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It is well known that a dilute suspension of spheroids sedimenting under gravity at low Reynolds
number is unstable to density fluctuations as a result of hydrodynamic interactions �D. L. Koch and
E. S. G. Shaqfeh, J. Fluid Mech. 209, 521 �1989��. Using a linear stability analysis, it is shown that
a vertical density gradient in such a suspension can lead to a wave number selection by damping
fluctuations at long wavelengths. A scaling for the most unstable wavelength, or characteristic size
of the density fluctuations, is obtained in terms of the background stratification and volume fraction,
and is compared to results from numerical simulations in stratified particulate suspensions using
methods that we have developed previously. In initially homogeneous suspensions, simulations
show a continuous decay of the size of the density fluctuations over time, which we demonstrate can
be attributed to the development of stratification inside the suspension. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2396913�

I. INTRODUCTION

The long-ranged nature of hydrodynamic interactions in
the low-Reynolds-number sedimentation of a dilute suspen-
sion results in strong velocity fluctuations.1–5 These fluctua-
tions are driven by the random arrangement of the particles
in the suspension, and have typical magnitudes that can ex-
ceed the mean settling rate. When the suspended particles are
nonspherical, the coupling between the disturbance flow in
the fluid and the particle orientations also results in a con-
centration instability, by which an initially well-mixed sus-
pension develops inhomogeneities. This instability was first
predicted theoretically in the case of rigid spheroids by Koch
and Shaqfeh,6 who observed that the disturbance flow in-
duced by the random density fluctuations causes the particles
to orient in such a way that they migrate toward the regions
of higher particle density. Koch and Shaqfeh also performed
a linear stability analysis in an unbounded homogeneous sus-
pension, and showed that low-wave-number fluctuations
should indeed amplify, with a maximum growth rate for a
horizontal wave with zero wave number. Based on their
analysis, the characteristic size of the density fluctuations in
a bounded system should therefore scale with the container
dimensions.

The instability was subsequently observed both in
experiments7–9 and numerical simulations.10–15 Simulations
of periodic suspensions10,11,13,15 qualitatively agree with the

analysis described above, and show the formation of a single
dense streamer surrounded by clarified fluid, confirming that
the longest wavelength is the most unstable in such systems.
However, experiments by Guazzelli and co-workers report
the formation of clusters that are typically smaller than the
container dimensions, with sizes of the order of a few par-
ticle lengths.7,8 Recently, Metzger, Guazzelli, and Butler9

studied the evolution of the microstructure in dilute fiber
suspensions under sedimentation, and observed that the sedi-
mentation process is initially characterized by the formation
of one large-scale streamer spanning half of the container
width, followed by a transition to multiple streamers and
backflow regions alternating in the horizontal direction.
While the initial growth of a single streamer agrees qualita-
tively with the theoretical prediction,6 the subsequent wave
number selection is not accounted for by the stability analy-
sis, and must therefore involve mechanisms heretofore not
included in the stability theory, such as interactions with the
container boundaries or stratification.

In our recent work,14 we confirmed the importance of
container walls in the wave number selection of the instabil-
ity. Using a point-particle method, we performed numerical
simulations of large-scale suspensions in finite containers, in
which a tangential flow boundary condition was enforced on
the walls. Unlike the simulations in periodic systems, these
simulations in finite containers did capture a transition from
a single box-dependent streamer to multiple structures at
shorter wavelengths, in good qualitative agreement with the
experimental observations.9 The wavelength of the instability
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seemed to reach a steady value in the simulations; yet this
value was typically reached shortly before the approach of
the sedimentation front, so that it is not entirely clear
whether a true steady state would be observed in larger sus-
pensions. The precise mechanism leading to the decay of the
size of the fluctuations over time was not elucidated. We
speculated that the recirculation currents taking place as a
result of the horizontal container boundaries may homog-
enize the suspension over large length scales, leading to the
suppression of the fluctuations below a finite wave number.
It was also suggested that the strong stratification that was
shown to develop in the suspensions may have an effect on
the instability by damping the velocity fluctuations.

The effects of stratification on the velocity fluctuations
in suspensions of sedimenting spheres have been considered
in a few studies.4,5,16,17 Luke16 first suggested that a stable
vertical density gradient should lead to a decay of the veloc-
ity fluctuations over time: the physical argument that he pro-
posed is that density fluctuations settle rapidly toward their
equilibrium position, after which they no longer contribute to
the variance of the velocity. According to Luke,16 this
mechanism should result in a decay of the velocity variance
as t−1/2, precluding the existence of a steady state. This origi-
nal idea was then re-examined by Brenner and
co-workers,5,17 who argued that density fluctuations in a sus-
pension are simultaneously damped by stratification and gen-
erated by random fluctuations in the particle motions; by
balancing the effects of stratification and hydrodynamic dis-
persion, they were therefore able to derive a scaling for the
velocity fluctuations, in good accord with results from their
experiments and numerical simulations. Although there ap-
pears to be a consensus on the damping effect of a stable
vertical density gradient on the fluctuations, the presence and
the origin of stratification in sphere suspensions are still
debated.4,18

In the case of anisotropic particles such as spheroids, the
dispersion in orientation, which causes particles with differ-
ent orientations to settle at different speeds, and the concen-
tration fluctuations, which result in the fast settling of the
dense clusters with respect to the clarified regions, both lead
to a strong stratification.9,14,19 In this paper we address the
effect of this stratification on the fluctuations in suspensions
of spheroids. More specifically, we examine the relationship
between stratification and the concentration instability de-
scribed above,6 with the aim of elucidating the wave number
selection process observed experimentally9 and in
simulations.14 The paper is organized as follows: in Sec. II
we revisit the linear stability analysis of Koch and Shaqfeh6

in the case of a stably stratified suspension, where we also
account for center-of-mass hydrodynamic dispersion. We
show that stratification can provide a mechanism for wave
number selection, and a scaling for the most unstable mode
is derived in Sec. III. We then test this scaling in Sec. IV
against results from large-scale numerical simulations of
both stratified and initially well-mixed suspensions. A sum-
mary and concluding remarks are given in Sec. V.

II. LINEAR STABILITY ANALYSIS

A. Governing equations

Following Koch and Shaqfeh,6 we describe a dilute sus-
pension of spheroids using a continuous variable c�x ,p� de-
noting the concentration of particles at location x with orien-
tation p, where p is a unit vector aligned with the major axis
of a given spheroid. Particle conservation requires the fol-
lowing convective-diffusion equation to apply:

�c

�t
+ �p · �ṗc� + �x · �ẋc� − �x · �D · �xc� = 0. �1�

In addition to the convective terms previously considered by
Koch and Shaqfeh, we also account for center-of-mass hy-
drodynamic dispersion through the diffusion tensor D. We
shall assume that the diffusion tensor does not depend on the
particle orientations, but takes on the following anisotropic
form: D=D�ẑẑ+D��I− ẑẑ�, where ẑ is a unit vector in the
vertical direction. Note that in a real system, rotational dis-
persion is also expected to occur: for simplicity this effect
will be neglected here.

The convective fluxes in Eq. �1� involve the linear and
angular velocities of a particle. In the dilute limit, the linear
velocity ẋ is obtained as the sum of the sedimentation veloc-
ity in orientation p and of the bulk disturbance velocity at
position x:

ẋ = Us�p� + u�x� . �2�

For a spheroidal particle, the sedimentation velocity is ob-
tained as

Us�p� = ��0I + �1pp� · F , �3�

where �0 and �1 are known functions of the length l and
aspect ratio A of the spheroid, and of the viscosity � of the
suspending fluid.20 In Eq. �3�, F denotes the gravity force
acting on a particle F=−Fẑ=−��Vpgẑ, where �� is the den-
sity difference between the solid and fluid phases, Vp is the
volume of the particle, and g is the acceleration of gravity.
The disturbance fluid velocity u appearing in Eq. �2� is
driven by the density fluctuations in the suspension, and to
leading order satisfies the Stokes equations including a body
force proportional to the local concentration:

− ��2u + �p = F� c�x,p�dp, � · u = 0. �4�

Finally, the angular velocity ṗ of a spheroid is induced by the
local disturbance flow in the fluid, and in the dilute limit is
captured using Jeffery’s equation:21

ṗ = �I − pp� · ��E�x� + ��x�� · p , �5�

where E�x�= ��u�x�+�u�x�T� /2 and ��x�= ��u�x�
−�u�x�T� /2 denote the local disturbance rate of strain and
rate of rotation tensors, respectively, and where � stands for
Jeffery’s parameter: ���A2−1� / �A2+1�.

The dynamic equations �2� and �5� are exact if the local
velocity field is linear on the scale of the particle; in a non-
linear flow additional corrections involving higher-order ve-
locity gradients would have to be included. The present de-
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scription is therefore only valid in dilute suspensions, in
which the characteristic distance between particles is much
greater than their size nl3�1, where n denotes the mean
number density. Similarly, Eq. �4� assumes that the only ef-
fect of a given particle on the fluid flow is given by a point
force; this approximation, which corresponds to the leading-
order term in a multipole expansion of the disturbance ve-
locity induced by a sedimenting particle, is also limited to
dilute suspensions.

B. Base state and linearized equations

To extend the results of Koch and Shaqfeh,6 who only
considered density fluctuations with respect to a uniform dis-
tribution of isotropically oriented particles, we now allow for
a vertical density gradient in the background concentration.
More precisely, we assume that the density field in the base
state is linearly stratified. At t=0

c�x,p,0� = n��p��1 − �z� . �6�

In particular, we also allow for an anisotropic orientation
distribution ��p� in the base state; the isotropic case is easily
recovered by setting ��p�= �4��−1. In the following discus-
sion we shall only consider stably stratified suspensions, for
which �	0. Substitution of Eq. �6� into the Stokes equations
�4� shows that the density gradient is balanced by a pressure
gradient �p=−Fn�1−�z�ẑ, and does not induce a mean flow.
Therefore in the base state the velocity and pressure fields in
the suspension are given by u�x�=0, and p�x�= p0−F�z
−�z2 /2�. The stratified density field is advected downwards
as follows:

c�x,p,t� = n��p��1 − ��z − ẑ · Us�p�t�� , �7�

which is an exact solution of the conservation equation �1�.
Note in particular that because particles with different orien-
tations sediment at different speeds, the orientation distribu-
tion at a given vertical station will evolve in time.

To investigate the stability of the suspension, we con-
sider a weak perturbation with respect to the base state:

c�x,p,t� = n��p��1 − ��z − ẑ · Us�p�t�� + 
c��x,p,t� , �8�

where �
 � �1 and �c��x ,p , t� � 	O�n /4��. This perturbation
induces a weak disturbance flow: u�x�=
u��x� �with an as-
sociated pressure perturbation p=
p��, which in turn causes
the rotation of the particles at the angular velocity ṗ=
ṗ�.
Substituting the perturbed density field equation �8� into the
conservation equation �1�, and identifying terms of order 

yields the following linearized equation for the density
fluctuations:

�c�

�t
+ n��p��1 − ��z − ẑ · Us�p�t���p · ṗ�

+ nṗ� · �p
��p��1 − ��z − ẑ · Us�p�t��� + Us · �xc�

− �n��p�ẑ · u� − �x · �D · �xc�� = 0, �9�

where we made use of the incompressibility condition
� ·u�=0. In Eq. �9� the disturbance velocity field u� and
angular velocity ṗ� still satisfy Eqs. �4� and �5�, respectively,
with primed variables. Note in particular that the coefficients

in Eq. �9� are time-dependent, which is a consequence of
having a time-dependent base state �Eq. �7��. In general such
a stability problem could be solved using Floquet theory.23

Here we limit ourselves to the case of short times and
weak density gradients, i.e., we restrict our analysis to length
and time scales that satisfy the following condition:
�z− ẑ ·Us�p�t � ��−1. In particular, the characteristic wave-
length of the instability should remain smaller than the strati-
fication length scale �−1, and our results will only be valid
over time scales shorter than the characteristic time ���0F�−1

for a particle to sediment over the stratification length �−1.
As we shall see in the numerical simulations of Sec. IV, the
stratification length �−1 in the bulk of the suspensions typi-
cally remains of the order of the height of the simulation box
or larger �except near the very end of the simulations�, in
which case both conditions are indeed satisfied. Under these
assumptions, the linearized conservation equation is simpli-
fied as follows:

�c�

�t
+ n��p��p · ṗ� + nṗ� · �p��p� + Us · �xc�

− �n��p�ẑ · u� − �x · �D · �xc�� = 0. �10�

C. Dispersion relation

To achieve analytical progress, we consider the evolu-
tion of a density perturbation written as a plane wave of
wave vector k and complex frequency ���R+ i�I:

c��x,p� = c̃�k,p,��exp i�k · x − �t� . �11�

We wish to determine the dispersion relation ��k� allowing
for such modes to satisfy the linearized conservation equa-
tion �10�, and more specifically to identify the wave vectors
k leading to positive growth rates, i.e., positive values of the
imaginary part �I of the frequency.

By linearity of the Stokes equation �4�, the disturbance
velocity induced by the density perturbation equation �11�
can also be written as a plane wave of the same wave vector
and frequency: u��x�= ũ�k ,��exp i�k ·x−�t�, where the Fou-
rier coefficient ũ�k ,�� is obtained analytically as22

ũ�k,�� =
1

�k2 �I − k̂k̂� · F� c̃�k,p,��dp , �12�

where we use the notation k̂�k / �k�. Substituting this expres-
sion into Jeffery’s Eq. �5� allows us to calculate the Fourier

coefficient ṗ̃�k ,p ,�� of the angular velocity, as well as its
orientational divergence:

ṗ̃�k,p,�� =
i

2�k2 �I − pp� · ��� + 1��p · k�I

+ �� − 1�kp� · �I − k̂k̂� · F� c̃dp , �13�

�p · ṗ̃�k,p,�� = −
3i�

�k2 �p · k�p · �I − k̂k̂� · F� c̃dp . �14�

Using Eqs. �11�–�14� for the Fourier coefficients of the con-
centration fluctuations, disturbance velocity, and angular ve-
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locity, we find that the linearized conservation equation �10�
becomes

�ik · Us − i� + k · D · k�c̃ −
n��p�

�k2 ��ẑ + 3i��p · k�p�

· �I − k̂k̂� · F� c̃dp +
in

2�k2�p��p� · �I − pp�

· ��� + 1��p · k�I + �� − 1�kp� · �I − k̂k̂� · F� c̃dp = 0.

�15�

Following Koch and Shaqfeh,6 we divide Eq. �15� by
�ik ·Us− i�+k ·D ·k� and integrate over orientation space. We
also introduce the following dimensionless variables:

k* = k���1

n

1/2

, �* = �� �

n�1F2
1/2

, � =
�0

�1
,

�16�

�* = ����1

n

1/2

, D* = D� n

��1
3F2
1/2

.

After simplifications, we arrive at the following dimension-
less dispersion relation, which is an equation for �*�k*�:

1 +
1

k*2 � ��p�� �*ẑ + 3i��p · k*�p
ik* · Us

* − i�* + k* · D* · k*�
· �I − k̂k̂� · ẑdp −

i

2k*2 � �p��p�

· �I − pp� · � �� + 1��p · k*�I + �� − 1�k*p

ik* · Us
* − i�* + k* · D* · k* �

· �I − k̂k̂� · ẑdp = 0, �17�

where the dimensionless sedimentation velocity is given by
Us

*�p�=−��I+pp� · ẑ. The original dispersion relation of Koch
and Shaqfeh6 can be recovered by neglecting stratification
and center-of-mass dispersion ��*=0 and D*=0�, and by
considering the case of an isotropic orientation distribution:
��p�= �4��−1.

A general solution of Eq. �17� is not easily obtained. In
the present work we limit our discussion to the case of hori-
zontal waves, for which k · ẑ=0. These waves are indeed
known to be the most unstable in the isotropic homogeneous
case.6 We first investigate the case of isotropic suspensions in
Sec. II D, for which the dispersion relation greatly simplifies,
and then discuss the effect of an anisotropic orientation dis-
tribution in Sec. II E.

D. Isotropic case

In the case of a horizontal wave with an isotropic orien-
tation distribution, the dispersion relation �17� is simplified
as follows:

1 +
1

4�k*2 � � i�* − 3��p · k*��p · ẑ�
�p · k*��p · ẑ� + �* + ik*2D�

* �dp = 0. �18�

We expect the complex frequency �* to be pure imaginary:
solutions with �R

* �0 would indeed correspond to traveling

or standing waves in the direction of k*, which are not physi-
cal when k* points in the horizontal direction. We therefore
look for solutions written as �*= i�I

*, and solve Eq. �18�
numerically using quadrature and a bisection algorithm. Fig-
ure 1 shows the calculated normalized growth rate �or imagi-
nary part �I

* of the complex frequency� for the most unstable
modes at the given value of D�

* =0.02 and for various values
of �*. In the absence of stratification ��*=0�, the growth rate
is found to be the greatest at zero wave number. This is
analogous to the result of Koch and Shaqfeh,6 with the dif-
ference that center-of-mass dispersion now causes a more
rapid decay of the growth rate at high wave numbers. This
stabilizing effect of center-of-mass dispersion is similar to
that observed previously in the case of sedimenting deform-
able particles.14 Adding stratification ��*�0� however re-
sults in a qualitatively different picture. The shortest wave
numbers �k*
0� are stabilized, and a maximum growth rate
is observed at a finite positive wave number. As stratification
becomes stronger, i.e., as �* increases, the most unstable
wave number increases while the maximum growth rate de-
creases. Beyond a certain level of stratification the instability
is suppressed. As seen in Fig. 1, some values of k* yield two
pure imaginary roots for �*, in which case the largest growth
rate is expected to dominate.

The effects of stratification and center-of-mass disper-
sion on the stability are illustrated in more detail in Fig. 2,
showing the range of unstable wave numbers as a function of
�* and D�

* . Figure 2�a� confirms the stabilizing effect of
stratification; as �* increases the range of unstable wave
numbers shrinks. Beyond �*�0.32 all wave numbers be-
come stable, where this value of �* depends on the value
chosen for the dispersion coefficient D�

* . In addition, a stron-
ger center-of-mass dispersion is also shown to reduce the
range of unstable wave numbers �Fig. 2�b��. Dispersion how-

FIG. 1. Growth rate �imaginary part �I
* of the complex frequency� as a

function of wave number for a horizontal wave �k̂ · ẑ=0�, and for a dimen-
sionless center-of-mass diffusivity of D�

* =0.02. The various curves corre-
spond to different levels of stratification. The growth rates were computed
by numerical solution of the dispersion relation �18� using a bisection
algorithm.
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ever predominantly affects high wave numbers, and is less
efficient than stratification at suppressing the instability.

Additional insight can be gained into the respective
leading-order effects of stratification and dispersion by seek-
ing perturbation solutions in the limit of long waves �k*�1�.
When stratification is present ��*�0�, the leading terms in
an expansion of the dispersion relation �18� for small �k*� are
found to be

�* + i
�*

k*2 + O�1/k*� = 0, �19�

hence the growth rate, �I
*=−�* /k*2+O�1/k*�. The main ef-

fect of stratification is therefore to damp the fluctuations at
low wave numbers �or long wavelengths�, in agreement with
the numerical solution shown in Fig. 1.

On the other hand, in the absence of stratification
��*=0�, we find that expanding Eq. �18� in the limit of small
�k*� yields the following algebraic equation:

�*4 +
�

5
�*2 − i

2�D�
*

5
k*2�* +

�

35
k*2 + O�k*3� = 0. �20�

A solution of Eq. �20� is obtained as a perturbation expan-
sion, �*=�0+�1k*+�2k*2+O�k*3�. After manipulation, the
growth rate or imaginary part of the complex frequency is
found as

�I
* = ± ��

5

1/2

− k*2�D�
* ±

1

70
� 5

�

3/2� + O�k*3� . �21�

The leading-order effect of center-of-mass dispersion on the
concentration fluctuations is to damp the growth rate at high
wave numbers as −k*2D�

* . This effect is similar to that de-
scribed in our previous work14 in the case of sedimenting
deformable particles. However, center-of-mass dispersion is
not the only mechanism resulting in damping at high wave
numbers; even in the absence of dispersion, �I

* decays with
k* in agreement with the original stability analysis of Koch
and Shaqfeh.6 One should also note that the two scalings for
the leading-order effects of stratification ��I

*	−�* /k*2� and
of diffusion ��I

*	−D�
* k*2�, which were obtained here in the

limit of k*�1, are in fact valid for arbitrary k* as can easily
be shown from the linearized conservation equation �15�.
This will justify the use of these expressions in Sec. III when
deriving a scaling for the most unstable mode in a stratified
suspension.

E. Anisotropic case

Experiments8 and numerical simulations10–15 both show
that sedimenting rods tend to align in the direction of gravity
as a result of the vertical shear between the dense clusters
and clarified regions. It is therefore useful to investigate how
the instability is modified when the orientation distribution is
anisotropic. Here, we limit ourselves to distributions that are
axisymmetric with respect to the direction of gravity, i.e.,
��p�=����, where �=p · ẑ. In that particular case, the gra-
dient of � appearing in the dispersion relation becomes

�p��p� =
d�

d�
�I − pp� · ẑ , �22�

which greatly simplifies the evaluation of the second integral
in Eq. �17�. The dispersion relation �17� was solved numeri-
cally for an Onsager orientation distribution,24 in which the
degree of anisotropy is parameterized by a scalar m:

���� =
m cosh�m��
4� sinh�m�

. �23�

The isotropic distribution is recovered when m=0, while
m→� corresponds to a fully aligned suspension. The solu-
tions for the growth rates of horizontal waves for various
values of m are shown in Fig. 3. In Fig. 3�a�, both stratifica-
tion and diffusion are neglected ��*=0, D�

* =0�, which al-
lows us to isolate the effects of anisotropy. In particular, we
observe that anisotropy tends to reduce the growth rates at all
wavelengths. This stabilizing effect is easily understood; ver-
tically aligned rods have very weak horizontal velocities,
which hinders their lateral migration and thereby reduces
their ability to form clusters. Note that in very anisotropic
suspensions �m	4.75 approximately�, the longest modes are
no longer the most unstable, and a maximum growth rate
appears at a finite wave number. This suggests that aniso-
tropy could in principle result in a wave number selection;
no such effect was however observed in simulations, where
the orientation distribution quickly adjusts to the flow condi-
tions. When both stratification and diffusion are present �Fig.

FIG. 2. Range of unstable wave numbers as a function of �a� the stratifica-
tion parameter �* �for a constant dispersion coefficient of D�

* =0.02�, and of
�b� the dispersion coefficient D�

* �for a stratification parameter of �*=0.03�.
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3�b��, a wave number selection is expected for all values of
m for the reasons discussed in Sec. II D, and the effect of
particle alignment is to reduce the growth rates at all wave
numbers.

The largest unstable wave number in the absence of
stratification and of diffusion can be obtained analytically by
setting �*�0 in Eq. �17� and solving for k*. The result is
found to be

kmax
* = �3� +� ��� +

� + 1

2�

d�

d�
dp�1/2

, �24�

and the range �0,kmax
* � of unstable wave numbers is shown in

Fig. 4 for Onsager distributions as a function of the param-
eter m. As expected from Fig. 3, the effect of anisotropy is to
shrink the range of unstable wave numbers. Note however
that the range is not reduced monotonically; the initial decay
is followed by a small increase and a saturation, also visible
in Fig. 3�a�. In very anisotropic suspensions there always
remains a finite range of unstable modes; the corresponding
growth rates however keep decreasing with m, and in the

limit of perfect alignment �m= � � the suspension is neutrally
stable.

As previously done in the isotropic case �Sec. II D�, we
can also obtain the behavior at low wave numbers by seeking
a perturbation solution to the dispersion relation. When
stratification is included ��*�0�, the result of Eq. �19� re-
mains unchanged to the order retained in the expansion:

�I
* = −

�*

k*2 � ����dp + O�1/k*� = −
�*

k*2 + O�1/k*� . �25�

The effects of anisotropy become clearer in the absence
of stratification ��*=0�. An expansion of Eq. �17� for a hori-
zontal wave in the limit of �k* � �1 indeed yields the follow-
ing algebraic equation:

�*4 + a����*2 − 2iD�
* a���k*2�* + b���k*2 + O�k*3� = 0,

�26�

which is very similar to Eq. �20� for the isotropic case, but
where the coefficients a��� and b��� now depend on the
orientation distribution. More precisely, a and b can be ex-
pressed in terms of moments of the orientation vector p.
Introducing the following notations:

�27�

and

�28�

The scalar coefficients a and b are found as

a��� = 3�M4:�k̂�2�ẑ�2�� −
� + 1

2
N3:�k̂�2�ẑ� + �N5:�k̂�2�ẑ�3�� ,

�29�

FIG. 3. Growth rate �imaginary part �I
* of the complex frequency� as a

function of wave number for a horizontal wave �k̂ · ẑ=0� in anisotropic sus-
pensions. The various curves correspond to different degrees of anisotropy,
parameterized by the coefficient m in the Onsager distribution equation �23�.
The growth rates were computed by numerical solution of the dispersion
relation �17� using a bisection algorithm. In plot �a� stratification and diffu-
sion are neglected ��*=0 ,D�

* =0�; in plot �b� they are set to �*=0.05,
D�

* =0.02.

FIG. 4. Range of unstable wave numbers for a horizontal wave in an aniso-
tropic suspension as a function of the Onsager parameter m �Eq. �23��. Both
stratification and diffusion are neglected ��*=0, D�

* =0�.
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b��� = 3�M8:�k̂�4�ẑ�4�� −
� + 1

2
N7:�k̂�4�ẑ�3��

+ �N9:�k̂�4�ẑ�5�� , �30�

where the symbol : denotes the scalar product between the
tensors on each side.

The solution of Eq. �26� for k*�1 can be shown to be
pure imaginary with imaginary part:

�I
* = ± a���1/2 − k*2�D�

* ±
b���

2a���3/2� + O�k*3� . �31�

This solution is similar to Eq. �21� for the isotropic case. In
particular, an interesting observation is that the leading order
effect of diffusion is unaffected by the orientation distribu-
tion. The two coefficients a���1/2 and b��� /2a���3/2 now
depend on the orientation distribution as expected from Fig.
3, and are plotted in Fig. 5 for the Onsager distribution of Eq.
�23� as a function of m. As expected from Fig. 3, a���1/2

decreases as m increases and becomes zero for m	5.5 ap-
proximately, confirming that a strongly aligned suspension is
stable at zero-wave number. The second derivative of �*�k*�
at k*=0, which is related to b��� /2a���3/2, is also observed
to change sign at a finite value of m, in agreement with the
observations made earlier in Fig. 3.

III. SCALING ANALYSIS

The analysis of the previous section showed that the
growth of concentration fluctuations can be damped at low
wave numbers by stratification and at high wave numbers by
center-of-mass dispersion. The wave number for the most
unstable mode in a stratified suspension can therefore be de-
termined by balancing these two effects �Eqs. �19� and �21��:

−
�*

k*2 	 − k*2�D�
* +

1

70
� 5

�

3/2� . �32�

The hydrodynamic diffusivity D�
* models the randomiz-

ing effect of velocity fluctuations arising in the suspension

over long times, and is expected to be a function of the
suspension structure and concentration. Its scaling with the
wave number k* and with the volume fraction � must there-
fore be determined. Since the velocity fluctuations which re-
sult in hydrodynamic dispersion are driven by concentration
fluctuations occurring over length scales of the order of
k−1, we expect the dimensional diffusivity to scale as
D�	�Uk−1, where �U is the magnitude of the velocity
fluctuations. In turn, �U is determined by balancing the
gravity force and the Stokes drag acting on a typical concen-
tration fluctuation of size k−1: �NVp��g	�k−1�U, where
�N is the excess number of particles in the concentration
fluctuation.1,2 Since concentration fluctuations in the suspen-
sion grow as a result of the instability, their magnitude �N
evolves in time and is unknown a priori. Let us consider the
onset of the instability in a random suspension, which is
described by Poisson statistics: �N	��k−3 /Vp�1/2. This as-
sumption, whose validity will have to be assessed, results in
the following scaling for the magnitude of the velocity fluc-
tuations and for the diffusivity: �U	U0�kl�−1/2�1/2, and
D�	U0l�kl�−3/2�1/2, where U0=��Vpg /�l is the scale for
the sedimentation velocity of an isolated particle of length l.

This scaling for the hydrodynamic diffusivity can be
substituted into Eq. �32�. When center-of-mass diffusion is
the dominant mechanism for damping at high wave numbers
�D�

* � �5/��3/2 /70�, we obtain the following scaling for the
most unstable wave number:

kl 	 ��l�2/5�1/5. �33�

On the other hand, if center-of-mass diffusion is negligible
�D�

* � �5/��3/2 /70�, a different scaling is expected:

kl 	 ��l�1/4�3/8. �34�

Equivalently, the characteristic size of the density fluctua-
tions in the suspension will be given by �=k−1. Note that in
both Eq. �33� and Eq. �34� the proportionality constant may
depend on the particle aspect ratio. These predictions will be
tested against simulation data in Sec. IV B, where we will
see that good agreement with Eq. �33� is observed, suggest-
ing that hydrodynamic dispersion is in practice the main
mechanism for the damping of high-wave number
fluctuations.

Interestingly, the first scaling for � �Eq. �33�� is the same
as that found by Mucha et al.5,17 for the correlation length in
a stratified suspension of sedimenting spheres. In that par-
ticular case, the physical mechanism that they proposed goes
as follows. As in the previous discussion, a concentration
fluctuation of characteristic size �, which has a magnitude of
��	��l3 /�3�1/2 for Poisson statistics, creates a velocity
fluctuation of scale �U	U0�� / l�1/2�1/2 as it sediments. This
velocity fluctuation, however, only occurs if there is a true
density mismatch with the surrounding fluid, i.e., if the size
of the concentration fluctuation remains below the length
scale over which stratification changes the background vol-
ume fraction � by ��. This length scale is given by
�� / ����. The maximum value for the correlation length
therefore satisfies �	��l3 /�3�1/2 / ����, from which the scal-
ing of Eq. �33� is easily obtained.

FIG. 5. Coefficients a���1/2 and b��� /2a���3/2 in the long-wave expansion
equation �31� for an Onsager orientation distribution �Eq. �23�� as a function
of the parameter m. Both coefficients are normalized by their value at m
=0 �isotropic limit�.
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As illustrated in Fig. 6, a qualitatively similar mecha-
nism can be expected in the case of sedimenting spheroids. A
cluster of particles, which has a certain density mismatch
with the surrounding fluid, can only travel a certain distance
in a stably stratified suspension until the mismatch becomes
negligible. The fact that the scaling we obtained in Eq. �33�
is the same as for sedimenting spheres is a direct conse-
quence of the assumption made above of Poisson statistics
over the length scale of the fluctuations. This assumption is
justified at the onset of the instability when the arrangement
of the particles is random, and suggests that initially at least
the growth of the concentration fluctuations is directly gov-
erned by the velocity fluctuations. At later times however, the
statistics clearly will depart from Poisson owing to the clus-
tering of the particles; the validity of Eq. �33� may then
become questionable, and will need to be tested against
simulations.

IV. NUMERICAL SIMULATIONS

A. Simulation method

We use the simulation method of Saintillan et al.,14

which is only outlined here. The method consists of tracking
the position x� and orientation p� of a given spheroid
�=1, . . . ,N in the suspension using the following dynamic
equations:

ẋ� = Us�p�� + u�x�� , �35�

ṗ� = �I − p�p�� · ��E�x�� + ��x��� · p�, �36�

which are similar to Eqs. �2� and �5�. Hydrodynamic inter-
actions are captured through the disturbance velocity u �and
the corresponding rate of strain and rate of rotation tensors,
E and ��, which satisfies the Stokes equations:

− ��2u + �p = f�x�, � · u = 0. �37�

The body force field f�x� captures the effects of the particles
on the fluid, and to leading order corresponds to a point force
applied at the center of each spheroid. Instead of using actual
point singularities, we use a Cartesian grid and assign the

forces exerted by the particles on the fluid to the neighboring
mesh points xi:

f�xi� = �
�=1

N

FM�xi − x�� , �38�

where M�x� is a smooth assignment function, which is cho-
sen to satisfy certain properties.14 In this work third-order
B-splines are used.25 Finally, the Stokes equations �37� are
solved numerically using an expansion of the velocity as a
sum of Fourier modes satisfying a tangential flow boundary
condition on the container boundaries;4,14 while this differs
from the exact no-slip boundary condition for viscous flow,
the absence of fluid penetration at the bottom of the con-
tainer was previously shown to qualitatively capture the ef-
fects of container walls. In particular, we observed in our
previous work that such a boundary condition is sufficient to
capture a wave number selection in sedimenting suspensions
of spheroids.14 In the remainder of the paper distances are
made dimensionless with the length lc= l of the major axis of
the particles, velocities with the sedimentation speed uc

= ��0+�1���Vpg of a vertical spheroid at infinite dilution,
and times with the time tc= lc /uc for a vertical spheroid to
sediment over the length of its major axis.

B. Fluctuations in stably stratified suspensions

We first test the conclusions of the stability analysis of
Sec. II by performing simulations of suspensions in which a
vertical density gradient is imposed in the initial configura-
tion. As a measure of the characteristic size of the structures
that develop in the suspension, we use the correlation length
� defined as the position of the first minimum in the autocor-
relation function Czz�x� of the vertical fluid velocity compo-
nent in the horizontal direction:

Czz�x� =� uz�x��uz�x� + x�dx�. �39�

In our previous work14 we showed indeed that the velocity
field decorrelates in the horizontal direction over a distance
of the order of the size of the clusters in the suspension, since
these entrain the fluid with them and are surrounded by back-
flow regions. This measure has also been used successfully
in experiments to estimate the size of the clusters in fiber
suspensions.9 To isolate the effects of the initial stratification,
� is measured at time t=15 shortly after the start of the
simulations, which corresponds approximately to the occur-
rence of the peak in the velocity fluctuations;14 this time is
short enough for the stratification to remain roughly constant,
but sufficiently long for the inhomogeneities to start forming
in the suspension.

Typical velocity autocorrelation functions in nonstrati-
fied and stratified suspensions are shown in Fig. 7�a�. In the
absence of stratification ��=0�, the velocity field decorre-
lates over half a box width ��=Lx /2�, indicating the forma-
tion of a single streamer spanning the full width of the box.
This agrees qualitatively with experimental observations9

and our previous simulations14 in homogeneous suspensions
shortly after the start of sedimentation, and is also predicted

FIG. 6. Schematic illustrating the effect of stratification on the growth of
density fluctuations: a cluster containing a concentration fluctuation of size
�� only grows if its extent � is less than the height �� /�� over which the
background concentration changes by �� as result of stratification.
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by the original stability analysis of Koch and Shaqfeh6 for a
homogeneous base state, in which the longest wavelength
dominates. The behavior is quite different, however, when
stratification is imposed. When �=6.67�10−3 in Fig. 7�a�,
the correlation length is found to be much shorter, of the
order of a few particle lengths. Figure 7�b� shows the corre-
sponding particle distribution, on which the correlation
length � is denoted by an arrow; the particle distribution
indeed presents several distinct clusters in the lateral direc-
tion, the characteristic size of which is of the order of �.
These observations confirm the stabilizing influence of strati-
fication and its role in selecting the size or wavelength of the
inhomogeneities in the suspension.

The effects of the density gradient � on the wavelength
of the instability are shown more quantitatively in Fig. 8�a�,
where the correlation length � is plotted vs � for various
volume fractions �. In very weakly stratified suspensions
��	10−4�, the correlation length saturates at approximately
half a box width, showing that the wavelength is selected by
the size of the container. When � increases, � is found to
decrease, yielding cluster sizes that are controlled by strati-

fication and do not depend on the container dimensions. At a
given value of �, the correlation length is observed to be
larger in more dilute suspensions.

The dependence on concentration is shown more pre-
cisely in Fig. 8�b�, where � is shown as a function of � for a
few given values of �. The correlation length indeed de-
creases with increasing volume fraction, and the decay is
well described by the following power law: �	�−0.23. The
data of Fig. 8�a� rescaled with �−0.23 are shown in Fig. 9,
where the curves corresponding to various volume fractions
are observed to collapse onto a single straight line in a log-
log plot, with departures at small values of � owing to box-
size effects. We therefore find the following scaling for the
correlation length when box-size effects are negligible �i.e.,
when ��Lx /2�:

FIG. 7. �a� Autocorrelation function Czz�x� in the horizontal direction of the
vertical disturbance fluid velocity, in a suspension of 257 831 spheroids of
aspect ratio A=15 in a box of dimensions Lx=50, Ly =20, Lz=300 �volume
fraction �=0.2%�, measured at t=15 near the peak of the fluctuations, with
and without stratification. The correlation length � is measured as the posi-
tion of the first minimum. �b� Visualization of the suspension of �a� at
t=15 in the stratified case ��=6.67�10−3�, where a wave number selection
is observed. The arrow represents the correlation length measured in �a�.

FIG. 8. Correlation length � in the horizontal direction, measured as the first
minimum in the autocorrelation function of the vertical fluid velocity com-
ponent �see Fig. 7�, as a function of �a� the stratification parameter � in the
suspension, and �b� the local volume fraction �. The stratification was im-
posed in the initial particle distributions, and the correlation length was
measured at t=15 near the center of the box. The simulations were run in a
box of dimensions Lx=50, Ly =20, Lz=300, and are for spheroids of aspect
ratio A=15. Each point on the graphs is an average over 20–30 simulations.
The dependence of � on the volume fraction � is well approximated by a
power law with exponent �−0.23.
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� � C�−0.40�−0.23, �40�

where the dimensionless constant C is of the order of 0.3.
The exponents found in Eq. �40� are in good agreement

with the theoretical prediction of Eq. �33�, but do not agree
with the other proposed scaling �Eq. �34��; this suggests as
explained in Sec. III that the center-of-mass dispersion is the
main mechanism for damping at high wave numbers. Small
departures are expected to occur for a variety of reasons.
Most importantly, the theoretical scaling was derived based
on the assumption that the particle distribution on the length
scale of the fluctuations can be described by Poisson statis-
tics. While this is strictly true at t=0, the distribution then
evolves as a result of the instability, leading to stronger den-
sity fluctuations and a possibly different scaling for the hy-
drodynamic diffusivity. The good agreement between simu-
lations and theory suggests that these effects are weak, at
least initially. Finite-box effects are also likely to influence
the results from the simulations, in particular in the more
dilute cases or when the stratification is very weak; this is,
for instance, clear at the low volume fraction of �=0.02% in
Figs. 7�a� and 8, where the exponent of −0.40 for the depen-
dence on � is never fully reached.

C. Wave number selection process

In initially well-mixed suspensions, the stratification at
t=0 is negligible. The onset of the instability is therefore
governed by the analysis of Koch and Shaqfeh,6 and charac-
terized by the formation of a large-scale streamer spanning
the width of the container.9,14 Stratification however is
known to develop,14 and may subsequently have an effect on
the wavelength of the instability. The evolution of the verti-
cal concentration profile in a typical simulation is shown in
Fig. 10. At t=0, the concentration is uniform, but a signifi-
cant gradient in the vertical direction is observed to appear as
the sedimentation progresses. First, the interface between the

bulk of the suspension and the clear fluid spreads in time,
resulting in the formation of a broad suspension front. This
phenomenon can be attributed in part to the difference in the
sedimentation rates of spheroids with different orientations.
In addition, the bulk of the suspension also becomes strati-
fied, with particles accumulating near the bottom of the con-
tainer. While the precise mechanism for this effect deserves
further consideration, it is likely to be due to the formation of
clusters in the suspension, which settle at a higher speed than
particles in the clarified regions. At later times, the concen-
tration gradients in the suspension front and in the bulk be-
come comparable, resulting in an almost linear concentration
profile in the vertical direction.

The concentration fluctuations are described more quan-
titatively in Fig. 11, which shows the evolution of the strati-
fication parameter � and of the local volume fraction � at a
given vertical station during the sedimentation. Figure 11�a�
confirms that the stratification, which is initially negligible
���0�, becomes significant with values of � reaching 0.03
at t=200. Note that such gradients are much stronger than
those investigated in Sec. IV B, where the largest value for �
did not exceed 0.01; significant effects on the wavelength of
the instability can therefore be anticipated. The local concen-
tration at a given height in the container also decreases in
time, as shown in Fig. 11�b�. In particular, the simulations
show that the decay begins quite early �before the approach
of the sedimentation front�, and is therefore at first a conse-
quence of the stratification in the bulk. Note however that
very near the bottom of the container the concentration first
increases, as can be seen in Fig. 10.

Figure 12�a� illustrates the wave number selection pro-
cess of the concentration instability. The correlation length �
in the horizontal direction during sedimentation, measured at
the same height in the container as � and � in Fig. 11, is
plotted vs time. The trends observed agree with previous

FIG. 9. Correlation length � in the horizontal direction, scaled by �−0.23, as
a function of the stratification parameter � at various volume fractions. The
data are the same as in Fig. 8�a�. At high values of � the curves asymptote
to a power law with exponent �−0.40.

FIG. 10. Evolution of the vertical concentration profile with time in a sus-
pension of 257 831 spheroids of aspect ratio A=15 in a box of dimensions
Lx=50, Ly =20, Lz=300 �volume fraction �0=0.2%�. Each curve shows an
average over 20 simulations. The local volume fraction � is normalized by
the bulk value �0 at t=0.
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observations;9,14 initially the correlation length is of the order
of the box width ���Lx /2�, after which it undergoes a tran-
sition to a much shorter value of the order of a few particle
lengths ���8 to 12 in Fig. 12�. While Fig. 12�a� suggests a
saturation at long times, no true steady state is observed and
� continues to decay until the end of settling. The very slow
decay of �, however, may explain why the microstructure in
our previous simulations on smaller systems appeared to
reach a steady state.14 The influence of concentration is also
shown in Fig. 12, where we see that the transition from a
single streamer to multiple clusters occurs more rapidly in
the concentrated suspensions, where the final correlation
length is also typically shorter. The effects of concentration
are nonetheless quite weak, except in the most dilute case
��0=0.02% �, where the transition to small-scale structures
occurs at a significantly later time.

To quantitatively assess the role played by stratification
in the evolution of the correlation length shown in Fig. 12�a�,
we compare in Fig. 12�b� the measured correlation length to
that predicted by the scaling of Eq. �40�, in which we use the
data of Fig. 11 for the evolution of the stratification param-
eter � and of the local volume fraction �. While the model
does not reproduce the saturation at half a box width at short
times, which is a finite-box effect, it does capture the subse-
quent time decay of the correlation length. The predicted

decay is slightly faster than observed in the simulations, yet
the measured and predicted correlation lengths never differ
by more than approximately 20%. This agreement is surpris-
ingly good in light of the approximations made in Sec. III
when deriving the scaling, and strongly suggests that the
wave number selection is controlled by stratification at least
in these simulations. An important remark is that the initial
decay of � occurs quite early in Fig. 12�b� �between t=50
and 75 for both the measured and predicted curves�, at a time
when the stratification in the suspension is still very weak as
seen in Fig. 11�a� ���2�10−3�; this demonstrates that rela-
tively weak density gradients can have sizable effects on the
wave number selection of the instability. Note that a similar
remark had been made by Mucha et al. regarding the effect
of stratification on the correlation length in sphere
suspensions.5

The theoretical scaling for the correlation length also
allows us to understand several of the features observed in
Fig. 12�a�. In particular, since the stratification parameter �
is sensibly the same at all volume fractions �Fig. 11�a��, the
main effect of volume fraction on the wave number selection
occurs through the scaling with � in Eq. �40�; we can there-

FIG. 11. Time evolution of �a� the stratification parameter �, and �b� the
normalized volume fraction � /�0, over the course of a simulation. The
simulations are for spheroids of aspect ratio A=15 and were performed in a
box of dimensions Lx=50, Ly =20, Lz=300. Both � and � /�0 were mea-
sured at a height of z=100 in the container. The curves are averaged over 20
simulations.

FIG. 12. �a� Time evolution of the correlation length � in the horizontal
direction. The simulations are for spheroids of aspect ratio A=15 and were
performed in a box of dimensions Lx=50, Ly =20, Lz=300. The correlation
length was measured at a height of z=100 in the container. The curves are
averaged over 20 simulations. �b� Comparison between the correlation
length measured in the simulations �in the case �0=0.1%�, and the predic-
tion of Eq. �40�, in which the data of Fig. 11 were used for the local evo-
lution of � and �.
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fore expect the correlation length to be larger in more dilute
suspensions, and hence the transition from a box-dependent
streamer to multiple clusters to occur at a later time, as in-
deed observed in the simulation data. The saturation of �
near the end of the sedimentation process can also be ex-
plained. Whereas the vertical density gradient �or stratifica-
tion parameter �� keeps increasing in time �Fig. 11�a��, the
local volume fraction, which is initially constant, drops con-
siderably as the front approaches �Fig. 11�b��; the competing
effects of increasing stratification and decreasing volume
fraction may therefore be responsible for the saturation of �,
according to Eq. �40�.

V. CONCLUDING REMARKS

We have used theory and numerical simulations to inves-
tigate the effects of stratification on the concentration insta-
bility that occurs in suspensions of spheroidal particles under
sedimentation. First we performed a linear stability analysis
in a stably stratified suspension, and showed that stratifica-
tion provides a mechanism for damping of the fluctuations at
low wave numbers, while high-wave-number fluctuations are
suppressed by hydrodynamic dispersion. The balance of
these two effects therefore results in a selection of a most
unstable mode at a finite wave number. Based on the results
of the stability analysis, we were able to derive the following
scaling for the characteristic size of the fluctuations:
� / l	��l�−2/5�−1/5. This scaling, which is the same as that
previously obtained for the size of the fluctuations in sphere
suspensions,5,17 is based on an assumption of Poisson statis-
tics over the length scale of the fluctuations, and is therefore
only rigorous at the onset of the instability. Simulations were
performed in which a density gradient was imposed at t=0,
and showed good agreement with the predicted scaling. In
initially well-mixed suspensions, we observed that the con-
tinuous decay of the wavelength of the fluctuations is also
described reasonably well by the same model.

While the present work demonstrates that an accurate
description of the concentration instability should take strati-
fication into account, it is by no means proof that the wave
number selection in a real system is only governed by the
mechanisms described herein. In particular, other effects
which have not been accounted for in our analysis are likely
to play a role as well. One such effect is hydrodynamic
screening by the container side walls, which is a conse-
quence of the no-slip boundary condition on solid boundaries
and is not captured by the tangential flow boundary condition
used in our simulations. As described previously by Brenner
in the case of spheres,26 no-slip walls provide an additional
cutoff for hydrodynamic interactions between the suspended
particles, which become negligible beyond distances of the
order of the shortest wall separation distance. Other effects
may also arise owing to close particle interactions; while our
simulations neglected contact and lubrication forces, these
may become important inside the clusters, creating entangle-
ments and thereby reinforcing the fluctuations over short dis-
tances. In particular, this may result in stronger departures
from the Poisson statistics than is the case in our simulations.

One remaining question which was not resolved here is
the exact process leading to the formation of the vertical
density gradients in the suspension. While the broadening of
the front at the top of the suspension can be understood from
the differential settling of particles with different orienta-
tions, the reason for the formation of gradients in the bulk of
the suspension is not entirely clear. Models have been pro-
posed previously to describe stratification in sphere
suspensions,5,27 and were based on solutions of a convective-
diffusion equation for the particle phase, in which closure
approximations were used for the hydrodynamic diffusivity.
One could envisage developing a similar framework in the
case of anisotropic particles; yet the presence of clusters in
the suspension, which settle at higher rates than the remain-
der of the particles, would have to be considered. Since the
size of these clusters may itself be controlled by stratifica-
tion, a coupled model for the vertical density profile and for
the microstructure may be required.
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