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Microfluidic flow actuation using magnetoactive suspensions
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Abstract – The rheological behavior of magnetotactic bacterial suspensions is analyzed using
a continuum kinetic theory. In both unbounded and confined geometries, the response of these
suspensions under simple external flows can be controlled by applying a magnetic field and hinges
in a subtle way on the interplay of magnetic alignment, rotation under shear, and wall-induced
accumulation under confinement. By tuning magnetic field strength and direction, the apparent
viscosity can either be enhanced or reduced, and the mechanisms for these trends are elucidated.
In the absence of any applied flow, we further demonstrate the ability of magnetoactive suspensions
to internally drive steady unidirectional flows upon application of a magnetic field, thus suggesting
novel avenues for the design of microfluidic pumps and flow actuation devices.

Copyright c⃝ EPLA, 2018

Introduction. – Suspensions of active particles, such
as motile microorganisms, synthetic microswimmers, or
externally actuated colloids, exhibit unusual rheological
properties that are unlike those of classical complex flu-
ids [1]. While the additional viscous dissipation incurred
by flow around suspended particles typically enhances vis-
cosity in passive systems [2], such is not the case in active
suspensions, where mechanical stresses generated on the
microscale as a result of activity can have the opposite ef-
fect of reducing flow resistance [3]. This curious trend has
been characterized in detail in the case of swimming bac-
teria [4,5], where the coupling of particle reorientations
by the applied flow and of dipolar stresses exerted dur-
ing self-propulsion indeed causes a decrease in viscosity in
weak flows [6]. In sufficiently concentrated systems, the
apparent viscosity can in fact reach zero [5,7], indicating
a transition to a superfluid-like state where internal activ-
ity exactly compensates viscous dissipation. A dramatic
manifestation of this transition is the emergence of spon-
taneous directed motions in confined systems [8,9], which
has been explained as a linear instability driven by active
stresses [10]. The ability to harness these flows for applica-
tions, however, remains limited due to the lack of external
control on particle configurations, which instead emerge
spontaneously from internal mechanical couplings.
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Tunable rheological properties are typically achieved in
passive systems by applying external electric or magnetic
fields [11,12], which drive particle rearrangements or reori-
entations and thus affect resistance to flow. The viscous
properties of passive magnetic fluids have been extensively
studied, with experiments [13] showing an increase in the
viscosity of ferromagnetic fluids when a constant magnetic
field is applied. This effect is well understood theoret-
ically [14–18] as a consequence of the magnetic torque
acting on the particles, which hinders their rotation by
the applied vorticity and results in an additional stress
contribution.

In this work, we investigate the use of magnetic fields as
a means to control the effective rheology and internally-
driven flows of active suspensions in microfluidic channels.
The system of choice for this problem is magnetotac-
tic bacteria, which are motile prokaryotes mostly present
in marine habitats that synthesize intracellular magnetic
membrane-bound crystals known as magnetosomes. These
bacteria, which swim by similar mechanisms as other
flagellated bacteria, behave as self-propelled permanent
magnetic dipoles that orient and migrate along the local
magnetic field lines [19]. Magnetotactic suspensions thus
behave as magnetic fluids with additional complexities
arising from self-propulsion, which causes particle accumu-
lation at walls in confined systems [20,21], and from active
stresses, which modify the rheology [1,6,7]. Although the
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Fig. 1: Problem definition: a dilute suspension of spherical
magnetotactic swimmers (velocity V0p, magnetic dipole M =
Mp) is subject to an externally applied magnetic field H.

active nature of magnetotactic bacteria has not been char-
acterized in detail experimentally, it has been suggested
that the strain MC-1 of Magnetococcus marinus behaves
as a puller [22]. The ability to manufacture magnetotac-
tic pusher-like particles using engineered flagellar motors
of Escherichia coli bacteria tethered to magnetic beads
has also been demonstrated [23].

The complex dynamics of magnetoactive suspensions in
microfluidic flows have recently been studied in experi-
ments [22], where the interplay of magnetic alignment
and rotation in shear was shown to cause flow-focusing
in pressure-driven flow [24]. In semi-dilute systems,
a pearling instability was observed [22], though it remains
unclear whether it is caused by hydrodynamic [25] or mag-
netic [26] interactions. These experiments hint at an un-
usual rheology, which we analyze in this letter. We show
that, when placed in an external uniform magnetic field,
a confined magnetotactic suspension can behave as an
active ferromagnetic pump. When the direction of the
field and the magnetization of the microorganisms are
not collinear, bacteria feel a net magnetic torque which
is transmitted to the surrounding fluid, and can give rise
to a net unidirectional fluid flow in a planar channel, with
a flow rate and direction that can be controlled by adjust-
ing both the magnitude and orientation of the field. Using
a kinetic theory [6,7], we provide a physical explanation
for these flows and also analyze the rheological response
of magnetotactic suspensions under steady applied flows.

Continuum kinetic model. – We consider a suspen-
sion of rigid spherical magnetotactic motile bacteria of
radius a dispersed in an incompressible Newtonian sol-
vent with dynamic viscosity ηs. The suspension is as-
sumed to be dilute, with mean number density n and
corresponding volume fraction φv = 4

3 πa3n ≪ 1. We
study both unbounded and confined systems, where the
confining geometry is a Hele-Shaw cell comprised of two
infinite parallel plates separated by a distance L ≫ a.
We adopt the coordinate system shown in fig. 1, where
x is the flow direction, y the wall-normal coordinate,
and z the vorticity direction. A spatially uniform mag-
netic field H = Hh is applied along the unit vector h,
which we parametrize in spherical coordinates as h =
(sin Θ cosΦ, sin Θ sinΦ, cosΘ). Bacteria are assumed to
swim at constant speed V0 along their unit director p,

similarly expressed as p = (sin θ cosϕ, sin θ sin ϕ, cos θ).
They carry a permanent magnetic dipole modeling the
presence of the magnetosome chains that longitudinally
traverse the cell body of magnetobacteria [27]: M = Mp.
We neglect induced polarization and magnetic interactions
and thus assume that M is constant and rotates rigidly
with each cell body. When placed in a uniform external
field, the bacteria are subject to a net magnetic torque
M × H that generates an additional suspension stress.

Fokker-Planck description. Following previous kinetic
models for dilute active fluids [6,7,20,28,29], we describe
the configuration of the suspension in terms of the prob-
ability density function Ψ(x,p, t) of finding a particle at
position x with orientation p at time t, where the mean
value of Ψ over all positions and orientations defines the
number density. At steady state, the density function sat-
isfies the Fokker-Planck equation [30]

∇x · (ẋΨ) + ∇p · (ṗΨ) = 0, (1)

where ẋ and ṗ capture translational and rotational parti-
cle fluxes, respectively. The translational flux is obtained
from a force balance on a swimmer,

6πηsa [ẋ − V0p − u(x)] + kBT∇x ln Ψ = 0, (2)

where the viscous drag force on the spherical particle bal-
ances the Brownian force scaling with thermal energy kBT .
In writing eq. (2), we have used the fact that a ≪ L, so
that advection of the particle by the flow simply occurs
with the local fluid velocity u(x) [31]. Introducing the
translational diffusivity dt = kBT/6πηsa, eq. (2) yields

ẋ = V0p + u(x) − dt∇x ln Ψ. (3)

Similarly, we obtain the rotational flux from an angu-
lar momentum balance, where the viscous, magnetic, and
Brownian torques on a swimmer sum up to zero:

8πηsa
3

[

1

2
ω(x) − Ω

]

+M×H−kBTp×∇p ln Ψ = 0. (4)

Here, ω(x) = ∇x × u(x) is the ambient fluid vorticity,
while Ω denotes the bacterium angular velocity. Using the
kinematic relation ṗ = Ω × p, eq. (4) provides an expres-
sion for the rotational flux,

ṗ =
1

2
ω(x) × p +

MH

8πηsa3
h⊥ − dr∇p ln Ψ, (5)

where dr = kBT/8πηsa3 is the rotational diffusivity of a
spherical particle, and h⊥ ≡ (I − pp) · h.

Fluid flow and suspension stress. The suspension of
bacteria exchanges both linear and angular momentum
with its surroundings, thus affecting the rheology of the
system. In the low-Reynolds-number limit relevant to mi-
croscopic swimmers, the fluid velocity u and correspond-
ing pressure q satisfy the incompressible Stokes equations:

∇x · u = 0, −∇xq + ∇x · Σ = 0, (6)

where the deviatoric stress Σ includes contributions
from the solvent as well as from the particles. Following
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standard methods [1,6,7,14,32], we model the stress as

Σ = 2ηs

(

1 +
10

3
πa3 c

)

E +
1

2
MH (hm − mh) + σ0D,

(7)
where E = 1

2 (∇xu + ∇xu
T ) is the rate-of-strain tensor,

and c, m and D denote the zeroth, first, and second ori-
entational moments of the distribution function:

c(x) = ⟨1⟩, m(x) = ⟨p⟩, D(x) = ⟨pp − I/3⟩, (8)

where ⟨·⟩ =
∫

· Ψ(x,p) dp is the orientational average.
Upon normalization by c, the two moments m and D de-
scribe local polar and nematic alignment, respectively.

The first term in eq. (7) is a viscous contribution aris-
ing from the flow, and involves the usual Newtonian
stress corrected for particle concentration according to
Einstein’s formula [2]. The second term, which is anti-
symmetric, captures the effect of magnetic torques and
vanishes for a suspension aligned with the applied field
(m ∝ h) [14,33,34]. Finally, the last term accounts for ac-
tive stresses arising from self-propulsion and involves the
active stresslet σ0 , whose sign depends on the propulsion
mechanism [1,3,6]: σ0 < 0 for so-called pusher swimmers,
whereas σ0 > 0 for pullers. While σ0 has been measured
for certain types of microorganisms [35,36], it is still un-
known for common magnetotactic bacteria.

Dimensional analysis. We nondimensionalize the gov-
erning equations using time scale d−1

r , length scale L, ve-
locity scale Ldr, and pressure scale ηsdr. The distribution
function Ψ is normalized by the number density n. In ad-
dition to the volume fraction φv, scaling of the equations
in the absence of an external flow yields four independent
dimensionless groups, which we define as

Pes =
V0

Ldr
, ϵ =

√

dt/dr

L
, α =

σ0

kBT
, β =

MH

kBT
. (9)

The swimming Péclet number Pes represents the ratio of
the persistence length ℓ = V0/dr of swimmer trajecto-
ries over the channel width L, and can be viewed as a
measure of confinement. The parameter ϵ is the ratio of
the diffusive length scale δ =

√

dt/dr over L; for a Brow-
nian spherical particle, δ =

√

4/3a, so that ϵ ≪ 1 for
the case of interest where a ≪ L. Finally, α and β com-
pare the magnitudes of active and magnetic stresses to the
thermal energy unit kBT . With these scalings, the steady
Fokker-Planck eq. (1) simplifies to

∇x · [(Pesp + u) Ψ] − ϵ2∇2
xΨ

+ ∇p ·

[(

1

2
ω × p + βh⊥

)

Ψ

]

− ∇2
pΨ = 0,

(10)

subject to a no-flux boundary condition at domain bound-
aries: n̂ · (PespΨ − ϵ2∇xΨ) = 0. The scaling of transla-
tional diffusion with ϵ2 underscores the weak role it plays
in moderately wide channels outside of near-wall accu-
mulation layers [20]. Similarly, the dimensionless linear

momentum conservation equation becomes

−∇xq +

(

1 +
5

2
φvc

)

∇2
xu + 5φvE · ∇xc

+ 6αφv∇x · D + 3βφv [h · ∇xm − (∇x · m)h] = 0,

(11)

where the linear dependence of particle stresses on φv in
the dilute limit is apparent. In the event that an ex-
ternal flow is applied to the system, we also introduce a
flow Péclet number defined as Pef = γ̇/dr in an imposed
shear flow with shear rate γ̇, and as Pef = ∆qL/ηsdr in a
pressure-driven flow with pressure gradient ∆q.

Results and discussion. – The governing equa-
tions (10), (11) are solved numerically using a finite-
volume algorithm described in our previous work [7,20].
In unbounded domains, we further check our results using
a spectral method based on spherical harmonics [6]. In
all results shown here, we assume that the magnetic field
lies in the x-y plane (Θ = π/2), and we choose the values
ϵ2 = 0.025 and φv = 0.01.

Unbounded simple shear flow. We first gain intuition
by discussing the simple case of an unbounded suspension
in an imposed linear shear flow (u = Pefyx̂, ω = −Pef ẑ),
a situation also recently analyzed by Vincenti et al. [37].
In this case, we define the intrinsic shear viscosity as

[η] = lim
φv→0

Σyx − Pef

φvPef
, (12)

which takes on the simple form

[η] =
5

2
+

3β

Pef
(sin Φmx − cosΦ my) +

6α

Pef
Dyx. (13)

It is straightforward to realize that [η](Φ + π) = [η](Φ),
and therefore we only consider field orientations Φ ∈ [0, π].
We also focus on the case of pushers for which α < 0.

Results for the intrinsic viscosity are presented in fig. 2.
In the absence of magnetic or active stresses, [η] = 5/2 due
to the passive stresslet resulting from the enhanced dissi-
pation around the particles [2]. When a magnetic field is
applied, magnetic stresses can either enhance or decrease
this value depending on the sign of (m×h)z = sin Φmx −
cosΦmy. Defining an angle Υ = tan−1(my/mx), which
captures the mean swimmer orientation, we see that [η] is
reduced by magnetic stresses whenever Φ < Υ < Φ + π,
and enhanced otherwise. In an applied shear flow, the
applied field always resists particle rotations resulting in
Φ − π < Υ < Φ, and therefore [η] monotonically increases
with β as shown by the dashed lines in fig. 2(a). In
the limit of strong fields, [η] approaches 4 in agreement
with previous predictions [33]. Active stresses, however,
qualitatively modify this trend through the last term in
eq. (13), which depends on the sign of Dyx. For fields
nearly aligned with the flow direction (Φ ! 0), particles
tends to point in the fourth quadrant −π/2 < Υ < 0
so that Dyx < 0 and [η] is slightly enhanced for pushers
(α < 0). As Φ increases towards π/2, Υ enters the first
extensional quadrant resulting in Dyx > 0 and in a de-
crease in viscosity, which reaches a minimum for a value of
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Fig. 2: (Color online) (a) Mean particle orientation and mecha-
nism for viscosity modification in unbounded simple shear flow
for two magnetic field orientations. Disturbance flow fields are
shown for pushers and have the opposite direction for pullers.
(b) Intrinsic viscosity [η] for Pef = 0.5 as a function of mag-
netic field direction Φ for varying field strengths β. Dashed
lines: movers (no active stress, α = 0). Solid lines: pushers
(α = −5/3), where the solution is also checked using spheri-
cal harmonics (symbols). (c) Optimum field direction Φopt (left
axis), in a suspension of pushers, that minimizes [η] (right axis)
as a function of the flow Péclet number Pef . Results for pullers
are obtained by noting Φopt(α) = Φopt(−α) + π/2. Solid line:
analytical predictions of eqs. (14) and (17). Symbols: numeri-
cal solution.

Φ ≈ π/4 in weak flows. Further increasing Φ beyond π/2
causes particles to align in the second compressional quad-
rant, and thus [η] is enhanced again. In stronger flows,
similar trends are observed but require larger values of
Φ to resist rotation in the applied flow. For the purpose
of decreasing the intrinsic viscosity, fig. 2 suggests that
an optimum field direction Φopt exists, which is also that
maximizing Dyx in the case of pushers.

We seek analytical expressions for [η] and Φopt by taking
orientational moments of eq. (10) and applying a closure
approximation for the third-order moment [20,28]. In an
unbounded homogeneous suspension, this transformation
reduces the conservation equation to a system of coupled
algebraic equations for m and D:

−W · m + β

(

2

3
h − D · h

)

= 2m,

D · W − W · D + β

[

3

5
(mh + hm) −

2

5
(m · h)I

]

= 6D.

Inverting this system and inserting the solution into
eq. (13) yields an expression for the intrinsic viscosity:

[η](Pef , α, β,Φ) = P/Q, (14)

where the functions P and Q are given by

P =
375

2

(

Pe4
f + 52Pe2

f + 576
)

− 100β2
(

Pe2
f − 234

)

+ 24
αβ2

Pef

[(

3β2 −
5

2
Pe2

f +60

)

sin 2Φ−25Pef cos 2Φ

]

, (15)

Q = 75
(

Pe4
f + 52Pe2

f + 576
)

− 80β2
(

2Pe2
f − 63

)

+ 144β4 . (16)

This prediction perfectly matches the numerical results of
fig. 2(b), (c). The optimum field direction Φopt can then
be obtained by straightforward minimization as

Φopt =
1

2
tan−1

[

5
2 Pe2

f − 3β2 − 60

25Pef

]

, (17)

which increases from π/4 as flow strength increases
and also matches numerical calculations in fig. 2(c).
Equation (17) also provides the dependence of Φopt on
magnetic field strength: for a given flow strength Pef , the
optimum angle decreases as β increases. In the limit of
strong fields and moderate flows, particles orient approxi-
mately along the field direction, yielding an optimum an-
gle of Φopt ! π/4.

Magnetoactive pumping in confinement. We now turn
to the effects of confinement and first analyze the dynam-
ics in the absence of any imposed flow (Pef = 0). In this
case, fluid motion is solely the result of magnetic and ac-
tive stresses which can produce a net non-zero volumetric
flow rate Q̇v =

∫ 1
0 ux(y)dy by a mechanism summarized

in fig. 3(a). Symmetry of the problem allows us to only
consider Φ ∈ [0, π/2]. When β = 0 (no magnetic field),
particles accumulate equally at both boundaries with a
net polarization towards them [20,21], and no flow is gen-
erated (Q̇v = 0). Applying a magnetic field (β > 0) in
any direction other than Φ = π/2 results in a net torque
on the particles, which competes against wall-induced po-
larization and is transmitted to the fluid via viscous drag.
For a longitudinally applied field (Φ = 0), the magnetic
torque is clockwise (m × h)z < 0 near the top wall and
counter-clockwise near the bottom wall, and correspond-
ing magnetic shear stresses drive a flow in the negative
x-direction (Q̇v < 0). This is evident in fig. 3(b), showing
Q̇v as a function of β for movers (α = 0). In weak to mod-
erate fields, |Q̇v| increases with β as longitudinal polariza-
tion mx progressively increases from zero. In strong fields,
however, magnetic alignment overcomes wall-induced po-
larization, leading to my → 0 and therefore to a drop in
magnetic stresses and flow rate. In this limit, wall accu-
mulation becomes negligible as particles primarily swim
in the field direction. The transition between the two
regimes is marked by a maximum in flow rate occurring
for β ∼ 2.0–3.0. The coupling of wall-normal polarization
with field alignment also results in nematic alignment [20]
with Dyx > 0 near the top wall and < 0 near the bot-
tom wall. In the case of pushers in fig. 3(c), the result-
ing active stress profile further promotes retrograde flow
(Q̇v < 0) by a mechanism similar to that for the viscosity
decrease observed in pressure-driven flows [7]. In the case
of pullers, however, active stresses have the opposite sign
and can dominate magnetic stresses to drive a net flow in
the positive x-direction (Q̇v > 0) as seen in fig. 3(d).
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Fig. 3: (Color online) (a) Mechanism for magnetoactive pump-
ing in a planar channel with no imposed flow (Pef = 0). Left:
average particle configuration in the absence of a magnetic
field. Right: disturbance flow created by the synergistic ef-
fect of magnetic and active stresses in a suspension of pushers
under a uniform magnetic field. In the case of pullers, magnetic
stresses remain the same while active disturbance flows change
sign. (b)–(d) Volumetric flow rate Q̇v as a function of magnetic
field strength β for Pes = 0.5 and for different swimmer types:
movers (α = 0), pushers and pullers (α = ∓5).

These basic trends on flow rate remain valid for non-
parallel field directions (Φ > 0). As Φ increases from zero,
particle distributions become asymmetric with a stronger
accumulation at the top wall; in sufficiently strong fields,
accumulation at the lower boundary can be suppressed en-
tirely, resulting in my > 0 throughout the channel. While
the magnetically-driven flow rate monotonically decreases
towards zero as Φ increases from 0 to π/2, as observed in
fig. 3(b), activity-driven flows in both pusher and puller
suspensions show a non-monotonic dependence, with a
maximum |Q̇v| attained for Φ ≈ π/4. Therefore, a tran-
sition between magnetically-dominated flows to activity-
dominated flows manifests itself as |α| increases from zero.
In the case of Pes = 0.5 and β = 2, the transition occurs
at a critical level of activity of |αc| ≈ 1.

While these internally-driven active flows are reminis-
cent of the spontaneous unidirectional flows known to arise
in confined suspensions of elongated pushers [8–10], a fun-
damental difference lies in the ability to turn flows on and
off and control their strength and direction by tuning the
magnetic field strength β and orientation Φ. We also note
that particle accumulation at the boundaries as a result of
swimming plays a crucial role in the mechanism of fig. 3(a):
it is this very accumulation that induces polarization in
the system, which upon application of the field generates
both magnetic and active stress gradients.

Simple shear flow in confinement. Our understanding
of unconfined rheology and of magnetoactive pumping in
confinement provides the basis for analyzing the response
in imposed confined flows. We first discuss the case of

0.5
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Fig. 4: (Color online) Dependence of the generalized Newto-
nian viscosity ηg on magnetic field direction Φ in a confined
suspension of movers (α = 0) subject to a linear shear flow:
(a) Pef = 0.01, (b) Pef = 0.1. In both cases, Pes = 0.5.

a linear shear flow between two planar walls, where the
upper wall translates with constant velocity uw = Pef .
Here, we define a generalized Newtonian viscosity

ηg =
Pef

2Q̇v

, (18)

which quantifies the change in volumetric flow rate Q̇v due
to the bacteria and reduces to 1 in the passive case.

Results for ηg in a weak imposed flow (Pef = 0.01) are
shown in fig. 4(a) for a suspension of movers (α = 0).
In this case, the flow has only a weak effect on particle
configurations, which instead are controlled primarily by
the interplay of magnetic alignment and wall-induced ac-
cumulation and polarization as was the case in fig. 3(a).
Following the reasoning of the previous section, the re-
sulting magnetic stress profile induces a disturbance flow
in the direction opposite to the horizontal field compo-
nent. It follows that magnetic stresses enhance the im-
posed flow for Φ ∈ [π/2, 3π/2] but impede it otherwise,
resulting in an effective reduction in ηg in the latter case
and increase otherwise, with a magnitude that increases
with β. Pushers/pullers further enhance/mitigate this ef-
fect, respectively, as can be anticipated from fig. 3(c), (d).

In stronger flows, the applied shear affects the particle
distribution more significantly and breaks the horizontal
symmetry. This is illustrated in fig. 4(b) for Pef = 0.1,
where the leading effect of the flow is to substantially re-
duce departures of the generalized viscosity from unity.
The hydrodynamic torque experienced by the particles
acts in the clockwise direction across the entire channel; in
a magnetic field, the mean particle orientation is position-
dependent but tends to be such that Φ − π < Υ < Φ
so that hydrodynamic and magnetic torques counteract
each other. For small Φ, particles thus tend to swim to-
wards and accumulate at the bottom wall, where the mag-
netic torque then acts to slow down the flow and therefore
enhance viscosity. In order for ηg to be reduced, parti-
cle accumulation must be forced towards the upper wall
where counterclockwise magnetic torques near the no-slip
boundary tend to enhance the applied flow: this occurs
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Fig. 5: (Color online) (a) Generalized viscosity ηg in a pressure-
driven flow of movers (α = 0) as a function of Φ for different
values of Pes. Parameter values: Pef = 0.01, β = 1. (b) De-
pendence of ηg on magnetic field strength β for Φ = π and
different values of Pef . Parameter values: Pes = 0.5, α = 0.

for magnetic field orientations π/4 " Φ " 5π/4 as seen
in fig. 4(b). For yet higher angles Φ, particle accumula-
tion returns to the lower wall and the effective viscosity
ηg raises again above 1.

Pressure-driven flow in confinement. As a final exam-
ple, we consider the effective rheology in a Poiseuille flow
driven by a constant pressure gradient, which drives the
flow from left to right. Here, we also introduce a general-
ized Newtonian viscosity

ηg =
Pef

12Q̇v

, (19)

which again reduces to 1 in the passive case. Results
for ηg and its dependence on magnetic field direction
are shown in fig. 5(a), where ηg is found to be reduced
whenever π/2 < Φ < 3π/2 and reaches a minimum for
Φ = π. This direction indeed maximizes the angle be-
tween h and m, which directly controls the magnitude of
magnetic stresses. The dependence of ηg on field strength
for Φ = π is non-monotonic as shown in fig. 5(b), which is
a result of changes in the distribution of particles across
the channel. In weak fields, particles pointing towards
the top/bottom walls feel a magnetic torque in the coun-
terclockwise/clockwise directions, respectively, which is
transmitted to the fluid and enhances the applied flow.
This effective decrease in ηg becomes stronger with in-
creasing β, up to a point where wall accumulation is sup-
pressed as particle orientations become slaved to the field.
This strong field alignment has two competing effects on
the rheology. On the one hand, the weakening of accumu-
lation causes a decrease in the passive viscous contribu-
tion to the stress, as fewer particles occupy the high-shear
near-wall regions; this reduction in passive stress causes
a further decrease of ηg. On the other hand, stronger
alignment with the field also decreases magnetic stresses,
which enhances the apparent viscosity. As β is increased,
the second effect tends to dominate, which explains the
eventual increase of ηg towards 1 in fig. 5(b). In very
strong flows (Pef = 10), a qualitative change in particle
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Fig. 6: (Color online) (a) Concentration, (b) streamwise and
(c) transverse polarization in pressure-driven flow for a mag-
netic field oriented against the flow (Φ = π). Parameter values:
Pes = 0.5, α = 0, Pef = 10.

Table 1: Cross-sectionally averaged fluid velocity u (µm/s) in
magnetically-actuated flows, estimated based on typical exper-
imental parameters [22].

φv = 0.01 φv = 0.1

Φ
α

β
30 60 30 60

0
10 −0.05 −0.04 −0.35 −0.36
100 0.66 0.15 4.96 1.20
200 1.43 0.37 10.85 2.93

π

4

10 1.90 1.99 4.45 4.49
100 19.04 19.91 42.10 43.04
200 38.07 39.83 83.93 85.88

configurations is also observed, whereby particles now mi-
grate towards the centerline of the channel (fig. 6). This
magnetic focusing, which has previously been reported in
experiments [22] and explained theoretically [24], causes
a change in the sign of magnetic stresses as polarization
now points towards the centerline; this has the effect of
enhancing ηg and in fact causes it to exceed 1. The ef-
fect of varying flow strength is also illustrated in fig. 5(b),
where shear-thickening is observed for all values of β, pri-
marily as a consequence of passive stresses which become
dominant in strong flows.

Experimental estimates. – We finish by providing
numerical estimates for the magnitude of magnetically-
actuated flows based on typical experimental parameters
such as those of Waisbord et al. [22], who used M. marinus
bacteria with radius a ≈ 1 µm, swimming speed V0 ≈
140 µm/s, rotational diffusivity dr ≈ 0.5 s−1, and magnetic
moment M ≈ 10−16 A · m2 . The value of σ0 is unknown;
we use the estimate of σ0 ≈ 8 × 10−19 N · m obtained for
E. coli [36] but consider puller swimmers which M. mar-
inus is thought to be [22]. The channel width is taken to
be L = 50 µm. The corresponding dimensionless groups
are Pes = 5.6, α = 200 and ϵ2 = 5 × 10−4 . This value
of ϵ2 results in exceedingly thin accumulation layers that
are challenging to resolve numerically; we use ϵ2 = 0.03
instead in our calculations, which only weakly affects flow
rate and viscosity. Finally, we consider two volume frac-
tions φv = 0.01 and 0.1, and two magnetic field strengths
of H = 1.75 mT and 3.5 mT corresponding to β = 30 and
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60. Estimates for the cross-sectionally averaged fluid ve-
locity u for these cases are provided in table 1. For weak
levels of activity (α = 10), the flow is dominated by mag-
netic stresses resulting in fairly weak negative velocities.
As α increases, active stresses in puller suspensions change
the flow direction and result in significantly larger veloci-
ties, especially for Φ = π/4. Velocity magnitudes in these
cases are on the order of tens of µm/s, which makes them
relevant for microfluidic applications.

Concluding remarks. – We have used a continuum
kinetic model to explore the use of magnetotactic bacterial
suspensions as tunable active fluids whose rheological re-
sponse in an external flow can be controlled by an applied
magnetic field. In confined systems, we also demonstrated
the ability of these fluids to internally drive steady unidi-
rectional flows, whose strength and direction are easily
adjusted by tuning the applied field. The role of particle
activity in these systems was found to be twofold: i) firstly,
active stresses generated by self-propulsion directly mod-
ify the rheology and can be harnessed in various ways by
controlling particle orientations using the external field;
ii) perhaps yet more interestingly, the wall accumulation
resulting from self-propulsion in confined geometries in-
duces local polarization, which under the action of the
field gives rise to magnetic stresses whose sign can again
be controlled. The richness of behaviors exhibited by these
systems and the ability to externally control their rheolog-
ical response and even to drive flows internally hold great
promise for microfluidic and lab-on-a-chip applications re-
quiring local flow actuation without moving parts. For
such applications, the design of artificial suspensions of
self-propelled nano-magnetic units may be desirable [23].
Our study also paves the way for analyzing the dynamics
of more complex systems, such as semi-dilute suspensions
where the role of active and magnetic stresses in driving
large-scale instabilities [22] has yet to be elucidated.
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