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Recent advances in cell biology and experimental
techniques using reconstituted cell extracts have
generated significant interest in understanding
how geometry and topology influence active fluid
dynamics. In this work, we present a comprehensive
continuum theory and computational method to
explore the dynamics of active nematic fluids on
arbitrary surfaces without topological constraints.
The fluid velocity and nematic order parameter are
represented as the sections of the complex line bundle
of a two-manifold. We introduce the Levi–Civita
connection and surface curvature form within the
framework of complex line bundles. By adopting this
geometric approach, we introduce a gauge-invariant
discretization method that preserves the continuous
local-to-global theorems in differential geometry. We
establish a nematic Laplacian on complex functions
that can accommodate fractional topological charges
through the covariant derivative on the complex
nematic representation. We formulate advection of
the nematic field based on a unifying definition of the
Lie derivative, resulting in a stable geometric semi-
Lagrangian (sL) discretization scheme for transport
by the flow. In general, the proposed surface-based
method offers an efficient and stable means to
investigate the influence of local curvature and global
topology on the two-dimensional hydrodynamics of
active nematic systems.

1. Introduction
Active nematics, a unique class of systems defined by the
interaction between intrinsic activity and orientational
order, have emerged as a captivating paradigm to
explore complex dynamical phenomena across scales.
In biophysical contexts, deciphering the dynamics of
these active matter systems offers profound insights into

2025 The Author(s) Published by the Royal Society. All rights reserved.
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a myriad of processes, encompassing collective dynamics in motile bacterial suspensions,
structural organization in cytoskeletal assemblies, the dynamics of self-propelled colloidal
particles and the processes governing tissue morphogenesis [1,2]. Recent experimental
discoveries and the potential for significant advances in fields such as material science and
biophysics have sparked a growing interest in understanding the intricate connections between
the dynamic behaviour of active nematic systems and the geometric and topological constraints
imposed by spatial confinement [3–13]. In this paper, we derive a minimal yet well-established
model for active nematic systems on Riemannian surfaces from first principles using a geometric
framework. This formulation allows us to develop a discrete theory and a corresponding
numerical scheme that are efficient for general geometries. We expect the method to be a useful
tool to study active nematic systems where the local curvature and global topology of the system
are important, such as in morphogenesis, and to explore potential engineering applications in soft
robotics and morphing materials.

To characterize nematic fields, the prevailing approach in the existing literature relies on the
Landau–de Gennes Q-tensor theory, which describes the configuration of the nematic field on
a surface via a second-order symmetric tensor. However, in two dimensions, there exists an
alternative representation through a homogeneous quadratic complex scalar function [14–16].
This approach offers distinct advantages because of the inherent constraints on its degrees of
freedom. Unlike the complex representation, the evolution of the Q-tensor needs to be confined
within the realm of traceless and symmetric matrices, involving additional techniques such
as Lagrange multipliers [17,18] or projection [19,20]. Furthermore, the complex representation
facilitates a natural extension to k-atic fields (i.e. director fields with k-rotational symmetry) by
simply raising the exponent of the complex function to k. Recently, there has been significant
interest in modelling tissue dynamics through k-atic liquid crystal theory, highlighting the
practical relevance of this approach [14,15].

The mathematical formulation of nematohydrodynamics, or more broadly of complex fluid
flows, has been extensively explored in the literature [21–25]. Classic approaches primarily rely
on an explicit approach, employing coordinate-based expressions and standard vector calculus.
They often focus on the mechanics of specific physical objects in flow and root their arguments in
the principle of material frame invariance [25]. These approaches become particularly challenging
when attempting to translate ordinary vector calculus identities to curved surfaces. However,
in the realm of differential geometry, there exists an abstract yet powerful geometric language,
exemplified by the Lie derivative, which functions independently of coordinate systems. This
language offers a natural way to comprehend various physical phenomena and conservation
laws in fluid dynamics [26]. Concepts such as convected time derivatives in complex fluids can
be effectively generalized through the use of the Lie derivative, unifying the derivation process.
Despite its generality and utility, the adoption of this geometric language remains relatively
obscure in applied fluid mechanics and is not widely recognized in the field of active nematics. In
light of these challenges, our objective is to bridge this knowledge gap and recast a minimal active
nematic system using the Lie derivative. This effort not only provides a unified perspective on the
various components of the active nematohydrodynamic system but also, as we will demonstrate
in the methods section, leads to a stable and elegant numerical approach [27–29].

Similar to the Lie derivative, we also seek to establish a coordinate-free framework for
analysing active nematic fields on curved surfaces by using the mathematical structure called
fibre bundles. This structure encapsulates the concept of a family of tensor spaces parameterized
by a base manifold, providing a coordinate-free geometric language for describing tensor fields
on the manifold as sections of bundles. When each fibre in the bundle is a one-dimensional
complex vector space equipped with a Riemannian metric, which houses the k-atic director and
velocity vector, this bundle is considered a Hermitian complex line bundle. The theory of the
complex line bundle has been the subject of extensive research in both pure mathematics and
theoretical physics, particularly in modelling condensed matter phenomena [30]. The Levi–Civita
connection on the tangent bundle induces an associated connection on to the nematic bundle,
which gives rise to a nematic Bochner Laplacian that accommodates fractional topological defects
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under the relaxation of nematic elasticity. The nuanced difference between the nematic and vector
Bochner Laplacians has often been overlooked or inadequately explored in the existing literature.
In addition to the theoretical advancement it provides, this complex line representation also
facilitates the construction of an intrinsic complex-valued discrete Laplacian matrix based on the
local chart, instead of relying on a global parametrization or an R

3 representation in the embedded
coordinate. Overall, the formalism grounded in the complex line bundle theory unveils a richer
perspective on the representation of nematic—and more broadly k-atic—fields, across arbitrary
two-dimensional manifolds.

We also show how one can formulate the Stokes equations through the Dolbeault operators
in the complex line bundle theory. On a Riemannian manifold, the measurement of strain rate is
determined by the symmetric part of the covariant derivative, commonly referred to as the Killing
operator. With the complex structure, the covariant derivative can be orthogonally decomposed
into the holomorphic Del and the anti-holomorphic Del bar operators, jointly known as the
Dolbeault operators. We elucidate that, under the incompressibility condition, the Laplacian-like
operator that determines the viscous stress on a Riemannian manifold is induced by the Del bar
operator. In addition to the Bochner Laplacian, this operator encompasses contributions from the
curvature of the manifold. This fact is acknowledged in the literature, despite the results having
been derived from the perspective of Riemannian geometry [26,31,32]. While both derivations are
equivalent in this specific case, we believe that the more general formulation based on complex
line bundles can reveal new perspectives and potential for further theoretical or computational
advancements.

In the computational realm, several efforts have previously been undertaken to solve active
fluid dynamics on curved surfaces. These endeavours are founded on continuum formulations
[33–36] or on the Lattice Boltzmann method [10,37]. In particular, we highlight the limitations of
using the streamfunction formulation for incompressible fluid mechanics on manifolds with non-
trivial topology without specialized modifications [35,38–42]. However, one common challenge
with velocity–pressure-based methods is the representation of tangent vectors. In our method,
we represent both the velocity and director using an intrinsic complex-valued function alongside
the Levi–Civita connection. This approach eliminates the need for the commonly used numerical
technique of constraining the R

3-valued velocity to lie tangent to the manifold [35,43]. Moreover,
we draw parallels between the numerical scheme for active nematics and classic problems in
computational geometry. For example, insightful analogies can be found from the resemblance
between the Stokes equations and the computation of Killing vector fields, which aid in discerning
symmetries within geometries [44–47]. Similarly, there is a correspondence between the modelling
of k-atic liquid crystals with vector field design, which has been developed in applications such
as mesh and texture generation [47–49].

The rest of the paper is structured as follows. We first introduce the geometric formulation
of active nematics in a continuous setting in §2. This is followed by the development of a
discretization approach that adheres to the underlying geometric principles in §3. Results are
discussed in §4, where we present numerical solutions for the dynamics of active nematics on
diverse geometries, highlighting the ability of our framework to capture the intricate dynamics
under various flow regimes and surface topologies. We conclude and discuss potential extensions
of this work in §5.

2. Theoretical formulation
An active fluid is a type of fluid for which the constituent elements have the ability to
exert internal mechanical stresses. In biological systems composed of microscopic particles,
inertia is negligible due to the small size and low velocities, resulting in low-Reynolds-number
flow (i.e. Stokes flow). Here, the fluid flow is driven by the active stresses induced by the
constituent elements. In active nematics, microscopic constituents with orientation q exhibit
nematic symmetry, meaning there is an equivalence relation between orientations q and −q.
The configuration of the nematic field is governed by the nematodynamics equation, an
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advection–diffusion equation acting on this orientation. Because the system operates on a curved
Riemannian surface and our discretization method is devoid of global coordinates, we first
introduce the system of equations through an abstract geometric language and then present the
explicit expression in a later section.

(a) Mathematical framework
In this section, we will establish the geometric framework required to formulate the
hydrodynamics of active nematics on a two-dimensional Riemannian manifold. In §§2a(i) and (ii),
we introduce the complex representation of a k-atic director, specifically for the tangent vector and
the nematic director. In §2a(iii), we introduce the Lie derivative on tensor fields, which is crucial
for describing transport phenomena and deformations in fluid mechanics. The Bochner Laplacian
governs the relaxation dynamics of vector and nematic fields. We start by introducing the Levi–
Civita connection (i.e. covariant derivative) on the tangent bundle in §2a(iv), which enables us
to extend the discussion to the nematic connection in §2a(v) and the Bochner Laplacian on each
bundle in §2a(vi). In §2a(vii), we detect and quantify charges associated with nematic topological
defects by measuring the total rotation of a director field along a closed loop using the Levi–Civita
connection.

(i) Order parameter of k-atic director

We first introduce the general description for a k-atic director in the plane, such as a vector
(k = 1) and a nematic director (k = 2). Let V be a two-dimensional Euclidean vector space, and
the multiplicative group action of complex numbers, C

×, on V is given by

C
××V → V, (reiθ , u) �→ Scale(Rotate(u, θ ), r). (2.1)

A finite subgroup of rotation actions, N = {1, ei2π/k, . . . , ei(k−1)2π/k} ⊂C
×, defines an equivalence

relation of k-rotational symmetry denoted by ∼. For any u, v ∈ V, we have

u ∼ v iff ∃ ẑ ∈ N s.t. v = ẑu. (2.2)

This equivalence relation allows us to define a quotient set Vk = V/N and the map of taking the
equivalence class [·]k : V → Vk. Each element [q]k ∈ Vk is called a k-atic director. The action of C

×
on V naturally induces a canonical quotient action C

×
k =C

×/N on Vk, given by

Ck × Vk → Vk, (rkeikθ , [u]k) �→ [reiθ u]k, (2.3)

where the rotational group is partitioned in θ , with eikθ ∼ ẑeikθ , ẑ ∈ N. Formally, we have the
power map P : C

× →C
×, reiθ �→ rkeikθ , which is a homomorphism with kernel being exactly N.

By the first isomorphism theorem [50], C
×/ ker(P) ∼= im(P), the quotient group is isomorphic to

the image of the map, C
×
k
∼= im(P) =C

×. If, given a unit basis vector 1 ∈ V with |1| = 1, we can
establish an isomorphism between complex numbers C � q̂ and vectors V � q by q = q̂1 = reiθ 1 ∈ V.
Similarly, given a k-director basis [1]k ∈ Vk, we can establish the isomorphism between C � ˆ[q]k
and its associated k-director Vk � [q]k = ˆ[q]k[1]k = rkeikθ [1]k = q̂k[1]k. Through the chain rule, the
pushforward of the equivalence map, denoted as d[]k|q, maps an increment vector, q′ ∈ TqV, to an
increment k-atic director, [q]′k = k[q]k−1q′ ∈ T[q]k Vk.

When focusing on a nematic field with k = 2 and N = {1,−1}, an alternative representation
of the equivalence class is through a rank-1 symmetric tensor [q]2 ∼= q ⊗ q ∈Q, where Q=
{Q ∈ V ⊗symm V | rank Q ≤ 1 }. We called the bijective map from the representation of complex
numbers to the matrix representation the Veronese map,

V : V2 →Q, [q]2 �→ q ⊗ q. (2.4)

For clarity, in the reminder of this paper, we will omit the subscript and specify the bracket to
denote a nematic equivalence (i.e. [] = []2). With [q] ∈ V2, Q = V([q]) ∈Q, the pushforward of
the Veronese map dV : T[q]V2 → TQQ maps an increment [q]′ in complex representation to the
increment in matrix representation Q′.
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(ii) Vector field and nematic field on a Riemannian manifold

On a closed Riemannian two-manifold M, ∂M =∅, each point p ∈ M has a tangent space TpM that
is a copy of the Euclidean plane: TpM ∼= V. Tangent spaces at different points, TpM, TqM, for p �= q,
are disjoint spaces (spaces with no elements in common), and the disjoint union (a union where
elements are kept separate rather than merged) of all tangent spaces is referred to as the tangent
bundle, TM =⋃p TpM. Here, the tangent space TpM is also referred to as the fibre of the fibre bundle
TM at a base point p ∈ M. A tangent vector field q is described as a section of the tangent bundle,
q ∈ Γ (TM), which is an assignment of a fibre element qp ∈ TpM at each point p ∈ M. We also denote
a section defined over a region U ⊂ M as q ∈ ΓU(TM).

Similarly, we can describe a nematic field as a section of the nematic bundle L, [q] ∈ Γ (L).
Each fibre of the nematic bundle L at p ∈ M, Lp, is given by the equivalence relation, Lp := [TpM]
(= [TpM]2) (cf. §2a(i)). In other words, the nematic bundle L = [TM] is obtained by taking the
fibre-wise equivalence class of the tangent bundle.

With a basis section for the tangent bundle, 1 ∈ ΓU(TM), |1| = 1, defined in a neighbourhood
U ⊂ M, we can construct the corresponding nematic basis section for L as [1] ∈ ΓU(L). Basis
sections allow us to represent vector fields and nematic fields by complex scalar functions,
q̂ : U →C and ˆ[q] : U →C2.

Recall that a nematic vector [q] can also be represented by a rank-1 symmetric tensor via the
Veronese map of equation (2.4). We can similarly represent a nematic field as a section of the
symmetric rank-1 tensor bundle as follows. The complex representation of the nematic field is
isomorphic to a tensor field Q = q ⊗ q ∈ Γ (E), where E is the fibre bundle given by the set Q of
rank ≤ 1 in the symmetric tensor bundle TM ⊗symm TM. By populating the fibre-wise Veronese
map V : V2 →Q, we get the section-wise map V : Γ (L) → Γ (E).

The Riemannian metric structure, g|p : TpM ×symm TpM →R, provides a positive-definite inner
product 〈·, ·〉 = g(·, ·) between tangent vector fields or nematic fields. For any two vector fields
u = û1, v= v̂1 and two nematic fields [q] = ˆ[q][1] ∼= q ⊗ q, [p] = ˆ[p][1] ∼= p ⊗ p, the inner products
are defined using their complex representations,

〈·, ·〉 :

⎧⎪⎪⎨
⎪⎪⎩

V × V →R, 〈u, v〉 �→�(ûv̂),

V2 × V2 →R, 〈[q], [p]〉 �→�( ˆ[q] ˆ[p]),

Q×Q→R, 〈p ⊗ p, q ⊗ q〉 = 〈p, q〉2 �→ (�(q̂p̂))2,

(2.5)

where · denotes complex conjugation. Note that the inner product for Q is the Frobenius inner
product that can be extended and denoted as G = g ⊗ g : (V ⊗ V) × (V ⊗ V) →R. A functional
that maps a tangent vector field to a scalar function, α : TpM →R, is referred to as a covector field.
A natural dual pairing of α with a vector field u is denoted as α[[u]]. We denote this as α ∈ Γ (T∗M),
where T∗M is known as the cotangent bundle, which is the dual space to the tangent bundle. The
metric provides a way to associate a vector with its dual counterpart, g|p : TpM → T∗

pM, where a
vector u is mapped to g(u, ·). In index notation, this is referred to as lowering an index, and it can
be expressed as ui = gijuj. Similarly, the Frobenius inner product G|p : (TpM ⊗ TpM) → (T∗

pM ⊗
T∗

pM) provides a way to map a (2, 0) tensor to a (0, 2) tensor, or Pij = gimgjnPmn in index notation.
With the metric, we can define the L2 inner product of a vector or nematic field on M as 〈〈·, ·〉〉 :=∫

M〈·, ·〉dA : Γ (◦) × Γ (◦) →R. The corresponding metric norm and L2 norm are denoted as | · | and
|| · ||, respectively.

(iii) Flow, Lie derivative and advection

On a manifold, the Lie derivative provides a generalized framework for assessing changes in
tensor fields encompassing functions with scalar, vector and covector values, along the flow
defined by another vector field [51–53].

Consider an instantaneous flowmap ϕ(t) : M → M generated by a velocity field u ∈ Γ (TM) such
that ϕ̇ = u, ϕ(0) = idM. The flowmap ϕ induces a pushforward map on the tangent space, dϕ|p :
TpM → Tϕ(p)M. In continuum mechanics, the pushforward map is known as the deformation
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gradient F and satisfies dϕ|p(q) = Fq. We can deduce from linearity that dϕ([q]) = [dϕ(q)] = [Fq].
This is equivalent to the map on the matrix representation Q, dϕ(q ⊗ q) = dϕ(q) ⊗ dϕ(q) = FQF�.
To summarize, we have the pushforward map defined as

dϕ :

⎧⎪⎪⎨
⎪⎪⎩

Γ (TM) → Γ (TM), dϕ(q) = Fq,

Γ (L) → Γ (L), dϕ([q]) = [Fq],

Γ (E) → Γ (E), dϕ(Q) = FQF�.

(2.6)

For a covector field α ∈ Γ (T∗M), the pullback map ϕ∗ : T∗
ϕ(p)M → T∗

pM, ϕ∗α �→ (dϕ)�α = F�α, is
the adjoint of the pushforward map. Because the metric g ∈ Γ (T∗M ⊗symm T∗M) is a valence (0, 2)
tensor, its pullback map follows ϕ∗g �→ F�gF. Since the pullback map preserves the dual pairing,
ϕ∗(α[[q]]) = ϕ∗α[[ϕ∗q]], a pullback map for a vector field is the inverse map of the pushforward
ϕ∗|p = (dϕ|p)−1 = F−1 : Tϕ(p)M → TpM. With omission of the precomposition for non-scalar fields
(e.g. q ◦ ϕ is denoted as q), we can summarize pullback maps as

ϕ∗ :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C∞(M) → C∞(M), ϕ∗f = f ◦ ϕ,

Γ (G) → Γ (G), ϕ∗g = F�gF,

Γ (TM) → Γ (TM), ϕ∗q = F−1q,

Γ (L) → Γ (L), ϕ∗[q] = [F−1q],

Γ (E) → Γ (E), ϕ∗Q = F−1QF−�.

(2.7)

The Lie derivative is defined as the rate of change of the time-varying pullback field at t = 0,

∂

∂t

∣∣∣∣
t=0

◦ ϕ∗ =:
∂

∂t
+ Lϕ̇ :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ḟ + Luf = limt→0(fϕ(p) − fp)/t,

Lug = limt→0(F�gϕ(p)F − gp)/t,

q̇ + Luq = limt→0(F−1qϕ(p) − qp)/t,
˙[q] + Lu[q] = limt→0([F−1qϕ(p)] − [q]p)/t,

Q̇ + LuQ = limt→0(F−1Qϕ(p)F
−� − Qp)/t.

(2.8)

Here, we assume that the metric is time-independent, ġ = 0. In continuum mechanics, the Lie
derivative of scalar function recovers the familiar material derivative. When applied to a vector
and nematic field, the Lie derivative is the upper-convected derivative [54]. The Lie derivative of
the metric, Lug, is the strain rate tensor that measures the rate of change of the Green–Lagrange
strain tensor, F�gF − g. A section ψ is said to be Lie advected by the flow ϕ when ∂ϕ∗ψ/∂t = 0.

In summary, the Lie derivative generalizes the concept of advection from scalar functions to
tensor fields. This theoretical framework is not only mathematically satisfying but also practical,
as it enables the development of a unifying geometric discretization (cf. §3b) that forgoes the use
of coordinate-based expressions and respects the underlying continuous structure.

(iv) Levi–Civita connection on the tangent bundle

On a curved space, each tangent space is in general different from other tangent spaces. The Levi–
Civita connection introduces the concept of parallel transport, allowing us to compare vectors at
different points along a curved manifold. Given a parametrized segment on M, γ (t) : [−ε, ε] → M,
with the starting point γ (0) = p and velocity γ ′(0) = v, parallel transport is a one-parameter family
of linear maps dependent on the path γ , denoted as Πp�γ (t) : TpM → Tγ (t)M, with t ∈ [−ε, ε] [55].
Parallel transport allows us to express the directional covariant derivative of u ∈ Γ (TM) with
respect to v as follows:

∇vu = ∇
dt

u(γ (t))
∣∣∣∣
t=0

:= lim
t→0

Πγ (t)�pu(γ (t)) − u(p)

t
, (2.9)

where Πγ (ε)�p denotes the inverse of Πp�γ (ε). The covariant derivative, ∇ : Γ (TM) → Γ (TM ⊗
T∗M), is defined by the relation ∇u[[v]] :=∇vu or, in index notation, as vi∇iuj.
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Recall that under a local basis section, 1 ∈ ΓU(TM), where |1| = 1, a tangent vector field
u ∈ ΓU(TM) can be represented as a complex field û : U →C, given by u = û1. In this complex
representation, the covariant derivative can be expressed as

∇u = (dû)1 + û(∇1) =: ((d + iω)û)1, (2.10)

where dû = d�(û) + id�(û) ∈ ΓU(T∗M; C) represents a complex-valued covector field and ω is a
real-valued covector field ω ∈ ΓU(T∗M; R) defined by the covariant derivative of the basis field
∇1 =: iω1 ∈ ΓU(TM ⊗ T∗M). The components of ω are commonly referred to as the Christoffel
symbols.

(v) Levi–Civita connection on the nematic bundle

We can extend the Levi–Civita connection from the tangent bundle to the nematic bundle. This is
equivalent to defining a nematic covariant derivative, denoted by ∇L : Γ (L) → Γ (L ⊗ T∗M). Under
a local nematic basis [1] ∈ ΓU(L), the nematic covariant derivative can be defined as

∇L[q] = d ˆ[q]1 + ˆ[q]∇L[1] :=
(
(d + i2ω) ˆ[q]

)
[1], (2.11)

where ω is the covector field iω1 :=∇1 associated with the tangent bundle connection and
basis. The nematic connection ∇L[1] := i2ω[1] reflects increased rotational speed due to nematic
symmetry. This definition is basis-independent and aligns with the algebraic construction of the
Levi–Civita connection on the tangent bundle, ∇L[q] = 2q∇q =∇(q2).

The nematic covariant derivative ∇L[q] is consistent with the standard covariant derivative for
matrix-valued functions, ∇ : Γ (TM ⊗ TM) → Γ (TM ⊗ TM ⊗ T∗M), when applied to Q = V([q]) ∈
Γ (E) ⊂ Γ (TM ⊗ TM). Via the pushforward of the Veronase map, dV|[q] : T[q]Γ (L) → TV([q])Γ (E),
one can confirm the equivalence of these two derivatives, ∇Q =∇q ⊗ q + q ⊗∇q = dV|[q][[∇L[q]]].

(vi) Laplacian and diffusion

The concept of the covariant derivative naturally leads to a Laplacian operator referred to as the
Bochner Laplacian, which is the first variation of the Dirichlet energy.

To begin, we introduce the Bochner Laplacian when it operates on vector fields. The Dirichlet
energy functional maps a vector field to an energy measure, F : Γ (TM) →R, and can be expressed
as follows:

F (u) = 1
2
||∇u||2 ∂M=∅= 1

2
〈〈u,∇∗∇u〉〉 =: −1

2
〈〈u, �u〉〉, (2.12)

where the operator ∇∗ : Γ (TM ⊗ T∗M) → Γ (TM) represents the L2 adjoint of ∇, defining the
Bochner Laplacian as � :=−∇∗∇ : Γ (TM) → Γ (TM). Note that we use the negative semi-definite
convention for the Laplacian operator.

Using the same procedure, the nematic covariant derivative is employed to construct the
nematic Dirichlet energy, FL ∈ Γ (L) →R, which is expressed as

FL([q]) = 1
2
||∇L[q]||2 ∂M=∅= 1

2
〈〈[q],∇L∗∇L[q]〉〉 =: −1

2
〈〈[q], �L[q]〉〉. (2.13)

The variation of FL leads to the definition of the nematic Bochner Laplacian, denoted as �L :=
−∇L∗∇L : Γ (L) → Γ (L).

Analogously, the standard Bochner Laplacian � : Γ (TM ⊗ TM) → Γ (TM ⊗ TM) defined for a
general matrix field H can be derived from the matrix Dirichlet energy, E : Γ (TM ⊗ TM) →R,
measured by the Frobenius inner product, E(H) = (1/2)||∇H||2 = (1/2)

∫
M ∇iHjk∇ iHjk dA. This

Laplacian � can act on a nematic field Q = V([q]), but it differs from the nematic Bochner
Laplacian, �Q �= dV|[q][[�L[q]]].

The reason for this difference is twofold. First, nematic fields only correspond to rank-1
matrices in the nematic subspace E ⊂ TM ⊗ TM, but the matrix Bochner Laplacian spans
the entire TM ⊗ TM. This results in the matrix representation of nematic fields being an
overparametrization under this operator. This overparametrization can be demonstrated by
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considering the matrix diffusion equation Q̇ =�Q. In general, a rank-1 initial condition Q|t=0 ∈
Γ (E) does not remain rank-1 under this diffusion (i.e. Q diverges from the nematic subspace E).
By contrast, ˙[q] =�L[q] remains within the nematic phase. Second, despite the equivalence of
covariant derivatives ∇Q = dV|[q][[∇L[q]]] (cf. §2a(v)), their corresponding Dirichlet energies are
distinct: E(Q) �=FL([q]). This is because the pushforward of the Veronese map dV[q] : T[q]L → TQE
does not isometrically map the intrinsic norm on T[q]L to the Frobenius norm for matrices on TQE.

As a side remark, it is possible to represent the nematic Dirichlet energy FL([q]) in terms of Q
through an equivalent functional FE : Γ (E) →R such that FE(Q) =FL([q]). We can achieve this
by introducing a specific quadratic form, | · |2Q := | · |2 − 2 det(·), for R

2×2 matrices on TM ⊗ TM.
This quadratic form induces a corresponding symmetric bilinear form 〈·, ·〉Q = 〈·, ·〉 − 2 det(·, ·).
The equivalent nematic Dirichlet energy FE relies on this bilinear form and can be explicitly
expressed in index notation

FE(Q) = 1
2

∫
M
|∇Q|2Q dA ≡ 1

2

∫
M

gij(gkmgn − det(g)εkmεn)∇iQ
k∇jQ

mn dA. (2.14)

Here, gij are the components of the metric tensor g and εij represents the Levi–Civita permutation
symbol.

In this paper, we adopt the more natural choices of FL([q]) and �L to model relaxation of the
nematic field. We use �E : Γ (E) → Γ (E) to denote the Laplacian equivalent to �L but acting on the
matrix field representation. That is, �E satisfies the equivalence �EQ =�E(V[q]) = dV[[�L[q]]] ∈
TQΓ (E) and is defined as

�EQ :=− δFE(Q)
δQ|E

=−dV
[[

δF ([q])
δ[q]

]]
= dV ◦ �L ◦ V−1(Q). (2.15)

The subscript |E emphasizes the variation within the nematic subspace E, rather than the entire
TM ⊗ TM.

(vii) Curvature, defects and local-global geometry

The singularities within the nematic field, also referred to as topological defects, are associated
with points where the director field exhibits zeros and discontinuities. These defects are
commonly characterized by their index or charge Z . To identify these defects and compute their
charges, we employ the covariant derivative in closed-loop integration, a classic procedure also
discussed in other texts [55,56].

The charge of a topological defect in a k-atic field [q]k is determined by the cumulative turning
angle that the director field undergoes around the defect. Here, we consider a defect at point p ∈ U,
where U ⊂ M represents a sufficiently small disc that does not encircle any other singularities.
The boundary of the disc is denoted as γ = ∂U. Locally in U, it is always possible to establish
a smooth and defect-free basis [1]k and subsequently express the rotation form under the Levi–
Civita connection, denoted as η ∈ Γ (T∗M), as

η := 1
|[q]k|2

〈∇[q]k, i[q]k
〉= 1

|[q]k|2
〈
d[q]k + ikω[q]k, i[q]k

〉= dS
1

arg( ˆ[q]k) + kω. (2.16)

Note that the function arg necessitates a smooth basis to be well-behaved and returns values in
S

1 rather than real numbers. Despite being S
1-valued by itself, the differential, dS

1
arg( ˆ[q]k), can

be defined as a real-valued function. This is because, at a given point, this differential depends
only on the function’s values in a small neighbourhood around the point. In such a local context,
a continuous S

1-valued function can be unwrapped to a real-valued function up to a 2π -integer
constant that does not affect the differential.

The closed-loop integral of the turning rate η defined in equation (2.16) along the parametrized
boundary loop γ (t) = ∂U(t), where t ∈ [0, T] and γ (0) = γ (T), is referred to as the cumulative
turning angle of the director field around a defect. The integral of the connection ω in
equation (2.16), which is known as the holonomy angle, is equal to the negative of the integrated
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Gaussian curvature:
∮

γ ω =− ∫
U KdA. Therefore, the charge of the topological defect in a k-atic

director field, denoted as Z ∈Z/k, admits the following relation:

Zp([q]k) := 1
2πk

∮
γ

dS
1

arg( ˆ[q]k) = 1
2πk

∮
γ

η + 1
2π

∫
U

K dA. (2.17)

Note that the closed integral ensures that the orientation after integration, arg( ˆ[q]k)|t=T, differs
only by an integer multiple of 2π from its starting value, arg( ˆ[q]k)|t=0. As a result, the charge is
consistently an integer multiple of 1/k (i.e. an integer value for a vector field and a multiple of
1/2 for a nematic field). This quantized property also implies that the charge of the defect remains
invariant regardless of variations in the size and shape of γ and is solely the property of the
director field. As a special case,

∮
γ dS

1
arg( ˆ[q]k) = 0 if γ does not enclose any topological defects of

arg( ˆ[q]k).
Owing to the Poincaré–Hopf theorem, we can relax the local constraint on U. This theorem

relates the sum of charges on the entire manifold M (with ∂M =∅) to the topological invariant χ

known as the Euler characteristic ∑
i

Zpi ([q]k) = χ (M) = 2 − 2g, (2.18)

where g represents the genus of the manifold. By replacing U with manifold M, equation (2.17)
leads to the Gauss–Bonnet Theorem, which states that the total Gaussian curvature is also a
topological invariant,

∫
M K dA = 2πχ (M).

In a nutshell, we can detect defects and calculate their charges by establishing the cumulative
turning angle through the use of the covariant derivative. Local-to-global theorems, including
the Gauss–Bonnet and Poincaré–Hopf theorems, connect local properties such as curvature
of the surface and charges of the nematic field to robust global invariants. Practically, as we
will elaborate in §3e, these formulae translate to the discretization of Gaussian curvature and
the algorithmic computation of topological charges, which satisfy the discrete analogue of
local-to-global theorems.

(viii) Expressing the Lie derivative as a covariant derivative

Under the Levi–Civita connection, the Lie derivative can be expressed in terms of the covariant
derivative. To demonstrate this, we denote the directional derivative, a derivation associated with
its corresponding vector field, as u := du : C∞(M) → C∞(M). In index notation, it is commonly
denoted as ui∂i. The pullback map respects the derivation structure; for q ∈ Γ (TM), f ∈ C∞(M), we
have ϕ∗(dqf ) = dϕ∗qϕ∗f . Consequently, the Lie derivative satisfies the Leibniz rule over derivation,
Lu(dqf ) = dLuqf + dqLuf . Since the Lie derivative of a scalar field is equivalent to the directional
derivative, we have Luq(f ) := dLuqf =Lu(dqf ) − dqLuf = uq(f ) − qu(f ) =: [u, q](f ), known as the
Lie bracket. The Lie bracket can in fact be expressed using the covariant derivative of the
Levi–Civita connection, referred to as the torsion-free condition of the connection, T∇ [[u, q]] :=
∇uq − ∇qu − [u, q] = 0. Under the Levi–Civita connection, the Lie material derivative for vector q
can be expressed as

q̇ + Luq = q̇ +∇uq − ∇qu, (2.19)

which is a familiar form of the upper-convected derivative, or Oldroyd derivative for vectors
[54]. The term ∇uq represents the parallel transport components, while ∇qu accounts for the local
deformation caused by the differential flow velocity.

Through the pushforward of k-atic equivalence d[]k (cf. §2a(i)), the Lie derivative of the k-atic
director field can be expressed as follows:

˙[q]k + Lu[q]k = kqk−1(q̇ + Luq), (2.20)

where qk−1 denotes the (k − 1)-th power of the nematic q as a complex function. When k = 2,
this is equivalent to the advection of the tensorial representation of the nematic field. Applying
the Leibniz rule of the Lie derivative to the tensor product, we have LuQ =Luq ⊗ q + q ⊗ Luq.
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By rearranging the terms, we recover the operator for the upper-convected derivative of the
symmetric tensor Q,

Q̇ + LuQ = Q̇ +∇uq ⊗ q + q ⊗∇uq −∇qu ⊗ q − q ⊗∇qu

= Q̇ +∇uQ − (∇u)Q − Q(∇u�). (2.21)

The dual pairing order follows the convention of matrix multiplication (i.e. (LuQ)ij = uk∇kQij −
∇kuiQkj − Qik∇kuj in index notation).

As demonstrated in §2a(iii), the strain rate tensor can be formulated as the Lie derivative of
the metric, Lug. When expressing it in terms of the covariant derivative acting on the Eulerian
velocity, we can retrieve its well-known form as the symmetric component of the velocity
gradient. By expressing Ḟ = ˙(dϕ) = ϕ∗(∇ϕ̇) = (∇u)F ∈ Γ (TM ⊗ T∗M), we can express the Lie
derivative of the metric as the pullback of the strain rate tensor,

Lug = ∂

∂t
(F�gF) = Ḟ�gF + F�gḞ = F�(∇u�g + g∇u)F = ϕ∗(∇u�g + g∇u). (2.22)

Since the flowmap, ϕ : M → M, is instantaneously an identity map, we have Lug =∇u�g + g∇u ∈
Γ (T∗M ⊗symm T∗M), which measures the infinitesimal deformation rate of a fluid element. This
Lie derivative defines the Killing operator,

K : Γ (TM) → Γ (T∗M ⊗symm T∗M), K : u �→ 1
2
Lug. (2.23)

A vector field v is referred to as a Killing vector field if Kv = 0 (i.e. the flow it generates preserves
the metric).

(b) Hydrodynamics of active nematic films
In this section, we will extend the mathematical framework from the previous sections to describe
the hydrodynamics of an active nematic film on a curved surface. The system can be analysed
in two parts. First, we have the steady-state Stokes equations, which describe how the fluid
responds to the active stress induced by the nematic configuration. Subsequently, the steady-state
fluid velocity acts as the driving force for the nematodynamics equation, an advection–diffusion
equation that governs the behaviour of the nematic field. The system assumes quasi-static
coupling, meaning that the dissipation in the fluid at this length scale is considered instantaneous.

(i) Forced surface Stokes flow

We focus on an active nematic confined to a fluid interface, where the flow is governed by the
two-dimensional overdamped Stokes equations. Bulk fluid effects are not explicitly modelled,
which is valid when surface dissipation dominates over bulk dissipation (i.e. when the Saffman–
Delbrück length far exceeds the system size) [57,58]. The dynamics of such dissipation-driven
systems can be systematically derived using the Onsager variational principle [42,57,59–62]. The
associated functional, known as the Rayleighian, captures the dissipation rate of the system, and
Stokes flow emerges as the stationary condition of this dissipation function. In this work, we
consider only viscous dissipation, neglecting reactive stresses from nematic elasticity in advection
(cf. §2a(ii) and [63]). The fluid flow is driven by the active nematic stress σ = αQ ∈ Γ (TM ⊗symm

TM), which aligns with the orientation of the nematic constituents and can be either contractile
(α > 0) or extensile (α < 0) [64]. The assumption of an active stress-dominant regime is valid in
many practical cases [2,65].

The formulation of Stokes flow involves minimizing the Rayleighian while satisfying the
incompressibility constraint,

min
u

μ〈〈Ku,Ku〉〉 − 〈〈u, div∇σ 〉〉 subject to div u = 0, (2.24)
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where the first term μ〈〈Ku,Ku〉〉 quantifies the rate of viscous dissipation [31,32,41]. Here, the
divergence operator, div :=−grad∗ : Γ (TM) → C∞, is the negated L2 adjoint of the gradient
operator, grad := g−1d : C∞ → Γ (TM).

The negated adjoint of the covariant derivative is referred to as the covariant divergence,
div∇ :=−∇∗ : Γ (TM ⊗ TM) → Γ (TM).

The Killing operator K can be decomposed using the covariant del bar opeartor ∂̄∇ as Ku =
∂̄∇u + div(u)I/2. Here, ∂̄∇u quantifies the degree of non-conformality or infinitesimal shearing
induced by the velocity field. The remaining term, div(u)I/2, characterizes isotropic fluid dilation.
For a detailed discussion of the holomorphic structure, including the definitions of covariant del
∂∇ and del bar ∂̄∇ operators and their relevance in fluid mechanics, see electronic supplementary
material, S1. Under incompressibility, we can replace K with ∂̄∇ and represent the constrained
optimization problem as a mini–max problem:

min
u

max
p

R=μ〈〈∂̄∇u, ∂̄∇u〉〉 − 〈〈u, div∇σ 〉〉 − 〈〈p, div u〉〉. (2.25)

In this expression, p is the fluid pressure acting as a Lagrange multiplier for incompressibility. On
a closed surface with ∂M =∅, the stationary conditions with respect to velocity u and pressure p
yield the incompressible, steady Stokes equations on a two-dimensional Riemannian manifold

2μ ∂̄∇∗∂̄∇u + grad p − α div∇Q = 0,

div u = 0.
(2.26)

The curvature contributes to the viscous term as −2∂̄∇∗∂̄∇u = (� + K)u. This result can be
deduced from the known approach based on Riemannian geometry that results in the relation
−2K∗Ku = (� + K + grad div)u [26,31,32]. In addition, in electronic supplementary material, S1.1,
we provide an alternative derivation within the framework of complex manifolds using complex
differential forms.

Note that the existence of a Killing vector field indicates symmetries in the geometry, such as
the rigid body rotation on a rotationally symmetric surface. In such case, the Stokes equations
might lack full rank, leading to non-unique solutions with a kernel represented by the Killing
vector field. In our study, we select the least-norm solution as the canonical one to the Stokes
equations. This choice is equivalent to projecting out all modes of Killing fields in the L2 sense. The
treatment is justified by the following. In theory, the L2 Killing component of the velocity does not
contribute to energy dissipation, and as a result, it remains conserved in the presence of any non-
zero inertia. This is an instance of Noether’s theorem, which states that the presence of continuous
spatial symmetry, represented by a Killing vector field, implies the conservation of momentum.
Therefore, in such an ideal case, the correct solution is the least-norm solution with the addition
of the Killing mode in the initial condition. However, in practical situations, particularly when
considering an interfacial fluid surface that separates two bulk viscous fluids, the Killing mode
will eventually dissipate energy through frictional interactions with the substrate.1 In this case,
the system should converge to the least-norm solution over time. In §3b, we will elaborate on the
implementation of the Killing projection.

(ii) Nematodynamics

Modelling nematodynamics involves studying the dynamics of nematic liquid crystals, which
possess both fluid-like and orientational order properties. In this study, we are particularly
interested in the sharply aligned limit of the active nematic field. This sharply aligned phase
arises when the microscopic rotational diffusion of the nematic molecules is negligible compared
with steric alignment [66]. Under these conditions, the nematodynamics of the macroscopic order
parameter becomes identical to the dynamics of individual microscopic nematic filaments. A
commonly used approach is to use an advection–diffusion equation, where advection accounts for
the flow-induced alignment and rotation of the nematic director field, while diffusion represents

1Interactions with the bulk fluid are not considered in this study.
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the smoothing of the director due to random molecular interactions [23]. There are various
convective rates and models proposed for describing nematic advection and flow alignment
[14,67,68]. In this work, we model the advection of nematic molecules based on Jeffery’s
microphysical theory [66,69] and express it using the Lie derivative framework. The numerical
scheme for this convective rate is detailed in §3b and can be easily adapted to other used rates.

The relaxation or diffusion part of the nematodynamics equation involves the nematic Bochner
Laplacian established in §2a(vi). The constraint |[q]| = 1 imposes the sharply aligned phase.
However, according to the Poincaré–Hopf theorem, zeros of the director field are guaranteed
unless the system is on a torus with a vanishing Euler characteristic χ = 0 (cf. §2a(vii)). To address
this constraint, we adopt a Landau–de Gennes formulation and introduce a weak constraint
through a penalizing energy term G([q]) = (|[q]|2 − 1)2/(4ε2) in addition to the Dirichlet energy
|∇L[q]|2/2. Here, ε represents the coherence length scale around the defects [30]. Together, these
terms are referred to as the Frank–Oseen energy [70–74], the gradient flow of which induces a
diffusion. Note that the nematodynamics in the close vicinity of defects is not captured by the
present model and requires more detailed analysis [75]. Furthermore, this minimal model for
nematic elasticity does not include the alignment effects induced by extrinsic geometry [76,77],
nor does the complex representation account for out-of-plane components of nematic fields [78].

The advection of nematic molecules is captured by a combination of an adapted isometric
Lie transportation and the ‘rotation-only’ Lie transportation. Lie transportation, as described in
§2a(iii), models how the nematic director field is passively transformed by the flow generated
by a velocity field. The rotation-only Lie transportation factors out the stretching part of the Lie
transportation, and thus a nematic director is only rotated while keeping its magnitude.

By decomposing the velocity gradient into symmetric (E =Ku, representing strain rate)
and skew-symmetric (W =∇u − E, representing vorticity) components, we can express the
nematic Lie derivative (cf. equation (2.8) and §2a(viii)) as Lu[q] = 2qLuq, where Luq =∇uq −
Eq − Wq. The vorticity W and the parallel transport ∇u contribute to infinitesimal rotational
transformations that preserve length, whereas the strain rate E affects the molecules by aligning
them with the flow and causing axial stretching or compression.

A rotational Lie derivative, Lrot
u , also known as the Jaumann or corotational derivative,

specifically focuses on the rotation effect induced by the flow, (e.g. Lrot
u q =∇uq − Wq for vector

fields q). Like the classical Lie derivatives (§2a(iii)), the rotational Lie derivative Lrot
u is defined

through a pullback operation. The only difference is that this pullback is only the rotation
component of the classical pullback operator. Recall from equation (2.7) that if ϕ is a flow map
with deformation gradient F, the pullback of a vector field and, respectively, a nematic field
is given by ϕ∗q = F−1q, ϕ∗[q] = [F−1q] and ϕ∗Q = F−1QF−�. Now, let R denote the rotational
component of F in the polar decomposition F = RU. Define the rotational pullback ϕ∗

rot on vector
fields and nematic fields by ϕ∗

rotq := R−1q, ϕ∗
rot[q] := [R−1q], and ϕ∗

rotQ := R−1QR−�. Via this
rotational pullback operator, define the Jaumann derivative as Lrot

u := ∂/∂t ◦ ϕ∗
rot, where ϕ is the

infinitesimal flow map generated by u. In terms of the gradients ∇u, E, W of u,

Lrot
u q =∇uq − Wq, Lrot

u [q] = 2qLrot
u q, Lrot

u Q =∇uQ − WQ + QW. (2.27)

The combination of the Jaumann derivative with the traditional Lie derivative in a weighted
manner, denoted as Lλ

u := λLu + (1 − λ)Lrot
u , λ ∈ [0, 1], allows for the modelling of nematic

particles with different aspect ratios. The parameter λ ∈ [0, 1] allows for a linear transition from
considering the full velocity gradient at λ= 1 to only the spin tensor at λ= 0. In the literature, the
non-dimensional parameter λ is referred to as the tumbling parameter or Bretherton’s constant
and determines the dominance of alignment in extensional flow versus tumbling in rotational
flow [79,80].

In addition, nematic molecules are inextensible when subjected to flow. During advection, the
magnitude of the order parameter is transported like a scalar field without undergoing stretching.
Therefore, we project out the stretching component in the Lie derivatives Lλ

u. Explicitly, the
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projected Lie derivatives are given by

P(Lλ
uq) :=Lλ

uq − 1
|q|2 〈L

λ
uq, q〉q =∇uq − Wq − λEq + λ

|q|2 〈Eq, q〉q,

PL(Lλ
u[q]) :=Lλ

u[q] − 1
|[q]|2 〈L

λ
u[q], [q]〉[q] = 2q P(Lλ

uq)

and PE(Lλ
uQ) :=Lλ

uQ − 1
|Q|2 〈L

λ
uQ, Q〉Q,

=∇uQ − (λE + W)Q − Q(λE − W) + 2λ

|Q| 〈E, Q〉Q. (2.28)

Here, we normalize Q based on the Frobenius matrix product 〈·, ·〉. It is equally valid to use
the nematic norm 〈·, ·〉Q introduced in equation (2.14). Projections based on both norms are
equivalent because det(Q) = 0, meaning |Q| = |Q|Q, and 2 det(Q, Q′) = det(Q, Q)′ = det(Q)′ = 0,
indicating 〈Q′, Q〉 = 〈Q′, Q〉Q. In the literature, the generalized isometric advection equation
based on equation (2.28) is known as Jeffery’s equation [69].

By combining Jeffery advection with the Ginzburg–Landau diffusion, we obtain the
nematodynamics equations governing the evolution of the surface nematic

˙[q] + PL(Lλ
u[q]) = 1

η

(
�L[q] − δG

δ[q]

)

and Q̇ + PE(Lλ
uQ) = 1

η

(
�EQ − dV

[[
δG
δ[q]

]])
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.29)

where
δG([q])

δ[q]
= 1

ε2 (|[q]|2 − 1)[q], (2.30)

and η is the so-called rotational viscosity (distinct from the microscopic rotational diffusion).
Although not explicitly apparent, the Gaussian curvature K plays an implicit role in the Bochner
Laplacian through the Levi–Civita connection [26,47].

(iii) System of equations

We summarize and non-dimensionalize the governing equations for the hydrodynamics of an
active nematic fluid film. Using the domain length scale, denoted as r, as the characteristic length
scale and the time scale τ =μ|α|−1, we can scale all variables and differential operators. This leads
to the dimensionless system given by

(� + K)u − grad p ± div∇Q = 0, div u = 0 (2.31a)

and
˙[q] + PLLλ

u[q] = 1
Pe

(
�L[q] − 1

ε2 (|[q]|2 − 1)[q]
)

, (2.31b)

where λ ∈ [0, 1] is the tumbling parameter; Pe = |α|ηr2μ−1 is the active Peclet number, which
measures the influence of activity-driven Jeffery advection compared with nematic relaxation;
ε = ε/r characterizes the size of a defect core by comparing the coherence length to the system
size. Throughout the rest of the study, we solve the non-dimensional version of the system. In
the numerical results presented below, we assume the limit ε → 0 and adopt a normalization
procedure to account for the Ginzburg–Landau term.

3. Discretization and algorithm
In this section, we will explain the construction of a discrete system for modelling an
active fluid on a two-dimensional triangular manifold mesh. We solve equation (2.31) by
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time splitting (cf. algorithm 1). At each time step, the active force is calculated by taking
the covariant divergence of the stress tensor induced by the nematic field. This active force
gives rise to a fluid velocity field, which is obtained by solving the discrete Stokes equations
(equation (2.31a)) through augmented-Lagrangian (AL) iteration. Next, the nematodynamics
equation (equation (2.31b)) evolves the nematic field with the advection by the Stokes flow
velocity field, as well as the relaxation. The advection and relaxation terms are separated in
a splitting procedure. We first compute the evolution of the nematic field Lie-advected by the
velocity using an explicit semi-Lagrangian (sL) scheme. The one-step relaxation, based on the
Bochner Laplacian operator, is solved using the implicit Euler method to ensure unconditional
stability. The projection that removes the stretching component of the Lie derivative and the
constraint imposed by the Ginzburg–Landau term are consolidated into a single normalization
step. For completeness, we also include a discrete counterpart of the theory of §2a(vii) about
curvature and defects, enabling us to determine the locations and charges of the topological
defects. The discretization presented in this work offers several distinctive features:

— The calculations are carried out on a two-dimensional triangular mesh, rather
than a volumetric grid, allowing for efficient and accurate representation of
the system.

— Tensor fields and differential operators are intrinsically represented using the discrete
complex line bundle. This representation, in contrast to the common approach of
applying extra tangentiality constraints on Euclidean tensors and operators, allows better
accuracy and lower computational cost.

— A generalized sL method is employed to handle the Lie derivative for both vector
and tensor quantities, thereby providing a general procedure for the advection of k-atic
directors.

— We use isomorphic representations of the nematic field through the Veronese map.
This allows us to adapt to the more convenient representation at each stage of
the algorithm.

In addition to the theoretical and algorithmic development, we provide an implementation
using SideFX Houdini with the VEX language and Python module (see electronic supplementary
material, S2 for a brief introduction to the software). Our implementation is accessible through a
public repository on GitHub: https://is.gd/5VpfIf.

Algorithm 1. Hydrodynamics of active nematics.

1: Inputs:
Surface M, curvature K, time step �t

2: Initialize:
Nematic field Q = V([q])

3: for t = 0 to T do
4: STOKES FLOW(Q)
5: f ← div∇Q
6: u, p ← SOLVE((� + K)u = grad p − f , div u = 0) � AL iteration (§3f)
7: NEMATODYNAMICS(u, Q)
8: Q ← SOLVE(Q̇ + PELλ

uQ = 0) � Explicit sL (§3b)
9: [q] ← V−1(Q)

10: [q] ← SOLVE( ˙[q] = Pe−1�L[q]) � Implicit Euler
11: Q ← V(NORMALIZE([q]))
12: t ← t + �t
13: end for
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Figure 1. Schematics depicting intrinsic parallel transport on a two-dimensional triangularmesh: (a) face–face transportation
by flattening the dihedral anglewithin a two-triangle stencil. (b) vertex–vertex transportation preserves angles along geodesic
paths within the geodesic polar map.

(a) Discrete manifold and choice of variable space
In this section, our goal is to establish the discrete Levi–Civita connection (§3a(i)) on a discrete
triangular mesh and specify the choice of the space of discretization variables (§3a(ii)) for the
active nematic system. The notation for mesh navigation is standard in the literature [49] and
likely to be clear from the context. To aid the reader, we have also included self-contained
introductory materials in electronic supplementary material, S2 for an audience unfamiliar with
the notation.

(i) Levi–Civita connection

We equip the discrete manifold with a Levi–Civita connection (cf. §2a(iv)) by locally constructing
the discrete parallel transport. This includes the parallel transport from the tangent space of one
vertex to its neighbouring vertex, from a face to its neighbouring face, as well as from a vertex
to its neighbouring face. The construction of a discrete Levi–Civita connection follows common
approaches in discrete differential geometry and design of k-RoSy fields [47–49].

The face–face and vertex–vertex transportations can be defined intrinsically (i.e. invariant
under isometric deformation). Therefore, parallel transport of a vector u from face fi to face fj
along the dual edge e∗, where e ≺ fi, fj, can be conceptualized as if the dihedral angle at e were
flattened (cf. figure 1a). In this context, parallel transport simplifies to a basis change across face fi
to face fj,

Πi�j : Tfi M → Tfj M, Πi�j(ui) =Πi�j(ûi1i) = e−iΩe∗ ûi1j. (3.1)

The vertex–vertex parallel transport is intrinsically defined by maintaining the angle with
respect to the connecting edge e between neighbouring vertices vi, vj ≺ e, illustrated by figure 1b.
As seen in §2a(v), the nematic field requires amplifying the Levi–Civita connection on the tangent
bundle Ω to 2Ω . Subsequently, we can express the parallel transport of a nematic director [q]i ∈ Lvi

to Lvj along le as

Πi�j : Lvi → Lvj and Πi�j([q]i) =Πi�j( ˆ[q]i[1]i) = e−i2Ωe ˆ[q]i[1]j. (3.2)

Here, the primal edge connection, Ωe = arg(lvj≺e) − arg(lvi≺e) − π , quantifies the basis change
across Tvi M and Tvj M (cf. figure 1b).

The vertex–face transportation is achieved using the R
3 embedding. Given the embedding of

the mesh and the realization of the tangent vector in R
3, we can use a three-dimensional dihedral

rotation to map from one vertex tangent space to a neighbouring face tangent space and vice
versa (cf. the continuous theory in §2a(iv)). To illustrate this, consider a vertex unit normal, nv ∈
T⊥

v M,|nv | = 1, and a face unit normal, nf ∈ T⊥
f M, |nv | = 1. The dihedral rotation from nv to nf is

defined as the rotation Rvf with angle cos−1〈nv , nf 〉 about the axis l = nv × nf /|nv × nf |. Define
Πv�f := Rvf : TvM → Tf M. Note that the definition of nv is not unique. In practice, we use an
angle-weighted vertex normal nv := (

∑
f�v

˜� f�vnf )/(2π ).
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(ii) Space of system variables and operator mappings

In this section, we specify the choice of space where the discretization variable resides, and the
mapping spaces imposed by the differential operators. In §§ 3b–d, we will recapitulate the specific
definitions of the operators.

In our approach, we discretize the Stokes equations on the faces of the mesh and the
nematodynamics equation on the vertices. Specifically, we work with a face-based fluid velocity
denoted as u ∈ ΓF(TM) and a vertex-based nematic director represented as [q] ∈ ΓV(L), alongside
the corresponding matrix representation Q = q ⊗ q ∈ ΓV(E).

Subsequently, we develop the discrete differential operators associated with these choices. For
the Stokes equations, we construct the Bochner Laplacian � : ΓF(TM) → ΓF(TM) based on the
face–face Levi–Civita connection. The gradient operator, grad : CV(M) → ΓF(TM), maps scalar
vertex data to vector face data. The divergence operator, the adjoint of the gradient, maps
vectors from faces to scalar measurements at vertices, div : ΓF(TM) → CV(M). Similarly, for the
nematodynamics equation, we establish the nematic Bochner Laplacian �L[q] : ΓV(L) → ΓV(L)
using the vertex–vertex Levi–Civita connection. We also introduce a vertex-based Lie derivative
Lu : ΓV(E) → ΓV(E) to advect the nematic director.

(b) sL Lie advection and nematodynamics
The sL method is an explicit space–time integrator for advection equations similar to an
upwinding scheme [81]. Here, we introduce the sL method generalized to any Lie advection
equation for tensor fields as follows. Given a velocity field, we construct a backward flowmap
by tracing the velocity field upwind. This flowmap is used to pullback the tensor field from the
previous time step as the update rule. The principle can be applied to tensors of arbitrary (r, s) type
(e.g. the valence-k tensor that represents the k-atic field [14]), serving as a discrete counterpart to
the continuous theory discussed in §2a(iii). The resultant scheme, summarized in algorithm 2,
captures the geometric structure of nematic advection and enhances numerical stability.

Concretely, given a time-independent velocity field u ∈ ΓV(TM), we construct a finite-time
backward flowmap Ψ�t by integrating the ODE, ∂τ Ψτ =−u(Ψτ ), τ ∈ [0, �t], with the initial
condition Ψ0 = idM. In practice, we represent Ψτ and u as R

3-valued functions using surface
embeddings and implement the integration using RK4. To evaluate u ◦ Ψτ , we use a closest-
point projection followed by a linear interpolation in a triangle. Recall in the continuous setting
that Lie advection ∂t[q] + Lu[q] = 0 is characterized by a constant pullback field ∂tϕ

∗[q] = 0
(cf. equation (2.8)). With the backward flowmap Ψ�t and its gradient dΨ�t, a discrete Lie advection
is analogously represented by updating the nematic field [q] using its pullback value Ψ ∗

�t[q]. The
procedure will be made explicit in following subsections.

(i) Deformation gradient of backward flowmap

By evaluating the finite-time flowmap over vertices (i.e. Ψ�t such that M�t =Ψ�tM), we can
construct the deformation gradient dΨ�t|f (realized in R

3) on each triangle face f as follows:

dΨ�t : ΓF(TM) → ΓF(TΨ�t M�t) and dΨ�t|f :=
[

|
l1
|

|
l2
|

|
n
|

]
Ψ�t(f )

[
|

l1
|

|
l2
|

|
n
|

]−1

f

. (3.3)

These column vectors, illustrated by figure 2, represent the embedded edge vectors l ∈R
3 and the

unit face normal n ∈R
3 before and after the backward flowmap Ψ�t. A vertex-based deformation

gradient F : ΓV(TM) → ΓV(TΨ�t M�t) is obtained by averaging the deformation gradient on
incident faces, F|v = (1/|f � v|)∑f�v dΨ�t|f .

(ii) Pullback of the nematic field

Recall that the nematic field can be equivalently expressed using the matrix representation
Q = V([q]) ∈ ΓV(TM ⊗ TM). With Q realized as an R

3×3-valued function, its Lie advection,
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Figure 2. The sL Lie advection is performed on a triangular mesh using a backward finite time flowmap Ψ . This flowmap
engenders a piecewise constant deformation gradient dΨ |f�v defined over the triangle faces. By averaging this face-based
deformation gradient around the one-ring neighbourhood of each vertex, we derive a vertex-based deformation gradient
dΨ |v . The nematic Lie advection is modelled by updatingQv with dΨ |−1

v QΨ (v)dΨ |−�
v .

∂tQ + LuQ = 0, with t ∈ [0, �t], Q|t=0 = Q0, can be modelled by

Q�t =Ψ ∗
�tQ0 = F−1(Q0 ◦ Ψ�t)F−�, (3.4)

where Q�t denotes the updated value of Q for the subsequent time step. Because the
backward flowmap Ψ�t can land anywhere on M, evaluating Q0 ◦ Ψ�t requires interpolation,
such as trilinear interpolation using the face-barycentric representation of Ψ�t. However, this
interpolation may not preserve the rank-1 structure of Q. To address this, we perform a singular
value decomposition (SVD) and extract the leading component of the interpolated value, ensuring
that Q0 ◦ Ψ�t = qΨ�t

⊗ qΨ�t
, and thereby Q�t remains of rank 1. Finally, by projecting Q�t on to the

surface using tangent bases, we recover the intrinsic representation of Q�t and its corresponding
complex representation [q]�t = V−1(Q�t).

To model the Jeffery equation Q̇ + PE(Lλ
uQ) = 0 (cf. equation (2.28)), we can include the

additional rotational Lie advection Lrot
u and normalization as follows:

Q�t =
λF−1(Q0 ◦ Ψ�t)F−� + (1 − λ)R−1(Q0 ◦ Ψ�t)R−�

|λF−1(Q0 ◦ Ψ�t)F−� + (1 − λ)R−1(Q0 ◦ Ψ�t)R−�| , (3.5)

where R isolates rotation in F through polar decomposition F = RU. By omitting the
normalization step and adjusting the value of λ, we can adapt the Jeffery advection to other
commonly used convective rates, including the standard Lie derivative (λ= 1) and the Jaumann
corotational derivative (λ= 0).

As a side remark, in the special case where the transported field h is a scalar
function, its advection ∂th + Luh = ∂th + ∇uh = 0 simplifies to the traditional sL method,
h�t =Ψ ∗

�th0 = h0 ◦ Ψ�t.

(iii) Discussion of sL advection scheme

Although the traditional scalar sL method guarantees unconditional stability, the extension
to tensor Lie advection in general does not [28]. In these cases, stability depends on the
pullback map’s conditioning, requiring a Courant–Friedrichs–Lewy (CFL)-like condition to be
met. However, by incorporating a diffusion term into the sL advection through time-splitting
(cf. algorithm 1) and scaling the system with respect to advection, the time step for advection
remains fixed regardless of the Péclet number. Because the diffusion equation, ˙[q] = Pe−1�L[q], is
solved using an implicit method (cf. algorithm 1), the algorithm is numerically stable with high
Pe. However, as Pe increases, maintaining accuracy requires resolving smaller physical length
scales (which scale with

√
1/Pe), which in turn necessitates smaller time steps to satisfy the CFL

condition.
We also acknowledge some known limitations inherent to time-splitting and the sL method.

First, time-spliting introduces errors, which can be reduced using techniques such as the
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Algorithm 2. sL method for nematic Lie advection over time interval [0, �t].

1: Inputs:
Surface mesh M, nematic field Q0 = V([q]0), time step �t, flow velocity u

2: for each vertex v ∈V, do
3: Ψ�t ← RK4(dΨτ /dτ =−u(Ψτ )) � Backward flowmap
4: QΨ�t

← INTERP(Q0 ◦ Ψ�t)
5: QΨ�t

← SVD(QΨ�t
)

6: end for
7: for each face f ∈ F do � Deformation gradient
8: dΨ�t ← [l1, l2, n]Ψ�t [l1, l2, n]−1

9: end for
10: for each vertex v ∈V, do � Pullback
11: F ← AVG(dΨ�t|f�v)
12: Qv ← F−1QΨ�t

F−�

13: end for

Strang method [81]. Second, the sL method based on linear interpolation has significant
numerical diffusion. Improvements can be made by implementing higher-order interpolation and
techniques such as the McCormack scheme [81]. However, these challenges are common to the
sL method and are not unique to the generalization to tensor-valued functions. Despite these
challenges, the current minimal implementation is sufficient for our purpose of studying active
nematics on curved surfaces.

(c) Gradient and covariant divergence
We used the linear finite-element hat function Φv to discretize the gradient for a scalar function
p ∈ CV(M) as follows:

grad : CV(M) → ΓF(TM), Af (grad p)f = Af
∑
v≺f

pv(gradf Φv) = 1
2

∑
v≺f

pvilv≺f , (3.6)

where ilv≺f denotes the 90◦ rotation of edge vector lv≺f and Af is the face area (cf. electronic
supplementary material, S3 for mesh notation details).

The divergence operator is given by the negated adjoint operation of the gradient. The adjoint
of equation (3.6) applied to a face-based vector field u ∈ ΓF(TM) is a measure on each vertex
(grad∗u)v =− 1

2
∑

f�v〈ilv≺f , uf 〉, representing the total divergence at vertex v. Using a reference
vertex area measure Av , we define the divergence operator as

div : ΓF(TM) → CV(M), Av(div u)v =−1
2

∑
f�v

〈ilv≺f , uf 〉. (3.7)

Note that the discrete equation involving the divergence operator is often written in the weak
form, where divergence is treated as a measure. In particular these discrete equations are
independent of the specific choice of the vertex area measure Av . In cases where pointwise
evaluation is needed, such as in visualization, we use Av =

∑
f�v Af /3.

The divergence operator, represented by equation (3.7), can also be understood as a finite-
volume discretization applied to the dual cells of the mesh [81]. We can analogously obtain a
vertex-based divergence div : ΓV(TM) → CF(M) by applying finite volume on the primal mesh.

By incorporating an additional vertex–face parallel transport, Πv�f : TvM → Tf M, (cf. §3a(i)),
we can extend such construction to discretize the covariant divergence

div∇ : ΓV(TM ⊗ TM) → ΓF(TM), Af (div∇ Q)f =−1
2

∑
v≺f

Πv�f [Qv · Π−1
v�f (ilv≺f )]. (3.8)
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The Euclidean dot product, denoted as ·, denotes a contraction operation on one slot of the (2, 0)
tensor (i.e. Q · q ≡ Qijqj). In the case of Q = q ⊗ q being rank-1, the covariant divergence can
be explicitly expressed, Af (div∇ Q)f =−(1/2)

∑
v≺f 〈Πv�f (qv), ilv≺f 〉Πv�f (qv). In practice, these

discrete operators, including those in §3d, are organized and computed using sparse matrix
multiplication.

(d) Bochner Laplacian
Using the face–face parallel transport Πi�j, i, j ∈ F across edge e ≺ i, j (cf. equation (3.1)), the
discrete directional covariant derivative ∇l∗ maps a face-based vector field u = û1 ∈ ΓF(TM) to
an edge-based vector field,

∇l∗ : ΓF(TM) → ΓE(TM), |l∗e |(∇l∗u)e = (uj − Πi�j(ui))i,j�e = ((ûj − e−iΩe∗ ûi)1j)i,j�e. (3.9)

By taking the L2 norm with the edge area as the diamond area formed by l and l∗, Ae = |l||l∗|, we
can construct the discrete Dirichlet energy (cf. equation (2.12)) as

2F (u) =
∑
e∈E

Ae|∇l∗u|2e =
∑
e∈E

Ae

|l∗e |2
|uj − Πi�j(ui)|2i,j�e =

∑
e∈E

1
we

|ûj − e−iΩe∗ ûi|2i,j�e. (3.10)

The edge length ratio we = |l∗|/|l| = (cot � e≺i + cot � e≺j)/2 is commonly referred to as the
cotangent weight, where � e≺i refers to the corner angle opposite to the edge e at face i.

The discrete Bochner Laplacian can be obtained by taking the negated variation of the discrete
Dirichlet energy,

� : ΓF(TM) → ΓF(TM), Af (�u)f =−
(

δE
δu

)
f
=−1f

∑
e≺f

1
we

(ûf − e−iΩe∗ ûi)i,f�e. (3.11)

Here, face i is in the one-ring neighbour of face f , and i and f share the edge e.
Similarly, using the vertex–vertex transportation Πi�j, i, j ∈V across edge e � i, j (cf.

equation (3.2)), we can construct the covariant derivative for a vertex-based nematic field as
follows:

∇L
l : ΓV(TM) → ΓE(TM), |le|(∇l[q])e = ([q]j − Πi�j([q]i))i,j≺e = ((q̂j − e−i2Ωe q̂i)[1]j)i,j≺e. (3.12)

The nematic Bochner Laplacian acting on the vertex-based nematic field [q] = ˆ[q][1] ∈ ΓV(L) is
therefore

�L : ΓV(L) → ΓV(L), Av(�[q])v =−[1]v
∑
e≺v

we( ˆ[q]v − e−i2Ωe ˆ[q]i)i,f≺e, (3.13)

where vertex i is in the one-ring neighbour of vertex v, connected by edge e.
Strictly speaking, there is an ambiguity in the definition of the directional covariant derivative

(equations (3.9) and (3.12)) because it is equally valid to transport a vector (nematic director) from
face (vertex) j to face (vertex) i before applying finite difference. However, the discretization of
the Dirichlet energy, and thus the Bochner Laplacian (equations (3.11) and (3.13)), relies only on
the norm of the covariant derivative, which remains invariant, |Πj�i(uj) − ui| = |uj − Πi�j(ui)|,
|Πj�i([q]j) − [q]i| = |[q]j − Πi�j([q]i)|.

In summary, the intrinsic definition of the discrete Bochner Laplacian emerges naturally
from continuous theory of complex line bundles. Contrasting the previous covariant divergence
(equation (3.8)) that relies on an extrinsic parallel transport achieved through dihedral rotations
between the tangent spaces of vertices and faces, the Bochner Laplacian is constructed purely
intrinsically by vertex–vertex or face–face parallel transport. Compared with common approaches
that rely on the embedding structure in R

3 and a projection operator from R
3 to the manifold,

the discrete complex line bundle approach has notably improved efficiency. This approach
reduces the degree of freedom per element from 3 to 2, and the complex nature furthermore
takes advantage of the optimized complex arithmetic handling in established numerical linear
algebra libraries. The corresponding complex-valued Laplace matrix is Hermitian and negative-
semidefinite.
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(e) Curvature, defects and local-global geometry
Here, we introduce a discretization of the face Gaussian curvature and an algorithm to detect
topological defects and compute their charges. This serves as the discrete counterpart to the
continuous theory in §2a(vii).

Given a vertex-based k-atic field [q]k : V → Vk, we can use vertex–vertex parallel transport
Πi→j (cf. equation (3.2)) with i, j ∈V along the incident edge e � i, j to measure the finite rotation
|le|ηe (cf. equation (2.16)) of [q]k along e as follows:

|le|ηe = arg

(
[q]k,j

Πi�j[q]k,i

)
= arg

⎛
⎝ ˆ[q]k,j

e−ikΩe ˆ[q]k,i

⎞
⎠ . (3.14)

Assuming the k-atic field [q]k is continuous between vertices i and j, we choose the principal
branch of the arg function so that |le|ηe lies within (−π , π ].

Recall that in the continuous setting, Gaussian curvature quantifies holonomy,
∫

U KdA =
− ∫

∂U ω (cf. §2a(vii)). Analogously, discrete Gaussian curvature K ∈ CF(M) can be represented
by closed-loop summation of the primal edge connection Ωe as

Af Kf :=−
∑
e≺f

Ωe mod 2π ∈ (−π , π ]. (3.15)

Selecting branch (−π , π ] for Af Kf is justified by the small integration domain of face f . The

discrete curvature is also the angle defect at face f , given by Af Kf =
∑

v≺f
˜�
v − π , where ˜�

v is
the geodesic corner angle (cf. electronic supplementary material, S3). The discrete Gauss–Bonnet
theorem states,

∑
f Af Kf = 2πχ (M), where χ (M) = |V| − |E| + |F| = 2 − 2g represents the Euler

characteristic of the polygonal mesh M.
Analogous to equation (2.17) in the continuous theory, given a k-atic field [q]k, its topological

charge is a fraction-valued function Z([q]k) : F →Z/k that can be computed for each face f as
follows:

Zf ([q]k) = 1
2πk

∑
e≺f

|le|ηe + 1
2π

Af Kf . (3.16)

The charge Zf at face f is zero when the adjacent k-atic directors [q]k,v≺f are continuous, and non-
zero in the presence of defects. The charge function satisfies the discrete Poincaré–Hopf theorem
exactly,

∑
f Zf ([q]k) = χ (M).

(f) AL method for the Stokes equations
We use a classic AL iteration to solve the incompressible Stokes flow [82]. Recall that the Stokes
equations can be viewed as the stationary condition for a divergence-constrained variational
problem (cf. §2b(i)). The AL approach augments the original Rayleighian with a quadratic penalty
term on the divergence. The augmented Rayleighian is given by

min
u

max
p

RAL =R(u, p) + k
2
〈〈div u, div u〉〉, (3.17)

where the stationary condition is (� + K + k grad ◦ div)u − grad p + f = 0. Here, the penalty
coefficient k enforces the incompressibility constraint during the iterative solution process. Shown
in algorithm 3, the solve process involves iteratively solving the modified Stokes equations. At
each iteration, the velocity and pressure fields are updated until a convergence criterion is met.
Practically, increasing k makes the fluid very stiff in response to compressibility, which leads to
convergence in a small number of iterations. However, a high value of k also increases the spectral
condition number of (� + K + k grad ◦ div), which increases the time per iteration [82].

As discussed in §2b(i), when dealing with the Stokes equations in symmetric geometries that
possess a Killing vector field, the solution is not unique. To ensure that we obtain continuous
solution during time evolution, we consistently select the solution with the minimal L2 norm by
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Algorithm 3. AL subroutine for incompressible Stokes equations.

1: Inputs:
Penalty coefficient k, tolerance ε

2: Initialize:
Initial guess p

3: while ‖div u‖> ε do
4: u ← SOLVE(−(� + K + k grad ◦ div)u = f − grad p) � Poisson solve (A x = b)
5: p ← p + k div u
6: end while
7:
8: if exist N distinct ωi then � Remove the Killing component
9: for i = 1 to N do

10: u ← u − 〈〈u,ωi〉〉ωi
11: end for
12: end if

projecting out components that lie in the space of the Killing vector fields. To achieve this, we
precompute the set of Killing bases of the geometry, denoted as ωi, before we begin the evolution
of the active nematic system. The bases are determined by solving the non-vanishing vector
field that satisfies (� + K + grad ◦ div)ωi = 0. In practice, we solve this equation computationally
through the smallest eigenvalue problem and extract eigenfunctions with near-zero eigenvalues.
Here, each Killing basis is normalized such that 〈〈ωi,ωj〉〉 = δij. As outlined in algorithm 3, we
project out components spanned by these bases after the AL iteration. This protocol is carried out
in §4 for examples on the sphere and torus.

4. Results and discussion
In this section, we demonstrate the robustness of our method and its potential in addressing
various biophysically relevant scenarios. In electronic supplementary material, S4, we validate
these methods through resolution studies on simple geometries, combining numerical
experiments with analytical comparisons. We examine the Stokes equations, sL nematic advection
and curvature estimation. Notably, we compare the numerical solution of surface Stokes flow
against an analytical solution on a sphere using spherical harmonics. We also demonstrate the
convergence properties of the AL method for imposing incompressibility in the Stokes equations.
Performance and time complexity analyses, as well as the hardware used for the simulations, are
detailed in electronic supplementary material, S5.

The application of our method extends beyond idealized geometries. To demonstrate its
generality on arbitrary geometries and topologies, we apply it to solve the full nematodynamics
equations in biophysically relevant examples. We initialize the system with a smooth nematic
field by calculating the eigenmodes of the nematic Laplacian �L[q] = λ[q] corresponding to
eigenvalues λ close to zero. These eigenmodes approximate minimizers of the Frank–Oseen
energy. The numerical experiments encompass analytical shapes such as spheres and genus-1 tori,
and organic shapes characterized by arbitrary curvature distributions. As previously mentioned
in §§ 2b(i) and 3(f), the Stokes equations have Killing vector fields as their kernel. On spheres
and tori where such a Killing vector field exists, we carry out projections to remove the Killing
component and focus on a specialized solution with a minimal L2 norm. We present each example
under two distinct levels of activity, distinguished by disparate Péclet numbers (Pe = 1 and
Pe = 104, both extensile). They showcase both regular solutions and solutions in the regime of
active turbulence.

To characterize the nematodynamics, we focus on recording key metrics, including defect
counts (of charge ±1/2), the charge-curvature energy ||dχ ||2 := ||Σi2πZpiδpi − K||2

�−1 (except on
the sphere where curvature is uniform), flow velocity ||u||2 and enstrophy ||Ku||2. Here, χ
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Figure 3. Nematodynamics on a sphere under two levels of activity, as captured by the Péclet number: (a) low activity
(Pe= 1) and (b) high activity (Pe= 104). The animated time-series simulations are available on YouTube: https://youtu.be/
gvihHbsWMsc. From top to bottom, the time plots show: the total numbers of +1/2 and−1/2 topological defects of the
nematic field, the L2 norm squared ||u||2 of the fluid velocity and the enstropy ||Ku||2 of the surface flow. Snapshots of
the system are captured at the conclusion of each set of simulations (t= 100). The upper snapshots display the nematic field,
colour-mapped by the local power density exerted by the nematic on to the fluid, expressed as P=−〈u, div∇Q〉. The lower
snapshots visualize the velocity field, colour-mapped by its magnitude |u|.

represents the geometric potential [41,83], defined by �χ = 2πZpiδpi − K based on defect locations
pi and charges Zpi (cf. §2a(vii)), where δpi denotes the Dirac delta function centred at pi.
The enstrophy quantifies viscous dissipation and serves to assess sharp features and chaotic
behaviour. For each case at each Péclet number, we include visual snapshots captured at the end of
the simulation. Taking figure 3 as an example, the top snapshot displays the texture of the nematic
field, with positive defects shown in red and negative defects in blue. The bottom snapshot
illustrates the streamlines of the fluid flow field, colour-mapped to represent velocity magnitude,
|u|. The colourmap on the nematic field represents the local power density exerted by the active
nematic on the fluid, given by P =−〈u, div∇Q〉. This expression captures the contribution of the
active stress tensor to the fluid flow. Each positive half defect is accompanied by a self-propelling
fluid jet and a vortex pair, and is surrounded by a region of positive power P. By contrast, negative
half defects exhibit 3-atic symmetry and generate an index-2 flow field that is self-counteracting
and remains static [84], contributing little energy to the fluid on large scales.

In figure 3a, we examine dynamics on a sphere at Péclet number Pe = 1, corresponding to
a low activity level. Here, we observe a fixed number of four +1/2 defects exhibiting periodic
orbiting motions—a phenomenon supported by previous empirical studies and simulations
[3,11]. In figure 3b, we increase the activity level to Pe = 104, leading to the emergence of active
turbulence. Active turbulence is characterized by unsteady and chaotic dynamics driven by the
spontaneous formation and annihilation of topological defect pairs. Demonstrated by figure 3b
and consistent with the existing literature [85], the onset of turbulence is characterized by the
appearance of large bending deformation walls that separate aligned nematic regions, the creation
and annihilation of nematic defect pairs, and the separation of positive defects from negative
defects due to self-propulsion of the positive. As the total number of topological defects increases,
intricate flow patterns develop at smaller length scales. This observation is supported by the
fluctuating but steady enstrophy and a rapid decrease in the overall velocity magnitude in the
time-series plots.

As our method is able to accommodate different topologies, we expand our exploration of
nematodynamics to a genus-1 torus, characterized by a zero Euler characteristic. The vanishing
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Figure 4. Nematodynamics on a torus at (a) Pe= 1 and (b) Pe= 104. The animated time-series simulations are available on
YouTube: https://youtu.be/p4NLpHRTkPg. The energy ||dχ ||2 measures the charge-curvature correlation. Refer to figure 3 for
detailed descriptions of the other elements in the figure.

Euler characteristic allows for a defect-free configuration at lower activity levels, as the nematic
relaxation gradually merges two pairs of positive and negative defects (cf. figure 4a). A key
observation is that the equilibrium defect-free nematic field on the torus displays rotational
symmetry around its vertical axis, while maintaining a constant angle with the lines of toroidal
coordinates. Consequently, the resulting Stokes flow also exhibits this rotational symmetry, with
the toroidal midline acting as a shear layer. This flow pattern, in conjunction with diffusion,
stabilizes the nematic field, allowing the system to reach a steady state. In figure 4b, when the
Péclet number increases, the system transitions into a state of active turbulence through the
injection of energy by topological defects, similar to what occurs on a sphere. Once again, we note
that enstropy reaches a plateau soon after the initial defect proliferation, while the velocity norm
decreases as vortices form on increasingly smaller length scales. The charge-curvature energy
rises with the number of defects.

In addition to standard analytical shapes, we applied our method to a topologically spherical
membrane structure with an arbitrary curvature distribution (cf. figure 5a). This geometry is
generated through a simulation based on the Helfrich bending energy under the influence of
an osmotic shock [86]. Even under low-activity conditions where nematic ordering relaxation
prevails, a relatively large total number of defects persists. At the initial drop in ||dχ ||2
(cf. figure 5a and its animated movie), defects unbind and cluster in regions with like-sign
curvature: positive defects gather at protrusions with positive curvature, while negative defects
accumulate in negatively curved valleys (cf. electronic supplementary material, fig. S4). This
behaviour aligns with equilibrium theories of liquid crystals [83]. When two positive defects are
present at a protrusion, they create strong circulating flows at the tips. These flows cause the
defects to orbit periodically around the protrusions. This interaction at the protrusion is isolated
from the rest of the domain, which remains almost motionless, thereby creating a limit cycle in
the system. The distinct behaviours of active nematics in areas of positive and negative curvature
suggests a possible detailed comparative study on active nematic systems in hyperbolic and
elliptic geometries as a follow-up work. More broadly, the division of the flow field into areas
of positive and negative curvature has implications for understanding how mixing and coherent
structures are influenced by the shape of the domain. As Pe increases, nonlinear hydrodynamic
effects disrupt the charge-curvature correlation (cf. electronic supplementary material, fig. S4),
consistent with observations in [41]. In addition, there is a notable difference in flow velocities
when comparing conditions on a complex-shaped object to the sphere case. On a sphere, the
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Figure 5. Nematodynamics on a topological sphere of varying curvature at (a) Pe= 1 and (b) Pe= 104. The animated
time-series simulations are available on Youtube: https://youtu.be/hgsREDJwWZQ. The energy ||dχ ||2 measures the charge-
curvature correlation. Refer to figure 3 for detailed descriptions of the other elements in the figure.

interaction of topological defects creates complex flow patterns on small length scales, which
tends to reduce the characteristic magnitude of the fluid velocity. However, as seen in figure 5b,
for the complex shape, the magnitude of velocities remains relatively consistent whether in a
steady state at low Pe or in active turbulence at high Pe. Active turbulence breaks down the stable
coherent flow structures at low Pe, leading to a state with more efficient mixing by the flow.
Specifically, this results in a decrease in velocity at the protrusions and an increase in velocity in
the valleys of the manifold.

5. Conclusion
In this study, we formulate a minimal model for the dynamics of an active nematic fluid on a
Riemannian two-manifold. This model is cast based on a coordinate-free differential-geometric
language and on the theory of the complex line bundle, which can naturally be generalized
to curved spaces. We use the complex line to establish the two-dimensional k-atic equivalence
and model nematic advection through generalized Lie derivatives, laying the groundwork for
extending the model to k-atic hydrodynamics. The Levi–Civita connection and its curvature are
introduced within the framework of the complex line bundle. We show the coupling of the fluid’s
viscous stress with the curvature through the covariant Dolbeault ∂̄∇ operator. Numerically,
our method evolves the active nematic system on a triangular mesh with arbitrary shape and
topology. This is done by adhering to the discrete analogue of the continuous theory. We
construct the Hermitian Bochner Laplacian matrix based on the variational principle and develop
a generalized sL scheme according to the Lie advection. This method maintains robustness and
efficiency across various flow regimes, from low to high activity levels.

In future work, we anticipate detailed studies that examine the relationship between the
complex number representation and the well-established Q-tensor theory, including their
generalizations to k-atic fields. While our theoretical framework is general, the current
implementation is limited to closed manifolds; future work could incorporate boundary
conditions. We acknowledge that our minimal Riemannian nematodynamics model does not
account for reactive stresses due to nematic elasticity in advection [63], extrinsic geometry [76,77]
or the out-of-plane component of the nematic field [78]. These aspects will be addressed in
future research. Depending on the specific application, it may also be important to consider fluid
equations on evolving surfaces [9,42,68,87,88] and their coupling with bulk fluid [3,89].
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In summary, our integration of geometric language and complex manifold theory into the
study of active nematics sets the stage for further theoretical and computational developments
in this area. With further post-processing and analysis, we expect that the computational tool
developed here will also be instrumental for specialists seeking deeper understanding of active
nematics influenced by geometric aspects in specific systems. We hope that the incorporation of
realistic geometric and topological features in the model can further narrow the gap between
theoretical predictions and experimental findings.
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