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Predicting sound radiated by turbulence is of interest in aeroacoustics, hydroacoustics, and
combustion noise. Significant improvements in computer technology have renewed interest in
applying numerical techniques to predict sound from turbulent flows. One such technique is a hybrid
approach in which the turbulence is computed using a method such as direct numerical simulation
(DNS) or large eddy simulatiofLES), and the sound is calculated using an acoustic analogy. In this
study, sound from a turbulent flow is computed using DNS, and the DNS results are compared with
acoustic-analogy predictions for mutual validation. The source considered is a three-dimensional
region of forced turbulence which has limited extent in one coordinate direction and is periodic in
the other two directions. Sound propagates statistically as a plane wave from the turbulence to the
far field. The cases considered here have a small turbulent Mach number so that the source is
spatially compact; that is, the turbulence integral scale is much smaller than the acoustic
wavelength. The scaling of the amplitude and frequency of the far-field sound for the problem
considered are derived in an analysis based on Lighthill’'s acoustic analogy. The analytical results
predict that the far-field sound should exhibit “dipole-type” behavior; the root-mean-square
pressure in the acoustic far field should increase as the cube of the turbulent Mach number. The
acoustic power normalized by the turbulent dissipation rate is also predicted to scale as turbulent
Mach number cubed. Agreement between the DNS results and the acoustic-analogy predictions is
good. This study verifies the ability of the Lighthill acoustic analogy to predict sound generated by
a three-dimensional, turbulent source containing many length and time scal&00@American
Institute of Physicg.S1070-663100)02501-0

I. INTRODUCTION acoustic analogy, Proudntaderives an equation for the ra-
diated acoustic power per unit mass of the turbulerite,

A fundamental concern in aeroacoustics is the prediction= aeM?. Heree is the mean rate of turbulent energy dissi-
of the far-field sound radiated by turbulence. Advanced nupation per unit mass\l, is the turbulent Mach number, and
merical methods for this purpose have received attention rehe Proudman constang, is of order 10. In Proudman’s
cently. Computing the far-field sound by DN@irect nu-  analysis, the equation fax is derived assuming Gaussian
merical simulatioh on a very large computational domain statistics with normal joint probability distributions for the
which includes both the turbulent source and the acoustic faturbulent velocities and their first two time derivatives.
field is unfortunately very expensive and problematic for  The following studies use the hybrid approach to calcu-
even relatively simple flows. An alternative strategy is tolate the sound from turbulence and compare acoustic-
calculate the sound using a hybrid approach in which thenalogy predictions with theoretical and experimental re-
turbulence is computed using a method such as DNS or LESults. Sarkar and Hussatriompute the sound from decaying
(large eddy simulation and the far-field sound is calculated isotropic turbulence using a hybrid DNS/Lighthill acoustic-
using an acoustic analogy. Application of the hybrid ap-analogy approach. Witkowslet al® also compute the sound
proach requires understanding and accurately capturing theom isotropic turbulence for forced and unforced cases us-
behavior of the dominant acoustic sources in a particulaing both DNS and LES to evaluate the turbulent source in the
flow. Invalid approximations to the source term in the acous+.ighthill acoustic analogy. These simulations of isotropic
tic analogy can lead to large errors in the predicted sdundturbulence have periodic boundary conditions in all direc-
The objective of this study is to evaluate the hybrid approachions. Since there is no far field in these simulations, the
for predicting sound from broadband turbulence at low tur-radiated sound cannot be computed directly; however, the
bulent Mach number using the Lighthill acoustic analogy. statistics of the source term in the acoustic analogy can be

Lighthill? introduces the idea of calculating the far-field obtained. Lilley derives an alternative analytical method of
sound generated by unsteady flow with an acoustic analogyletermininga and evaluates his analytical results using sta-
In Lighthill's analogy, the fully nonlinear problem is taken to tistics of the Lighthill source obtained from the DNS data-
be analogous to the problem of sound propagation in a lineasases of Sarkar and Huss4iand Dubois. These studies all
acoustic medium at rest subject to an external forcing thashow that the hybrid acoustic-analogy method is a feasible
represents the turbulent source. Starting with Lighthil'sapproach in that DNS/LES can be used to compute the
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acoustic source and thereby obtain sound radiated by isotrorain extends to the acoustic far field. Since the source has
pic turbulence. finite extent only in they direction, acoustic wave propaga-
Studies have also been performed to validate variousion is statistically one-dimensional. The plane-mean sound
forms of the acoustic analogy for different flow configura- propagates from the turbulence to the far field in yidirec-
tions by comparing the sound calculated from direct compution. Here plane-mean quantities are defined @9
tations or exact analytical solutions with acoustic-analogy=(1/A,,) [ AXZ(~)dxdz whereA,, is the cross-sectional area
predictions. The emphasis in almost all of these studies is tAormal to they direction. There is no far field in the or z
investigate the sound from large coherent structures rathefirections. The turbulence is forced in time to prevent the
than the effects of smaller turbulence scales on the radiateépid decay of the plane-mean sound seen in the case where
sound. Mitchell, Lele, and Mofhand Colonius, Lele, and the source is a region of decaying isotropic turbulence. The
Moin® study the sound radiated by a compressible coforcing is accomplished without introducing fluctuating dila-
rotating vortex pair and the scattering of sound waves from aation.
compressible viscous vortex, respectively. Colonius, Moin,  Full DNS are performed for two cases with,<1. Here
and Leld® validate the Lilley acoustic analogy for a forced, M, is the turbulent Mach number. Using the Lighthill acous-
two-dimensional, compressible shear layer by comparingic analogy, the scaling of the amplitude of the plane-mean
DNS results with acoustic-analogy predictions. The flowsound with turbulent Mach number is derived. Analytical
studied by Coloniust al'® is not turbulent. Vortex roll-up  results predict that the amplitude of the plane-mean sound
and pairing occur at fixed locationgstationary acoustic should scale with turbulent Mach number as sound from a
sourcey and the sound is dominated by these forced vortexlistribution of dipoles. The turbulence in the problem con-
dynamics. Mitchell, Lele, and Motn validate the Lighthill  sidered is a dipole-type source. The “quadrupole-type” be-
acoustic analogy by comparison with DNS results for axi-havior derived by Lighthill for a region of turbulence limited
symmetric, nonturbulent subsonic and supersonic jets. As iin extent in all three coordinate directions does not apply in
the study by Coloniust al,'® the only acoustic sources con- this problem since the turbulence has limited extent only in a
sidered are the large coherent structures considered to be thiagle direction. These analytical results are derived in Sec.
dominant acoustic sources in supersonic jets. II. Numerical techniques used in the DNS are discussed in
In recent work, Bastiret al* calculate the sound from a Sec. IIl. In Sec. IV, the DNS results are discussed and com-
subsonic turbulent plane jet using the hybrid approach. Irpared with acoustic-analogy predictions. Conclusions are
this work, the jet flow is computed using semideterministicgiven in Sec. V.
modeling (SDM), and the far-field sound is predicted using
Lighthill's acoustic analogy. As discussed by Basiral, a
problem with SDM for this application is that only the large
coherent structures are computed; the smaller acousticaIII}I/' ANALYTICAL RESULTS
active scales of the turbulence are unresolved. Fréyret-  A. Derivation
forms a DNS of a jet with Mach number 0.9 and Reynolds
number 3600 and analyzes the acoustic sources in the jet. mni
Freund’s work, the Lighthill source is computed from the der
DNS results using Fourier methods.
The objective of this study is to validate the Lighthill Pp’ (921-”.
acoustic analogy by comparison with a direct computation of —7— coVep =~ (1)
far-field sound for a three-dimensional, turbulent flow. Vali-

dation using experimental results is problematic since thuhere the Lighthill stress tensofT;; = (pu;u;) — 7ij + (p’
equivalent acoustic source in a turbulent flow is difficult to _C(Z)p,)éij is the difference between stresses in the real flow
characterize completely and includes significant contribugnd stresses in the uniform acoustic medium at rest. plere

tions from multipoles of different orders that invalidate the densityu=(u,v,w) is the unsteady source velocity is
simple scaling laws for the acoustic power and spectra. Thghe ambient sound speed, and

approach in this study is to devise a problem in which the
equivalent acoustic source has well-defined properties, de- au;  au;
rive scaling laws for the radiated sound using the acousti&ij:zr“<eij_ §ekk5ij):r“<§+ %,
analogy, compute the sound in a full DNS on a large domain :
which includes the turbulence and extends to the acoustic fas the viscous stress tensor. In E®), u is the dynamic
field, and validate acoustic-analogy predictions by compariviscosity,e;; is the rate of strain tensor, a®gy is the diver-
son with DNS results. Unlike previous simulatifisof  gence of the velocity field. The superscript prime notation
sound radiated by isotropic turbulence, a nonperiodic direcdenotes fluctuations relative to the ambient quantity. Equa-
tion is allowed so that the far-field sound radiating in thattion (1) is exact for an arbitrary fluid motion. Assuming neg-
direction can be explicitly computed in the DNS. ligible viscous stresses and heat transfer between regions in-
The source is a three-dimensional region of forced turside and outside the flow and low turbulent Mach number,
bulence which is periodic in the and z directions and has the termT;; can be approximated &~ po(u;u;), wherep,
limited extent in they direction. The turbulence is embedded is the ambient density. For the case with no mean floyy,
in a large domain otherwise at ambient conditions. The d0~poui’uj’ .

For a region of unsteady flow in free space which is
ted in extent in all three coordinate directions, Lighthill
ives

2 (?Uka
31“’(9Xk ij

2
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For a source periodic in the andz directions and lim- In this problem,</'l'7=po(u/iu\j>’,ij is dominated by the
ited in extent in they direction, Eq.(1) is plane averaged to N LTS N
give Y aDisp 9 term po(v2)’,yy. Assuming(T)’' ~po(v?)’,,y, Eq. (9) be-
comes
#p)’ 2<p>

G =(T). €

— 1 ) —
(0} (yi0)= 55—z poka(v?) (—kn ). (13
0

Here (-) denotes averages in the&z plane, and T’ _ _ _ o
=P032(Ui'uj/)/¢9xit9xj- Taking Fourier transforms in time, Taking the inverse Fourier transform in time of Ed.3)

Eq. (3) becomes gives
2 T "(y,t 1 . L —~
— (14)
where<p>’(y,m) and(T)'(y,w) are the Fourier transforms Using
of (p)’ and(T)’, respectively, antt,= w/cy is the acoustic
wave number. Here the Fourier transform in time is defined . e\
by —iw(v2>(kA,w)=<W> (—kp,w), (15
f(y,w):J f(y,t)e'“tdt (5 in Eq. (14) and redefining —y/c, to be the new variable
wheret is the retarded time, gives
and '
L (p) (yit+ylco) 1 f e—iwt<m> ke oy
f(y,t)=2—f f(y,we “dw. (6) Po 4mcy ot ArQ
4 (16)

The one-dimensional Green’s function for &) is Equation(16) predicts the plane-mean sound radiated by a

1 low-Mach-number turbulent source which is periodic in xhe
G(y, &)= rkAe'kAly_a- (7)  andzdirections and limited in extent in thedirection. The
far-field sound,(p)’' =c3(p)’, is determined by the space-
so the solution to Eq(4) is time characteristics of the term(v2)'/4t in the turbulent
o 1 _ - source. In Eq(16), the acoustic analogy is written in terms
P (Y, 0)=— f ekalV=E(TY (£, w)dE. (8)  of time derivatives instead of space derivatives. Lighthill
2ikaCo advocates the use of the time-derivative form because the
Retaining terms oD (y 1) for sound in the far field time delay,y/cy, between source emission and observer re-
. ception can be neglected in subsequent analysis.
—= o e'kay f /T\’ ~ikatg 9 For a low-Mach-number source, the change in acoustic
(P (y,0)= 2ikaC) (M'(§we & © wave number for two cases with different valuesMf is

AkA:kAZ_kAl:Aw/CO:AMt<1 FOfAMt<1, Eq (16)

The integral in Eq(9) is the Fourier transform iy of gives

</T7 at frequencyw and wave numberk,

(p)'(y,t+ylcy) [ly <av2> vl s
J(T)’(g,w)e KaldE=(T)' (ky=—kp, ). (10) Po cy\ at cotr Mo). (17
Here the Fourier transform in both tiyedirection and time is  Herelr, v, andty~Iy /vy are the characteristic turbulence
defined by length, velocity, and time scales, respectively, aky

~vy/cq. In obtaining Eq.(17), a self-similar spectrum of

Ak, “’):J Aly.Deilr+e0dydt (1) (av?/at) with |+ andty is assumed.
and B. Predicted scaling of source and sound frequency
For the DNS cases considered, the ratio of the frequency
Aly,t) = 1 j Ak, 0)e kY o0 dk de. (12) ofthe terma(v?)’/4t in the two DNS cases is given by
0} M
Thus, for a given frequency, only wave numbers with wSrz—S'lz M—t’l: My . (18
= wlcy in the source contribute to the far-field sound. This “s2 L2

condition is required because the turbulence is limited ingince the acoustic analogy predicts that the source fre-
extent in they direction; (T) (y,w)—0 for largey. Conse- quency,wpa, IS equal towg, the acoustic frequency, for a
quently, density fluctuations must satisfy the acoustic disperspatially compact source, the acoustic frequencies in the two
sion relationship in the far field. DNS cases are related by
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wp1 Mg C. Radiated acoustic power

= =——=My. 19
wA’Z Mt’2 tr ( )

@Ar An analysis, guided by that of Proudmais performed

to determine the scaling of the acoustic power per unit mass,

Here the source turbulent Mach number ratio M, p  radiated by the turbulence in this problem. Proudman
=M;1/M;,. The subscripts 1 and 2 are used to denote valyerives

ues of variables for the two cases. Note that E§8) and

(19) give the scaling of the source and sound frequency for ~ Pa* eM?, (26)
the specific cases considered in the DNS With=12 and ¢4 sound radiated by a region of isotropic turbulence limited
Co1= Co2- in extent in all three coordinate directions starting from

Lighthill's results for the far-field sound radiated by a
quadrupole-type source.

1. Predicted scaling of source and sound amplitude For a plane wave, the acoustic intensity, the average rate

) ] _at which energy is transported across a unit area normal to
For the spatially compact cases considered, the scaling,q propagation direction, is

of density fluctuations in the turbulence is obtained from the 3 o 5
Poisson equation for the incompressible pressure |— CO<p>rms: (P)ims

Po poCo
Here (- ),ms denotes the root-mean-squamens) value ob-

Using Eq.(20) to estimate plane-mean density fluctuations intained from the time history of the plane-mean quantity.
the turbulent source gives As derived in Sec. Il for the dipole-type source in this

problem

(27)

Ll (20)

Vzpl = _POul,J

(p)s
Lo, (21) %ms:o(mg) (29)

Using Eq.(17) to estimate plane-mean density fluctuations inor

the acoustic far field gives
? (P)2nex pBCEME. (29
(P —O(M? 22) For sound propagating as a plane wave, the radiated acoustic
po (M©). power is

2 2
i i - p
The results of our analysis predict that the plane-mean sound :< >rn;soL “PoCSM?LZ- (30)

radiated by the turbulence in this problem is equivalent to V7 po
sound from a distribution aflipole sources. The single ime  1,q 44¢5| acoustic power per unit mass radiated by a volume
derivative on the right-hand-side of E€L6) is also indica- turbulenceV~L2l+, is
tive of a dipole-type source.

For the purpose of evaluating these scaling predictions, Py CSMt6 v%Mf
considering the statistics of the plane-mean dilatation fluc- PA:pO_VOCTMT' (31

tuations,{d)’, is preferable to considering the statistics of

the plane-mean density or pressure fluctuations because tmaerelT IS tzh? integral length §cale in the propagation d|_rec-
low-frequency drift in the mean pressure complicates thdion, andL® is the cross-sectional area normal to the direc-
computation of p)’ and(p)’. A similar low-frequency drift tion of plane-wave propagation. Equati(81) can be written

in the far-field mean pressure was observed by Coloniu.én Ferms of thesmean rate of turbulent energy dissipation per
et al2 and Mitchellet al!! The plane-mean dilatation fluc- UMt Mass.e~vy/ly

tuations are related to the plane-mean density fluctuations by P, 6|v|t3_ (32
i Equation(32) gives the total acoustic power per unit mass
(d)'= g@)'- (23)  radiated by a dipole-type region of turbulence.

From Eq.(21), in the turbulent source . NUMERICAL METHODS

, A. Governing equations
<d>S_ 3 . .
.~ OMp). (24) The equations solved in the DNS are the three-
0 dimensional, compressible, unsteady Navier—Stokes equa-
From Eq.(22), in the far field tions written for an ideal, Newtonian fluid. The governing
equations are normalized using reference quantities which
(d)p are denoted by subscri® Dimensional quantities are de-

_ 4
do =0(My). (25 noted by superscript The nondimensional density, velocity,
and pressure are=p*/pg, u=u*/ug, and p=p*/pg,
Heredy=cq/l+. where pR=pRu§. The nondimensional temperature Ts
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=T*/Tg, whereTr=pgr/(prRy), andRy is the specific gas Two cases:
constant. Nondimensional length and time arex*/Lg, M = 0.075
andt=t*/tg. The equation of state for an ideal gasps
=pT.

In nondimensional form, the continuity equation is

periodic

source region of forced
isotropic turbulence

p 0
@»,. 2
at = ax

and the conservative form of the momentum conservation el . \.
equation is L =68 ’
id

- q
ﬁ( u-)+i( u-u-):—i—Jr— (34) 64%x 170 gri ’:
gt Po T ax PR T T M2 ox T Re ax; !

(pu)=0, (33

07p 1 (?Tij 1
\/;n
where FIG. 1. Schematic of acoustic wave propagation problem for three-
_ %—F% _z %5 - dimensional source of forced turbulence.
T H l?Xj aXi 3 K an v

rather than four are required for each flow-field variable;

The convective term in the momentum conservation equatioﬂwerefore the memory required is significantly reduced

is written in the equivalent nonconservative form

1%

_ 1 C. Initial condition
ox; (puju;)= 2

. (36

Jd Ju; J
i
Ujoo— (pUp) +pui—=+ ——(puiu;)

Yox; toxg o ax The initial source is a region of fully developed, three-
As discussed by Feiereise al,** discretizing this noncon- dimensional, isotropic turbulence generated in a previous
servative form of the momentum equation using symmetricSImU|a'tI0n using the algorl'thm discussed in Sarkar and
spatial differences improves the discrete conservation progHussaint and used in Whitmire and SarkérThe algorithm

erties of the numerical scheme. The nondimensional energ?}‘as originally developed to investigate compressibility ef-
conservation equation is ects in isotropic turbulence by Erlebactetral 1® and homo-

geneous shear turbulence by SaRafhe initial turbulence
PP M Y i(K£> has microscale Reynolds number,R84. The skewness of
at - lax; 7P dx;  ReProx; | = dx; duldx is —0.45 in the initial field, in agreement with values

obtained in previous experiments and simulations of nonlin-

_ 2
+ A% 1)MR¢ (37)  early evolving isotropic turbulence. The geometry of the

Re ’ source and acoustic far field is shown in Fig. 1. The turbu-
where lence is c_entered ab(_)ylt_= Ly/2, \_/vher_eLy is the length of the
computational domain in the direction.
dU;
®= T”a_xj’ @9 Boundary conditions
is the viscous dissipation function. In EQ7), Pr=vg/agis Boundary conditions are periodic in theand z direc-

the reference Prandtl number. In Eq84) and (37), Re tions and nonreflecting in thg direction. Since the plane-
=uglr/vg is the reference Reynolds number, aidi; mean sound propagates from the source to the far field in the
=Ur/\yRyTr is the reference Mach number. Heyds the Yy direction, truncation of the open physical domain and
specific heat ratiour, vgr, ar, and kg are the reference implementation of nonreflecting boundary conditions is re-
dynamic viscosity, kinematic viscosity, thermal diffusivity, quired. The nonreflecting boundary conditions are imple-
and thermal conductivity, respectively. All reference quanti-mented using the perfectly matched layeML) buffer zone
ties are constant in space and time. The assumption of cotechnique introduced by Bereng@rfor solution of Max-
stant fluid properties is appropriate since the effect of anyvell's equations in electromagnetics. This technique has
temperature gradients on the fluid properties is negligible fobeen used in fluid dynamic applications by researchers in-
the low-Mach number flows considered. cluding Hif! and Hayderet al?? In the PML method, the
equations solved are designed so that outgoing waves satis
fying the linearized Euler equations are damped exponen-
tially to zero in the buffer regions. The PML approach allows
use of periodic derivative schemes to calculate spatial de-
Both first and second spatial derivatives in #ye, andz  rivatives in they direction.
directions are calculated using sixth-order compact Although these boundary conditions minimize reflec-
schemed® The solution is advanced in time using a low- tions, they do not completely eliminate spurious high-
storage, third-order Runge—Kutta schelhelhis scheme frequency waves. High-frequency oscillations are generated
provides sufficient accuracy while minimizing storage re-when the pressure waves generated during the initial tran-
quirements. In the low-storage scheme, only two arraysient exit boundaries normal to thedirection. A suitably

B. Discretization
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small hyperviscosity dissipation term is added in the Navier-sound is introduced by the forcing method; therefore, spu-
Stokes equations to damp these high-frequency waves. Th®us noise that would dominate the predicted dipole-type
hyperviscosity term is proportional to fourth spatial deriva-sound is avoided.

tives, and therefore filters any high-frequency oscillations A region of forced turbulence which meets these require-
which may contaminate the solution in the interior of thements is obtained by forcing the incompressible component
computational domain specifically and strongly. The hyper-of the velocity field,u', so that the incompressible energy
viscosity term for the conservation equations given in Secspectrum is invariant with time for a range of forced wave

A is numbers. The velocity field can be decomposed into two
4 4 4 componentsp=u'+uC®, where the incompressible compo-
d*q J*q J*q L . : o
— e AX4F JrAy4F +Az4a— , (39 nent,u’, is solenoidal and contains all the vorticity
X y z
V-u'=0, Vxu'=Vxu, (42)
where
and the compressible component, contains all the dilata-
p tion but none of the vorticity,
pu
C_ C_
q=| pv (40) V-u*=V-.u, VXu~=0. (42
pw To avoid the introduction of significant dilatation® is not
p forced. Only the incompressible velocity componanit, is

The tunable coefficientz=0.25, in the hyperviscosity term forced- The range of forced wave numbers kigi<k

is chosen to be sufficiently small so that the energy-gkmax' Here i.(mi”:A'.’ Kmax=12, andk; is the radial wave
containing and dissipation ranges are not significantly af"umber. In this forcing scheme, the low-wave number scales
fected. The damping effect of the hyperviscosity on the tur°f the flow that are frequency matched with the far-field
bulence is smaller than that of the physical viscosity forSound are not forced directly sinégn>ka=w/Co.
length scales with>2Ax and is larger than the physical WO computational grids are required to efficiently
viscosity for smaller length scales. The boundary conditiof™Plement the forcing scheme. One grid is the stretched grid

scheme is successful; no significant reflections are observélfScribed in Sec. IlIE. This stretched grid containg’ 64
at the boundaries normal to tiyedirection. X 170 points and extends from the turbulence to the acoustic

far field. The second grid is a smaller uniform grid contain-
ing 64x128 points with spacingAx=Ay=Az=27/64.
E. Grid stretching The uniform spacing on the smaller grid is the same as the
) uniform spacing in the turbulence on the larger stretched
To resolve the disparate length scales of the turbulencgyiy The smaller grid contains the entire turbulent source.
and the acoustic field while minimizing the number of grid = The jncompressible velocity field is forced at the end of
points, the grid is stretched in thedirection. The grid is  gach time step. The total velocity field is first transferred
designed so that the spacing is uniform vl =ain the  fom the stretched to the smaller uniform grigy>u*. The
turbulent source, stretched between the source and into the,|qcity field on the smaller grid is truncated and damped so
far field, and uniform again with\ynq,=b in the far field. —x o 4t the boundaries normal to tiyedirection to obtain
The maximum stretch factor=1.05, is sufficiently small o he periodic boundary conditions required to perform Fourier

that no significant numerical dissipation is introduced by thesnsforms iny. The total velocity field on the smaller uni-
grid stretching. Here is the ratio of adjacent intervals be-

tween grid points. The grid has uniform spacifgx=Az
=a, in the x and z directions. Discretization on a uniform ~ 3 c ] ) o ;
grid which extends to the acoustic far field would require aParts, u* —u*’,u*~. The incompressible velocity field is
642x 700 grid containing almost three million grid points forced, u*'(k,)—u*L(k;). At the end of each time step,
instead of the more reasonable?84170 stretched grid used. G;'(kr) with k, in the range of forced wave numbers is mul-

tiplied by a constanB(t). The value of8 is determined from

the condition that the turbulent kinetic energy must be the
F. Forcing scheme same at the beginning and end of each time step. Thus, the

Preliminary studies show that the amplitude of the planenergy lost due to viscous dissipation is replenished by the
mean sound decreases too rapidly to allow statistical analysfgrcing. The forced and unforced incompressible velocity
for the case where the source is a region of decaying turbuields, u*'F and u*', are then transformed from spectral to
lence. A unique forcing scheme is devised to maintain enphysical space and transferred to the larger stretched grid.
ergy in the turbulence so that predictions of the Lighthill The total velocity field in physical space is calculateduas
acoustic analogy for the statistics of the plane-mean souneu®+ u'F. Note thatu® is not altered by the forcing scheme;
can be evaluated. In this forcing scheme, an energy spectruno spurious dilatation is introduced.
typical of fully developed isotropic turbulence is maintained. ~ The unique forcing scheme developed and implemented
The turbulence is forced so that the source turbulent Maclis extremely successful. For each of the two cases consid-
number is constant in timéafter an initial transient No ered, the source turbulent Mach number after the initial tran-
significant dilatation (larger amplitude “monopole-type” sient, M, is constant in time. No significant dilatation is

form grid is then transformed into spectral spané,—ﬁ;,
and decomposed into its incompressible and compressible

P
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FIG. 2. Contours of vorticity magnitude and dilatation fluctuations generated by a three-dimensional region of forced turbulence. All figurstargiae in
neous levels at” =338 forM,;; =0.125.(a) and(b) are in the turbulence, ar(d) and(d) are in the acoustic far field. It) and(d), the sound is propagating
downward towardy * =0. The computational domain extends frgrh=0 to y"=Ly+= 171, and the turbulence is centered abpli= L;/2.

introduced either through the two interpolations between thesound scales as the eddy turnover timg:=8 for the case

stretched and uniform grids or during the forcing with M, =0.125, andn,=5 for the case withM;,
=0.075. The acoustic wavelength is resolved with a mini-
IV. NUMERICAL RESULTS mum of 10 points per wavelength. In this section, nondimen-

sional variables are as defined in Sec. lll A. In Figs. 2—8, the
vorticity, dilatation, velocity, length, time, and frequency as
The two cases considered have turbulent Mach numbe@efined in Sec. IlIA are further normalized using length
M s, =0.125 andM;,=0.075. Here the subscripts used to ~ scalelt and velocity scale,. These normalized quantities
denote final, steady values after the initial transient. Each otre o =w/(co/l7), d*=d/(co/l7), v =vicy, Y*
the two cases requires 30 MW of memory and 150 CPU=Y/lT, andZ"=2z/I1, t*=t/(It/co), andf " =f/(cy/l7).
hours on the Cray C-90. In each case, the solution of the Figure 2 shows contours of fluctuating vorticity;, and
three-dimensional, compressible Navier—Stokes equations flatation, d, in the turbulence and acoustic far field at time
computed for 8200 time intervals dft=0.0072, and a time t" =338 after the initial transient has exited the computa-
series of lengtin T, with n=35 is used to evaluate the sta- tional domain. Figures(2) and Zb) are in the turbulence,
tistics of the turbulence and the sound. Heris the number and Figs. 2c) and 2d) are in the acoustic far field. The
of time periods for each case, aig is the length of a single figures shown are for the case wilh;;;=0.125. Contours
time period. The time period of both the turbulence and theare qualitatively the same for the case with;,=0.075.

A. DNS results for the flow evolution
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During the initial transient, the turbulence spreads in 200 800 ¢ 400 500
time asb~ Jv¢t, wherevt~I;vt is the eddy viscosity. As
discussed in Sec. lll F, the dimension of the turbulence in the
y direction is constrained to be no larger than the dimension
of the smaller grid used to force the turbulence. After the 8.5E-05
initial transient, the extent of the turbulence in theirection . B0E0S
is b"=b/l+=32. The turbulence is decorrelatedxny, and & 25E05¢
z Integral length scales in the y, andz directions ard, N;\ 2.0E-05 ¢
=|,=1,~0.4. The ratio of the integral length scale to the ~ 15E-05}
extent of the turbulence in the y, andz directions isl, /L 1.0E-05
=0.06,1,/b=0.03, andl,/L=0.06. HereL=L,=L, is the B.0E-06 { "+
dimension of the computational domain in thendz direc- 22809
tions. The Taylor microscale ix*=\/I7=0.35. Herel; '
=ly,ly,l;. The magnitude of all components of the Rey-
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FIG. 5. Time-rms plane-mean dilatation in the turbulent source.

dimensional, bounded region of forced turbuler@gTime history(b) Fou-
FIG. 4. Time evolution of turbulent Mach number in three-dimensional rier transform in time(unscaled (c) Fourier transform in timgnormalized
source of forced turbulence. using acoustic-analogy predictionglere My =My /My .
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Although the incompressible field in the turbulence is T0E-050  } I 1 e M, = 0.075
constrained in theg direction, the compressible field has no «< B8OE-06
such constraints. The acoustic wavelength is determined by S 6.0E06
the requirementk,=w/cy. The ratiol/A, for the cases =~ 4.0E-06 |
with M;;=0.125 andM;,=0.075 is 0.044 and 0.028, re-
spectively. Sincd/\,<1, the source is spatially compact. 2OR08 /X
The two buffer regions used to implement the nonreflecting °-°E+°g.0‘(; = "0_'6'5'"""""0.10 o1e
boundary conditions extend frony®=0-27 and y* fr
=144-171. These buffer regions are not shown in Fig. 2. As
shown in Fig. Zc), vorticity fluctuations are essentially zero
outside the turbulence. Figuréd? shows that the acoustic ~ ©) 14E-05¢
fluctuations propagate to the far field. The increase in length 1.26-:05 N . m“:g:gg
scales from the turbulence to the acoustic far field can be Iy 10E-05 N !
seen by comparing Figs(l® and 2d). S BOE06-
Figure 3a) shows the time evolution of the plane-mean ?cf 6.0E-06 -
dilatation at two planes in the acoustic far field for the case ~  4.0E-06 . ¥
with M ¢, =0.125. Figure @) shows the curves in Fig.(8 2.0E-06 L/ ELESE T WA
with the curve fory,>y; shifted byd/c, whered is the 0.0E+00 £ T o e VoL
distance in the direction between the two planes. As shown 0.00 005 e (M-g"‘) 015
tr

in these figures, the plane-mean sound propagates as a planc
nge from the tu':bUIence to the aCOUStIC. far field. Th_e am_FIG. 8. Plane-mean dilatation in acoustic far field generated by three-
plitude of the far-field, plane-mean sound is not a function ofgimensional, bounded region of forced turbuler@ Time history(b) Fou-

y for this case with one-dimensional wave propagation. Bothier transform in time(unscaledi (c) Fourier transform in timénormalized

the shape and amplitude of the plane-mean sound are neaH§ng acoustic-analogy predictionsiereM =M1 /My .

identical (but shifted in time byd/cy) at different planes in

the acoustic far field. The result that the sound waves travel ) . o _ o
with the speed of sound indicates that spurious numericarL"b(t) is constant in time both during and after the initial
dispersion is insignificant. The transition from the near fieldtransient.

to the far field is identified as the location where the shape

a_md amphtqde of the pIang-mean sound Igecome nearly 'de%'. Comparison of acoustic-analogy predictions with

tical at various observation planes. This occursy&X o DNS results

=0.5. Figures &) and 3b) also show that no significant

reflect!ons in the p!ane-mean sound are gen_erated at the noR- £ auation of scaling predictions for Lighthill

reflecpng poundarles. Far">59, any_reflecnons from the source term in turbulence

domain exit would have propagated into the test region and

would be seen as differences in the shape and amplitude
P P ?d>é,rms in the turbulent source for the two DNS cases. The

the plane-mean sound at different planes. : ation | lcul .
Figure 4 shows the time evolution of the source turbu-iMe-rms dilation is calculated as a running average

lent Mach number for the two simulations. After an initial 1 [t

transient, the turbulent Mach number for each case and, (d)/mdt)= \/TJ (d)’(y,t)dt. (43
therefore, the turbulent Mach number ratioM, 2

=Mys1/M1,=1.67, is constant in time. The decreaséMpy  After an initial transient(d)s s is constant for each case.
to its final steady value during the initial transient is due toTo check the prediction of Eq24) for the scaling of dilata-
the increase in the volume of the turbulent region; the totation fluctuations in the turbulence{,d)’S/dO=O(Mt3), the
kinetic energy in the turbulent region with volumé(t) scaling exponent defined as

f Figure 5 shows the time-rms plane-mean dilatation,
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IN({(d)&; md (d) & e varying amplitudes are present in the plane-mean sound. The
Xs= In(MY ™ ) : (44 amplitude of(d), is larger for all frequencies for the case
RER with higherM,; . The dominant frequency is also higher for

is determined from the curves in Fig. 5. Analysis predictsthe case withVl,;;=0.125 compared to the case with,
xs=3.0, and DNS results gives=3.1. Agreement between =0.075.

the analysis and the DNS results is good. Note that the time-  Figure §c) shows the curves in Fig.(8 normalized
rms quantities include contributions from the many frequenusing predictions of the Lighthill acoustic analogy for the
cies present in the turbulence. scaling of the amplitude and frequency of the far-field,

Figure 6 shows the time evolution G?(\{Z)'/ﬁt for the  plane-mean sound with turbulent Mach number. The normal-
two DNS cases. A range of frequencies wrgh varying ampll-ized amplitude is(/d\);\/Mz;“, and the normalized frequency
tudes are prese_nt in the turbul_ence. The tw_ne SEeries for tl’ﬁ% fM} . As predicted by the Lighthill acoustic analogy, this
case with the higheM; has higher fluctuation amplitude

g ) o £t _ ity th normalization collapses the spectra as shown in Fig), 8
and contains a wider range of frequencies. To qzu'f‘”t'fYt €Sfhdicating the validity of the analytical predictions that the
observations, the Fourier transform in time &iv<)’'/dt is

i ) frequency of the plane-mean sound scalesdvigs and the
obtained for each case. Plots of the Fourier transform of th%mplitude scales adl? for a range of frequencies
t .

source termﬁ</v?>’/&t(y,f ), as a function of frequency,

are shown in Fig. @). Each curve shown is an average of 3. Evaluation of scaling predictions for radiated
the Fourier transforms at five planes in the turbulent source,coystic power

Figure 8b) shows that a range of frequencies with varying . . . .
amplitudes are present in the Lighthill source term. The am-, ;’he gredlclfecd fscallndg' oflthte radiated gciuslf/'lcg poI\ENer de-
plitude of ¢(v?)'/at is larger for all frequencies for the case [glze)] ilg eveaﬁﬁate q 3;‘; Ita(z.\el-DKlpSe rsec')strlfs ’ACoembti'n i[n q.E <

with higher M; . The dominant frequency is higher for the 9 : 9 EGS.

case withM;;=0.125 compared to the case witd,(, (30 and(32)_, the acoustic power per unit mass of the turbu-
=0.075. lent source is

Figure Gc) shows the curves in Fig.(6) normalized 5 <p>r2ms
using the predicted scaling with turbulent Mach number. The = Pa=a.eM{=

normalized amplitude i8</\/2\>’/¢9t/M*3 and the normalized

: (46)
paCol T
frequency istM? . Here M = Mtflt/',\,itf is M* =1.67 for where e, is a constant independent of turbulent Mach num-
r- T r . . . . . .
the case WithVl,,=0.0.075 andM % =1.00 for the case with €'~ The right-hand-side of E@46) is rewritten in terms of

M,,=0.125. The normalization collapses the spectra a$d)ms instead of(p)ms because, as discussed in Sec. IIB,
shown in Fig. €c), indicating the validity of the analytical the Iow-fr_equency drift in the mean pressure complicates the
predictions that the frequency of the source term scales &2MPutation okp)ms. So, Eq.(46) becomes
M., and the amplitude scales B’ ()2, 3+
vt (47)

2. Evaluation of scaling predictions for the radiated T
far-field sound To check the predicted scaling of the radiated acoustic

Figure 7 shows the time-rms plane-mean dilatation,POWer for a dipole-type source of turbulence, the ratio

(d)a ms» at a plane in the acoustic far field for the two DNS @ /ag is evaluated using the DNS results. Herg and

cases. The time-rms value is calculated as in the turbulerftez @€ the proportionality constants for the cases with
source using the definition in E¢43). After an initial tran- M1 =0.125 andM;,=0.075, respectively. From the DNS

sient, (d)x ;ms IS constant in time. To check the prediction results
given by Eq.(25) for the scaling of dilatation fluctuations in ag
the far field,(d)x/dy=0(M}), the scaling exponent defined o, -1z (48)

as
Thus, the quantityr, does not vary significantly with turbu-

lent Mach number in the DNS. These results verify the pre-
dicted scaling of the radiated acoustic power per unit mass,
P o er, for a dipole-type source.

Xp= In(<d>,&l,rm4<d>,&2,rms)
8 IN(My1/Myg2)

is determined from the curves in Fig. 7. Analysis predicts
Xp=4.0, and DNS results give,=4.2. Agreement between
the DNS results and the acoustic-analogy predictions i&/- CONCLUSIONS

good. The ability of the Lighthill acoustic analogy to predict
Figure 8a) shows the time evolution dfd), at a plane  the sound radiated by a three-dimensional region of turbu-
in the acoustic/felr field. The Fourier transform in time of the|ence is evaluated by comparing DNS results with acoustic-
far-field sound{d)A(y,f ), as a function of is shown in Fig. analogy predictions. In the DNS, the three-dimensional, un-
8(b). Almost identical spectra are obtained at any plane irsteady, compressible Navier—Stokes equations are solved on
the far field since both the amplitude and shape of the planea large computational domain which includes the turbulence
mean sound are nearly identicddut shifted at different and extends to the acoustic far field. The turbulence is lim-
planes. Figure @) shows that a range of frequencies with ited in extent in one coordinate direction and is periodic in

(49)
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