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We use numerical simulations to investigate the dynamics in suspensions of ideally polarizable rods
sedimenting under gravity in a vertical electric field. While such suspensions are unstable to
concentration fluctuations when no field is applied, we show that the induced-charge electrophoresis
that results from the application of the field provides control over the concentration instability by
causing particle alignment in the field direction. A phase diagram is obtained for the occurrence of
the instability in terms of field strength and volume fraction. In stable suspensions velocity
hindrance is shown to occur, and results for the hindered settling function are presented.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2404948�

Controlling particle motions in fluid suspensions is of
practical relevance in microfluidic applications involving
colloidal dispersions. Such control can often be achieved us-
ing electric fields, which can cause the motion of charged
particles in an electrolyte by electrophoresis.1 More pre-
cisely, a particle with a fixed surface charge attracts counte-
rions, which accumulate around the surface forming a
screening cloud or electrical double layer �EDL�. When an
external field is applied, the migration of the excess counte-
rions inside the EDL results in an effective slip at the surface,
which can drive the motion of a freely suspended particle.1,2

Recent investigations have shown that uncharged polar-
izable objects such as metallic colloids can also be subject to
an additional electrokinetic phenomenon termed induced-
charge electrophoresis3–5 �ICEP�. In that case, the polariza-
tion of a particle in an electric field leads to the formation of
a nonuniform charge distribution at the particle surface,
which attracts a nonuniform screening cloud. As the surface
charge itself is induced by the applied field, the resulting
electrokinetic flow scales quadratically with field strength,
and ICEP can therefore drive steady flows or motions in
alternating fields. While ICEP causes no net motion for an
isolated spherical particle, it can lead to the rotation of an-
isotropic objects such as rod-like particles,5–8 as well as the
translation of more complex asymmetric objects.5,6 In addi-
tion, ICEP also causes relative motions in suspensions of
hydrodynamically interacting particles.7,9

Motivated by applications using non-neutrally buoyant
metallic rod-like colloids as information carriers,10 we inves-
tigate in this Letter the dynamics in suspensions of ideally

polarizable slender rods sedimenting under gravity while un-
dergoing ICEP. The dynamics of sedimenting non-Brownian
rods have been studied extensively in the past and are known
to be characterized by a concentration instability.11 This in-
stability, which causes the particles in an initially random
suspension to arrange into dense clusters with enhanced
velocities,12,13 results from the coupling between the transla-
tional and rotational motions of the particles: more precisely,
the disturbance flow induced by weak density fluctuations in
the suspension will cause the rods to orient in such a way
that their lateral motion reinforces the fluctuations. When an
electric field is applied, rotations will also occur as a result of
ICEP and lead to particle alignment in the field direction:7

this alignment will likely affect the instability by preventing
the rods from rotating in the disturbance flow, and in strong
fields a stabilization of the suspension may be expected.

To analyze this effect, we perform numerical simulations
in periodic suspensions of uncharged polarizable interacting
rods undergoing both sedimentation and ICEP, when the ap-
plied field E� points in the vertical direction. The simulation
method, which is presented in more detail elsewhere,7,14 is
only outlined here. We consider a collection of N slender
rods of length 2l and aspect ratio �, where the configuration
of a given rod �=1, . . . ,N is determined by the position x�

of its center of mass and by a unit vector p� aligned with its
major axis. We also denote by s� a linear coordinate along
the rod axis. Under the assumption of thin double layers, we
showed in our previous work7 that the motion of a given rod
can be modeled using slender-body theory,15,16 which relates
the linear and angular velocities of the rod to a line distribu-
tion of point force singularities f��s�� along the rod axis,
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ẋ� + s�ṗ� + ũs − u =
log 2�

4��
�I + p�p�� · f�. �1�

Equation �1� is the leading-order term in an asymptotic ap-
proximation valid for high-aspect ratio particles ���1�. The
three variables ũs�s��, u�s��, and f��s��, which denote, re-
spectively, the circumferential average of the slip velocity
induced by ICEP along the rod,16 the disturbance fluid veloc-
ity induced by the motion of the other rods, and the force
distribution along the rod of interest, must be obtained in
order to determine the particle velocities. The ICEP slip ve-
locity ũs�s�� was previously shown to be7

ũs�s�� �
�

�
s��p · Ẽ��Ẽ� + O��−2� , �2�

where Ẽ� is defined as Ẽ�= � ·E� and �=��p�p�+��

�I−p�p�� is a polarizability tensor whose coefficients can be
found elsewhere.7,17 In the limit of high aspect ratio, �� I.
The disturbance velocity u�s�� is the fluid velocity induced
by the force distributions along the rods. On rod �,

u�s�� =
1

8��
�
�=1

N �
−l

l

Gp�s� − s�� · f��s��ds�, �3�

where Gp is the periodic Green’s function for Stokes flow,18

from which the Oseen tensor is subtracted when �=�. Fi-
nally, the force distribution f��s�� is obtained as a truncated
Legendre polynomial expansion,7,14

f��s�� =
F�

�0�

2l
+

3s�

2l3 �S�p� + �I − p�p�� · F�
�1�� , �4�

where F�
�0� and F�

�1� denote the zeroth and first moments of f�

and are related to the total external force and torque on the
rod. In particular, gravity exerts a force on each rod: F�

�0�,g

=−	
Vpgẑ, where 	
 is the relative density between the
solid and fluid phases, Vp is the volume of a rod, and g is the
acceleration of gravity. In Eq. �4�, S� is the particle stresslet
induced by the slip and disturbance velocities, and can be
found as7

S� = −
2��

log 2�
�

−l

l

sp� · �u�s�� − ũs�s���ds�. �5�

If the zeroth and first force moments are known, Eqs.
�2�–�5� can be used to write a linear system for the stresslets
on all the rods. After inverting this system, the force distri-
butions and disturbance velocities can be determined, and the
rod velocities are then obtained by integration of Eq. �1�,

ẋ� =
1

2l
�

−l

l

u�s��ds� +
log 2�

8��l
�I + p�p�� · F�

�0�, �6�

ṗ� =
3

2l3 �I − p�p�� · �
−l

l

s��u�s�� − ũs�s���ds�

+
3 log 2�

8��l3 �I − p�p�� · F�
�1�. �7�

In addition to the gravity force F�
�0�,g, we also account for

lubrication and contact forces between neighboring rods.7,14

Equations �6� and �7� are then integrated in time to determine
the particle motions.

In the following, we nondimensionalize the variables
by the total rod length 2l and by the Stokes velocity
U0=	
Vpg log 2� /4��l, or settling velocity of an isolated
vertically oriented rod. The corresponding time scale
�s=8��l2 /	
Vpg log 2�, or Stokes time, is the time for an
isolated rod to sediment over its length. In addition to the
aspect ratio � and effective volume fraction nl3 �where n is
the mean number density�, nondimensionalization of the
governing equations yields the following dimension-
less group H comparing the relative effects of ICEP and of
gravity:

H =
8��E�

2 l2

	
Vpg log 2�
. �8�

In particular, H can be viewed as the ratio of the Stokes time
�s to the electroviscous time �e= ��E�

2 /��−1, or time for fluid
to convect over a rod length under the induced slip.

Typical particle distributions in suspensions of 512 rods
are shown in Fig. 1 at various field strengths H. When no
electric field is applied �H=0�, the concentration instability
described above takes place and results in the formation of
dense clusters falling at enhanced velocities, in good agree-
ment with previous simulations.14 When a weak field is ap-
plied �H=0.15�, the alignment of the rods in the field direc-
tion becomes visible and the instability is weaker, with the
formation of fewer and less dense clusters. When a stronger
field is applied �H=0.3�, the instability altogether disappears,
and the suspension remains homogeneous. As seen in Figs. 1
and 2�b�, the alignment of the rods is almost perfect, with
small departures resulting from hydrodynamic interactions.
As expected, ICEP therefore has a stabilizing effect on the
concentration fluctuations, which results from the alignment
of the rods under the applied field. Such an effect could
perhaps have been expected based on our previous theory,19

which predicts a stabilization in very anisotropic suspen-
sions.

These observations are made more quantitative in Fig. 2,
showing the time evolution of the mean settling velocity

FIG. 1. Particle distributions in suspensions of 512 rods of aspect ratio
�=20 at an effective volume fraction of nl3=0.1 at three different field
strengths: H=0 �no field�, 0.15, and 0.3.
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	Uz
 /U0 and of the second orientation moment in the vertical
direction 	pzpz
. In particular, Fig. 2�a� shows that for H=0
and 0.15 the mean velocity increases sharply beyond the
Stokes velocity, which is a direct consequence of the cluster
formation resulting from the concentration instability. In
stronger fields �H=0.3 and 0.45�, the mean velocity also in-
creases but quickly reaches a steady state below the Stokes
velocity: in that case the increase is due to the alignment of
the rods, while the plateau with 	Uz
 /U0�1 is indicative of
velocity hindrance.

The effect of the electric field on the orientation is
shown in Fig. 2�b�. In the unstable case �H=0 and H=0.15�,
	pzpz
 slowly increases as a result of the instability, which is
known to cause alignment in the gravity direction:12,14 yet
the alignment is rather weak since the rods are subjected to
strong fluctuations in the disturbance flow. In the stable
cases, however �H=0.3 and 0.45�, 	pzpz
 quickly reaches a
plateau slightly below 1 corresponding to a very strong
alignment in the suspension, which suggests that orientations
are predominantly controlled by the electric field.

By repeating simulations at various field strengths and
volume fractions, a phase diagram for the stabilizing effect
of ICEP as a function of H and nl3 was obtained and is
shown in Fig. 3�a�. The criterion used for stability is the
existence of a steady-state settling velocity below the Stokes
velocity. Figure 3�a� confirms that at a given volume fraction
increasing the field strength causes the stabilization of the
suspension beyond a certain value of H. This critical value is
larger at higher volume fractions, as the velocity fluctuations
that act against the alignment of the rods and cause the con-
centration instability are stronger in more concentrated
suspensions.

The marginal stability curve in Fig. 3�a� is well captured
by the following power law: H / �nl3�0.54�0.65, which can be
rationalized by a simple argument. If the stabilizing effect of
ICEP is a consequence of particle alignment, the onset of
instability should occur when the angular velocities resulting
from ICEP and from the velocity fluctuations induced by
sedimentation are balanced,

�ṗICEP�/�ṗSED� � O�1� . �9�

From Eqs. �2� and �7� one can show that the ICEP angular
velocity scales as the inverse of the electroviscous time:

�ṗICEP � ��E�
2 /�. On the other hand, the angular velocity in-

duced by sedimentation must scale with the effective shear
rate of the disturbance flow induced by the settling of the
suspension �ṗSED � � �̇SED. The disturbance flow is driven by
the density fluctuations in the particle distribution, and in a
random suspension, occurs on length scales comparable to
the width of the container. Its shear rate can be estimated by
the ratio 		Uz
 /L of the particle velocity fluctuations to the
container size, which is plotted in Fig. 3�b�. In particular, the
following scaling is found: �̇SED��U0 / l��nl3�0.51, from
which the stability criterion, Eq. �9�, becomes H / �nl3�0.51

�O�1�, in good agreement with the scaling found in Fig.
3�a�.

At very low volume fractions, a slightly higher exponent
of 0.64 is predicted by Fig. 3�b�. This value can be explained
by balancing the buoyancy and viscous forces acting on the
long-wavelength Poisson density fluctuations in a dilute ran-
dom suspension,20 resulting in a shear rate �̇SED��U0 / l�

�nl3�1/2�L / l�−1/2. In the simulations of Fig. 3, the box size
was chosen to maintain a constant number of particles, in
which case L��nl3�−1/3. The scaling for the shear rate then
becomes �̇SED��U0 / l��nl3�2/3, hence an expected exponent
of 2 /3. The departure from this ideal value at higher concen-
trations may be a result of the small system sizes and of
nonlocal interactions between the rods, and goes beyond the
scope of this Letter. One should also note that the scaling for
�ṗSED� depends on the suspension microstructure: in a non-
random suspension a different scaling may occur, and
may modify the stability diagram of Fig. 3�a�. However, we
expect the general criterion of Eq. �9� to remain valid in
general.

Results for the settling velocity in stable suspensions are
shown in Fig. 4. Note that the mean velocity only results
from sedimentation, as ICEP does not create a net motion for
particles with fore-aft symmetry.5–7 As previously observed
in Fig. 2�a�, the steady-state velocity is less than the Stokes
velocity, and slowly increases with H as a result of the stron-
ger alignment of the rods �Fig. 4�a��. At high values of H, the
velocity reaches a plateau: this suggests that the dominant

FIG. 3. �a� Phase diagram for the stability of a suspension of 512 rods of
aspect ratio �=20 sedimenting under gravity and undergoing ICEP. The
criterion for stability is the existence of a steady-state settling rate below the
Stokes velocity U0. The transition between the stable and unstable regimes
occurs when H / �nl3�0.54�0.65. �b� Scaling of the vertical shear rate with the
effective volume fraction nl3, estimated as the ratio of the vertical velocity
fluctuations 	Uz to the box width L and calculated in a random isotropic
suspension with no electric field �H=0�.

FIG. 2. Evolution of �a� the mean velocity 	Uz
 /U0 and �b� the orientation
moment 	pzpz
 as a function of time in an initially random suspension at
various electric-field strengths H, when both gravity and the electric field are
applied at t=0.
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effect of ICEP is to control the particle orientations and sus-
pension microstructure.

The hindered settling function 	Uz
 /U0 versus nl3 is
shown in Fig. 4�b� in a strong field �H=5.0�, at which the
suspension alignment is very strong: 	pzpz
�0.99. Beyond
such a value of H the effect of increasing field strength be-
comes negligible. Figure 4�b� also shows the settling rate in
a random suspension of perfectly aligned rods. As expected,
the hindered settling function, which is 1 in the limit of in-
finite dilution, decreases with effective volume fraction nl3.
Note that the dependence of 	Uz
 /U0 on nl3 is nonlinear even
at the lowest volume fractions: this is a consequence of the
periodic boundary conditions used in the simulations,18,21

and would not be observed in a nonperiodic suspension. In-
terestingly, we find that the settling rate in the stable suspen-
sion undergoing ICEP slightly exceeds that in the random
suspension of aligned rods. This small discrepancy suggests
that a nonuniform microstructure still exists in stable suspen-
sions undergoing ICEP: as shown in our previous work,7

ICEP indeed results in particle pairings which are likely to be
responsible for the observed velocity enhancement.

In summary, we have demonstrated that the application
of an electric field in a suspension of polarizable rods settling
under gravity can be used to control or suppress the concen-
tration instability that otherwise occurs in these systems. A
simple scaling argument was used to predict the transition
between unstable and stable regimes, based on a balance
between ICEP and flow-induced rotations. In stable suspen-
sions, velocity hindrance was observed to occur as a result of
hydrodynamic interactions, and the hindered settling func-
tion was shown to slightly exceed that of a random suspen-
sion of aligned rods. While the present study presented one
method for suppressing the concentration instability in sus-

pensions of sedimenting rods, it also suggests that other
means of controlling particle orientations �for instance, using
imposed flows� may result in stabilization as well.
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