our case it is the viscous dissipation field). The Dyson equation (in this approach)

gives the famous Kraichnan asymptotic solution for the spectrum of turbulence energy

[1]:

Ee ∼ (u0〈ε〉)1/2 k−3/2

where u0 = 〈e〉1/2. This solution only approximately represents actual turbulent velocity

fields (see [1] and Section 4), although the corresponding solution of the Dyson equation

for the dissipation field (after the cross-over)

Eε ∼ (u0〈ε〉)3/2 k−1/2

gives µ = 1/2 (cf. (1)) which seems to be quite appropriate for turbulence with very large

Reynolds numbers (see Introduction and Sections 4). The largest scale L (in this case, cf.

(1)) is given by the Kolmogorov representation L = u3
0/〈ε〉 [1].

This result allows one to hope that in other similar systems (oceanic waves, percolation

networks, etc.) the Dyson equation can give relevant results after the cross-over as well.

3. Finally, let us briefly discuss the problem of passive scalar diffusion in the case

when extreme values (hot spots, scalar particles) of the scalar field are concentrated along

these caustics. In particular, we will consider the effective growth of the particle cloud

along the caustic network. In [24] the relationship between a time of the diffusion growth,
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t, and the characteristic size of this cloud, l, was obtained in the form

l ∼ tα

where

α = (Deff − 1)−1

in the three-dimensional space. To understand this relationship it is useful recall that for

internal walks of a particle on the fractal

〈r2〉 ∼ t2/Dw

where r is the displacement of the particle in the space, Dw is the dimension of the internal

walks of the particle on the fractal. However, when we consider the effective growth of a

cloud of particles in three-dimensional space we should study the motion of some effective

boundary surface of the cloud. In this case, the fractal dimension of the intersection of

the effective (smooth: D = 2) boundary surface with the growing fractal plays the role of

the fractal dimension of external walks. Thus, we should replace Dw by (Deff − 1) when

we replace r by l. Considering the effective diffusion coefficient of the passive scalar cloud

[1]

Keff =
1

6

dl2(t)

dt
,

we obtain from these estimates

Keff ∼ l3−Deff .

Thus, for diffusion growth along the backbone (Deff = 5/3, see Section 3)

Keff ∼ l4/3.

This estimate coincides with the well known diffusion law of Richardson-Kolmogorov [1].

However, if one takes into account the dissipation rate singularities along the caustics then

one obtains an increase in the effective diffusion coefficient Keff with l (due to Deff <

5/3 for the caustic networks with singularities, Section 3). The maximal acceleration of
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the effective diffusion takes place on the elastic backbone (defined by strongest stable

singularities: pyramids and purses, Section 3). In this case Deff = 4/3 and

Keff ∼ l5/3.

It should be noted that such an enhanced effective diffusivity is characteristic of strato-

spheric observations (see, for example, [6] and references therein). When caustic networks

degenerate the passive scalar clouds, naturally, cannot grow along them. However, a con-

nection between the dissipation of passive scalar fluctuations and the viscous dissipation

of kinetic energy still exists. Evidence of this connection is the log-normal PDF of the

passive scalar dissipation and the value of exponent µ ' 0.5 for scalar dissipation observed

in turbulent mixing experiments [4] (cf. Section 4).
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