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Abstract

Internal gravity waves are a key process linking the large-scale mechan-
ical forcing of the oceans to small-scale turbulence and mixing. In this
review, we focus on internal waves generated by barotropic tidal flow over
topography. We review progress made in the past decade toward under-
standing the different processes that can lead to turbulence during the gener-
ation, propagation, and reflection of internal waves and how these processes
affect mixing. We consider different modeling strategies and new tools that
have been developed. Simulation results, the wealth of observational material
collected during large-scale experiments, and new laboratory data reveal how
the cascade of energy from tidal flow to turbulence occurs through a host
of nonlinear processes, including intensified boundary flows, wave break-
ing, wave-wave interactions, and the instability of high-mode internal wave
beams. The roles of various nondimensional parameters involving the ocean
state, roughness geometry, and tidal forcing are described.
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Barotropic tide:
oscillatory motion that
is in phase across the
entire water column
and driven by lunar
and solar gravitation
forces

1. INTRODUCTION

Internal gravity waves are ubiquitous in the stratified, rotating ocean. Similar to the more familiar
surface waves, internal waves transport momentum and energy over large distances in the open
ocean. However, a crucial difference between the two types of waves is that internal waves span the
entire vertical stratification of the water column. The linear dynamics of these waves is distinctive
(see the sidebar The Dispersion Relationship for Internal Waves and Figure 1). When nonlinear
effects become sufficiently strong, wave energy cascades into instabilities and turbulence. With
the exception of waves in the inertial band, which are predominantly wind forced, oceanic internal
waves are mainly generated by the tide oscillating over rough features on the ocean floor, such as
ridges, seamounts, and canyons. Topographic waves can have much larger vertical and horizontal
fluid velocities in the deep ocean than the generating barotropic tide, making them susceptible to
nonlinear effects. An extreme example is provided by the South China Sea, where powerful waves
with observed vertical displacements up to 500 m and horizontal fluid velocity up to 1.5 m/s are
generated at the double-ridge system of Luzon Strait and flux energy away at a rate of approximately
15 GW (Alford et al. 2015).

Through their associated velocities and turbulence, internal waves impact ocean processes cut-
ting across a large swath of spatial and temporal scales, as well as many subdisciplines. These

THE DISPERSION RELATIONSHIP FOR INTERNAL WAVES

Linearizing the Euler equations under the Boussinesq approximation in a frame rotating at angular velocity f/2
(half the Coriolis frequency), and assuming constant stratification N (with N the buoyancy frequency or the
Brunt-Väisälä frequency), yields a wave equation that admits solution in the form of plane waves. The special case
N = 0 gives rise to what is known in the Russian literature as the Sobolev equation (Sobolev 1955). In the frame
of reference where y-z is the plane that contains the wave vector k = (0, l , m) = K (0, cos �, sin �), the dispersion
relationship linking frequency ω to the wave number is given by

ω2 = N 2 cos2 � + f 2 sin2 �.

Unlike standard waves, where the frequency is a function of the magnitude K of the wave number, the internal wave
frequency is set by the angle of propagation. A simple manipulation shows that the group velocity is orthogonal to
the phase velocity. Hence, � is the angle of the phase velocity with the horizontal plane and the angle of the group
velocity with the vertical axis. Given the invariant nature of the equations under rotations around the vertical axis,
the group velocity of internal waves generated by a pointwise source oscillating at frequency ω is constrained to lie
on a cone (the group velocity cone; see Figure 1) whose vertex is centered on the source and whose opening angle
is 2�, where

tan2 � = N 2 − ω2

ω2 − f 2
.

Note that the above equation requires that f ≤ ω ≤ N . Because f increases with latitude, propagating waves with
periods longer than 12 h are confined to a latitudinal band. Thus, the internal M2 tide (period 12.4 h) is confined
between −74.5S and 74.5N, whereas the internal K1 tide (period 23.92 h) exists between −30.1S and 30.1N. In
most oceans, N is greater than most tidal frequencies, with the exception of a few very weakly stratified abyssal
regions. The angle of the phase line (also the group velocity) with the horizontal plane is α = π/2 − � and satisfies

tan α =
√

ω2 − f 2

N 2 − ω2
= ω

N

√
1 − ( f/ω)2

1 − (ω/N )2
.
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Figure 1
Schematic illustration of the geometry of linear internal wave propagation. Waves originating from a
pointwise source at the apex of the cone radiate energy along the surface of the cone. The wave number k
and phase velocity c p are normal to the surface of the cone. The group velocity, cg, is parallel to the surface
of the cone.

ocean processes bear on shipping, underwater navigation, renewable energy, offshore oil drilling,
fisheries, and weather, as well as present and future climate states. Turbulent mixing driven by
internal waves was long ago recognized as one of the key factors that control the meridional over-
turning circulation (see, e.g., the review of Wunsch & Ferrari 2004, and references therein), and
predictions of ocean circulation are sensitive to both the magnitude and vertical distribution of
wave-driven mixing (Saenko 2005, Jayne 2009, Melet et al. 2013). On much shorter timescales,
these waves transport nutrients, pollutants, and sediments and thereby impact local biology
(Leichter et al. 2003, Wong et al. 2012) and geomorphology (Cacchione et al. 2002,
McPhee-Shaw 2006). Through their structural loads, internal waves present hazards for offshore
structures and submerged vehicles (Osborne et al. 1978).

Topographic internal waves are a key contributor to the diapycnal mixing necessary to maintain
the observed oceanic stratification in the abyssal ocean (deeper than 1,000 m) (Wunsch & Ferrari
2004). A simple one-dimensional (1D) balance between upward advection of cold water formed at
high latitudes and downward diffusion of heat yields a basin-averaged value of thermal diffusivity,
KT ∼ 10−4 m2/s (Munk & Wunsch 1998), approximately three orders of magnitude larger than
the molecular value. Observations of such large values of KT in the abyssal ocean are limited
for the most part to water over rough topography. Tidal forcing is the crucial energy source for
the enhanced diffusivity. Approximately 1 TW is converted globally from the barotropic tide to
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internal waves at rough deep topography according to satellite altimeter data (Egbert & Ray 2001).
Some of the wave energy dissipates over complex topography during generation, leading to local
turbulent mixing, while the remainder radiates away, providing a reservoir for remote mixing
during wave propagation, interaction with ocean currents, eddies, and nonuniform stratification,
as well as reflection at other topographic features.

We review progress made during the past 5–10 years in characterizing the nonlinear breakdown
of topographic internal waves, in quantifying the resulting turbulence, and in connecting small-
and large-scale processes. Some recent reviews in this journal have touched on issues relevant to
the present discussion, notably Garrett & Kunze (2007) on generation process with an emphasis
on linear theory and Ivey et al. (2008) on mixing in stratified flow by shear-driven turbulence. The
case of internal solitary wave (ISW) breaking on the continental shelf/slope has been extensively
reviewed by Lamb (2014) and is therefore excluded here.

2. GENERATION OF INTERNAL WAVES BY TIDAL FLOW

When a surface tide with maximum velocity U0 and frequency � oscillates over a topographic fea-
ture with height h and length 2l , it sets up an oscillatory vertical velocity with maximum amplitude
U0dh/dx at the boundary. This oscillatory boundary forcing leads to propagating internal gravity
waves if f < � < N , where f is the Coriolis parameter and N is the buoyancy frequency. The
wave phase line (also group velocity) makes an angle α with the horizontal plane (see the sidebar
The Dispersion Relationship for Internal Waves). Typically, tidally forced waves have �/N � 1
because the tidal forcing has a period of several hours (e.g., the M2 tide with a period of 12.4 h),
much larger than the buoyancy time period, which, with some exceptions, ranges between 15 min
and 1 h. This leads to tan(α) � (�/N )

√
1 − ( f/�)2 ≤ �/N . Thus, a wave with M2 tidal period

propagates at a shallow angle in the midwater column (e.g., 4–8◦ when N = 0.002–0.001 s−1). If
the barotropic tide is subinertial (� < f ) as can occur at sufficiently high latitude, internal waves
cannot propagate (e.g., the M2 tide becomes subinertial for latitudes exceeding 74.5◦).

Table 1 lists the nondimensional parameters that govern wave generation by a topographic
feature, with the excursion number (Ex), steepness (γ ), and local slope criticality (ε) being par-
ticularly important. The excursion number, Ex = U0/�l , is the ratio of net fluid advection by
the barotropic tide to the topographic length and is a measure of nonlinearity. The parameter
Ex is generally small for large generation sites but can be large for smaller topographic features.
An M2 tide with an amplitude of 0.2 m/s has an advection length scale, 1.4 km. Topography
with l = 100 km corresponds to a small Ex = 0.014, whereas a small feature with l = 1.4 km
corresponds to Ex = 1. The steepness parameter is γ = (h/ l)/ tan α and distinguishes among
subcritical (γ < 1), critical (γ = 1), and supercritical (γ > 1) slope. Steep topography refers to
γ ≥ 1 (i.e., in some locations the average slope angle is larger than the wave propagation angle, α).
Because α ∼ 3–8◦, ocean roughness can be dynamically steep even with a geometrically moderate
slope.

2.1. Linear Theory

Linear theory for wave generation by the oscillating tide has been extensively reviewed by Garrett
& Kunze (2007). Briefly, Bell (1975) examined the problem using the so-called weak topography
approximation based on a shallow slope, γ � 1, and topography height much less than the vertical
wavelength of the internal tide. The theory has been developed further by others (e.g., Llewellyn
Smith & Young 2002, Pétrélis et al. 2006) to address more realistic cases with steeper slope and
larger topographic height. Linear theory gives the conversion from barotropic to internal wave
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Table 1 Dimensional and nondimensional parameters of internal wave generation by tidal flow
over an obstacle

Parameter Symbol (unit)

Geometry Obstacle height h (m)
Obstacle length 2l (m)
Critical slope length 2lcr (m)
Local slope angle β (◦)

Tidal forcing Amplitude U0 (m/s)
Frequency � (s−1)

Environment Buoyancy frequency N (s−1)
Coriolis parameter f (s−1)
Wave propagation angle α = atan

√
�2− f 2

N 2−�2 (◦)
Ocean depth H (m)

Fluid properties Kinematic viscosity ν (m2/s)
Thermal diffusivity κ (m2/s)

Nondimensional Excursion number Ex = U0/�l
Topographic steepness γ = h/l tan α

Relative height h/H
Rotation �/ f
Slope criticality ε = tan β/tan α

Topographic Froude number Frh = U0/N h
Fraction of critical slope lcr/ l
Reynolds number Re = U2

0 /�ν

Reynolds number (response) Re = U δ/ν

Flow response Horizontal fluid velocity U
Vertical scale δ

Reynolds number U δ/ν

Gradient Richardson number Ri = N 2δ2/U 2

Horizontal phase velocity of wave c p

Wave Froude number Frw = U/c p

Baroclinic or internal
tide: oscillatory
motion that has
vertical structure
owing to vertical
density stratification;
an internal wave forced
by the barotropic tide
flowing over bottom
topography

energy (also the radiated power per unit span of the obstacle in the linear, inviscid approximation)
as

C = C̄ρ0U2
0 h2

√
N 2 − �2, (1)

where the proportionality coefficient C̄ depends on the geometry of the topography through
nondimensional parameters listed in Table 1. In particular, C̄ is much larger for steep obstacles
with γ > O(1) than for obstacles with gentle slope. The expression for C derived from linear
theory is important both as a quantitative estimate (likely an upper bound) of the parameterized
wave energy flux in global climate models and as a scaling law for the dependence of energy
conversion on tidal amplitude, obstacle height, and stratification.

2.2. Nonlinearity

Let us consider the near-field wave pattern generated at a symmetric 2D obstacle shown in
Figure 2. The subcritical case with gentle slope shown in Figure 2a,b is one where the near
field is approximately linear: The isopycnals do not steepen, and the baroclinic velocity is not
large. Note that the subcritical slope is gentle but appears not to be so in the figure because of the
different normalizations used for topographic height and width. When Ex � 1, the wave field
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Figure 2
Flow response at a model triangular obstacle to an oscillating tide. Contours of streamwise velocity U/U0 are shown in color, and
isopycnals are represented as gray lines. The top three rows show the phase of maximum positive (rightward) velocity (φ = π ), and the
bottom row shows zero (φ = π/2) velocity when the flow reverses from down- to upslope. Note that the horizontal and vertical axes are
normalized with the corresponding obstacle length scales so that the obstacle slope is distorted to 1:1 in the plot from a smaller value.
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Internal wave beam:
an internal wave field
obtained by the
superposition of plane
waves with the same
frequency and wave
numbers k whose
orientation is fixed (set
by the frequency) and
varying magnitude

is nearly symmetric at all phases; furthermore, for subcritical topography, the wave energy leaves
the obstacle in the form of symmetric beams that make an angle α with the horizontal plane, and
the wave energy resides in the fundamental frequency, �. When the steepness γ increases to 1 and
beyond in this low-Ex regime, the internal wave beam becomes thinner and the boundary fluid
velocity, Ub, intensifies. With increasing Ex, the beam pattern shifts to the lee of the obstacle,
and the beams lose their coherence, as seen for the cases with Ex = 0.4. When Ex ≥ O(1), lee
waves are launched during the high-velocity stage, the oceanic analog of mountain waves. The lee
waves have wavelength 2l and frequency ω = U0π/ l that radiate if f < ω < N . Nonlinear effects
can occur in the regime of small topographic Froude number, Frh = U0/N h < O(1). U0/N
is important from energy considerations given that, in a stratified fluid, a particle with velocity
U0 has sufficient energy to overcome the potential energy barrier of vertical displacements up to
U0/N .

In the case of a steady current with Frh < O(1), there are nonlinear hydraulic effects
(Baines 1995): blocking of flow in the bottom layer deeper than O(U0/N ) from the crest, accel-
eration of the flow at the crest leading to a thin fast-moving layer with Fr = O(1), and transition
to subcritical flow in the lee through a hydraulic jump. Flow acceleration at the ridge crest and
downslope jets also occur in oscillatory flow in the case of steep, supercritical topography (Winters
& Armi 2013) and are illustrated in Figure 2b for Ex = 0.4.

Frh and Ex are not independent parameters (e.g., Frh = Ex/γ for a triangular obstacle). For
general topography, one finds Frh ∼ Ex/γ if the local slope angle is mostly O(h/ l); therefore,
tidal flow in the regime of Ex < O(1) and γ = O(1) admits the possibility of a nonlinear hydraulic
response at the upper portion of the ridge. Using 2D nonhydrostatic simulations of tidal flow
over Kaena Ridge (a tall steep obstacle), Legg & Klymak (2008) showed that lee waves form, are
subsequently released when the flow reverses from down- to upslope, and lead to steep isopycnals
as they propagate upslope. Winters & Armi (2013) introduced an inner horizontal length scale,
lin, of the unblocked upper region of the obstacle that corresponds to the vertical distance Uc/N
below the ridge crest. Here, Uc > U0 is the accelerated crest velocity. The inner excursion
number was defined as Exin = Uc/(�lin), and it was hypothesized that a nonlinear response occurs
if Exin = O(1). For a triangular obstacle of slope h/ l , it follows that

lin = Uc

N
l
h

=⇒ Exin = U0

�lin
= U0

Uc

h/ l
�/N

= γ /I , (2)

where I = Uc/U0 is the intensification of the velocity at the ridge crest. Thus, an obstacle that is
steep [γ ≥ O(1)] has Exin ≥ O(1) and, according to the hypothesis of Winters & Armi (2013),
exhibits a nonlinear response at the ridge top even for small Ex, as found numerically for Kaena
Ridge by Legg & Klymak (2008).

The internal wave beams apparent for the critical and supercritical cases in Figure 2 have
small vertical thickness and propagate vertically (for a definition of criticality in this context, see
the sidebar Degeneracy and Critical Slopes; see also Figure 3). In the supercritical case, there
are two upgoing and two downgoing beams. Vertically propagating beams were first observed in
laboratory experiments (e.g., the famous St. Andrew’s Cross); similarly, simulations show beams
radiating from critical points. In the ocean, Pingree & New (1992) observed internal wave beams
in the Bay of Biscay. Internal wave beams at the M2 frequency have been observed to originate
from Kaena Ridge in Hawaii, and their structure has been studied (e.g., Cole et al. 2009).

In the case of steep topography, the internal wave field presents a rather complex picture with
beams at various angles. Although much of the wave energy resides in the fundamental frequency,
it is possible for the energy to leak into superharmonics with frequency n� and integer n when
Ex increases owing to advection of the wave field by the barotropic tide (Bell 1975). In the case
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DEGENERACY AND CRITICAL SLOPES

The dispersion relation is not the only unusual property of internal waves. For oscillating solutions of the form
S = e iωtq (x), where S is the full state vector (velocity and buoyancy), the resulting problem for q (x) is hyperbolic in
the space variables, rather than the more familiar elliptic problems that one encounters for standard wave equations
(Sobolev 1955, Arnold & Khesin 1998). From a physical point of view, if a section of the physical boundary is tangent
to the local group velocity cone (i.e., the slope is critical), the theory in frequency space breaks down, although the
wave equation can still be solved in the time domain (Scotti 2011). The reader may at this point wonder if critical
slopes are the norm or the exception in the ocean. Figure 3 shows the difference � = sin(β) − sin(�). The local
slope angle β is obtained from a 1-min digital elevation model (but see Becker & Sandwell 2008 for a discussion
on the importance of high-resolution bathymetry) and the wave propagation angle � from the dispersion relation
setting f = 2� sin(θ ), where � is Earth’s angular velocity and θ the latitude angle, and using the ECCO2 data
sets to calculate a climatology for N . Surprisingly, many areas, notably along continental slopes, are very close to
criticality (|�| � 1).

Mode-n internal
wave: an internal
wave whose vertical
velocity field can be
described as
w = A(x − c nt)φn(z),
where φn(z) is the n-th
eigenmode (with
eigenvalue c n) of the
operator
φ′′ + (N /c n)2φ = 0

of a supercritical obstacle, the frequency spectrum shows superharmonic beams with frequency
n� over the obstacle as well as away from the obstacle owing to the local spatial interaction of
colliding beams, as shown in numerical results (Lamb 2004) and experiments (Peacock & Tabaei
2005, Zhang et al. 2007). Subharmonics with ω < � are possible due to wave beam instability
as well as interharmonics due to wave-wave interaction (Korobov & Lamb 2008). Subharmonics,
superharmonics, and interharmonics are also found in flat-top topography with a finite length of
critical slope, as shown using direct numerical simulation (DNS) by Gayen & Sarkar (2010), likely
because of the interaction of the wave field with the intensified boundary velocity.

If a modal decomposition is applied to the internal wave field in the near field (that includes
vertically thin beams) of a wave-generation site, the energy is found to be distributed over a wide
range of modes. A single mode has horizontal phase propagation, but the sum of modes can
also have vertical phase propagation. However, the far field is dominated by mode-1 or mode-2
energy in observations (e.g., Rainville & Pinkel 2006). Evidently, the high-mode waves are locally
dissipated by nonlinear processes near the generation site. Additionally, the energy in the low
mode is reduced by local dissipative processes, as shown numerically at a critical slope by Rapaka
et al. (2013) and at a supercritical slope by Winters & Armi (2013). The laboratory experiment of
Echeverri et al. (2009) also shows some decrease in energy across modes with increasing steepness
and with increasing excursion number.

2.3. Observations

Measurements over seamounts (Kunze & Toole 1997, Lueck & Mudge 1997), submarine ridges
(Polzin et al. 1997, Rudnick et al. 2003), submarine canyons (Carter & Gregg 2002, Wain
et al. 2013), and the continental slope (Moum et al. 2002, Nash et al. 2007) show enhanced
turbulence and mixing, likely driven by internal waves released by the tide oscillating over to-
pography. Direct observational evidence for the tide → internal wave → turbulence cascade
has been obtained through the Hawaiian Ocean Mixing Experiment (HOME) conducted at the
2,500-km-long Hawaiian Ridge, where tidal flow is approximately normal to the ridge (Rudnick
et al. 2003, Klymak et al. 2006). Large depth-integrated fluxes of low-mode internal wave energy
in the M2 band were measured at the Hawaiian Ridge and found in numerical models, and these
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Figure 3
Criticality map at semidiurnal and diurnal frequencies showing the seafloor location (color contours) and regions close to criticality
( purple lines), |�| ≤ 1/20. Here, � is the difference between the sine of the local slope and that of the angle of propagation of internal
waves at the semidiurnal and diurnal frequencies. The topography is derived from the GEBCO One Minute Grid, version 2.0, and
the stratification from the ECCO2 data sets (Menemenlis et al. 2008). Note that diurnal internal tides are limited to the equatorial
band.

fluxes showed fortnightly modulation with the spring-neap cycle. Internal waves with displace-
ments of up to 300 m were measured near the ridge top. Profiling, towed, and moored instruments
showed bottom-intensified turbulent dissipation at the ridge top and at the deep ridge flanks, and
100-m-tall overturned patches with some evidence of phase locking with the barotropic tide. The
inferred energy budget suggests that most of the internal tide energy radiates out as a low-mode
internal tide from the Hawaiian Ridge with 15% or smaller energy dissipated locally. The recently
concluded Internal Waves in the Straits Experiment (IWISE) examined the double-ridge system at
Luzon Strait where the across-slope tides are more energetic than those along the Hawaiian Ridge,
there are complex 3D features superposed on the two long ridges, and the internal tides radiating
off the two ridges interact. Observations summarized by Alford et al. (2015) reveal rich dynamics:
internal waves with extraordinarily large displacements up to 500 m, overturning patches as tall
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Grid lepticity (λ): the
ratio of horizontal grid
resolution to an
appropriate scale for
vertical motions; the
solution of the Poisson
problem for the
pressure p can be
formally expanded as
p = ∑∞

n=0 pnλ−2n ,
with p0 the hydrostatic
pressure

as 300 m at the ridge system, wave refraction by the Kuroshio, and westward mode-1 waves that
steepen dramatically to form solitary waves that break when they shoal onto the continental slope.
Up to 40% of the energy is approximately estimated to dissipate locally.

3. NUMERICAL APPROACHES

Given the inherent difficulty and cost associated with in situ observations, numerical models
have been extensively used to explore the barotropic-baroclinic coupling over topography. The
choice of the model depends on where the split between resolved and unresolved scales falls. At
the minimum, the horizontal resolution must be small enough to capture relevant topographic
scales, as well as the scale of the internal tide. At high lepticity, the motion is hydrostatic, and a
description based on the hydrostatic primitive equations is appropriate. Only when the lepticity
is smaller than a O(1) critical value is it necessary to switch to a nonhydrostatic formulation to
reproduce accurately the physics (Scotti & Mitran 2008, Vitousek & Fringer 2011). Unfortu-
nately, a nonhydrostatic simulation with a highly anisotropic 3D grid contains a badly conditioned
elliptic problem, and standard iterative methods perform very poorly, making 3D nonhydrostatic
computations in realistic settings extremely expensive (Santilli & Scotti 2011). Thus, the bulk of
nonhydrostatic simulations involving the generation of internal waves have 2D simulations of 2D
geometries (Legg & Klymak 2008, Buijsman et al. 2012). However, even when the large-scale
topography is quasi-2D, 3D effects can be significant. For example, Buijsman et al. (2013) showed
that the amplification of conversion in Luzon Strait is several times larger in 3D simulations even
though the underlying topography is mostly 2D.

The onset of turbulence is often determined by 3D instabilities. If the focus is on the interplay
between large-scale 2D forcing and turbulence, a promising approach is represented by large-
eddy simulation (LES). The topography, idealized as 2D, is contained in a 3D domain. The depth
along the third direction, and its discretization, must be chosen to capture the development of 3D
instabilities. Although LES still needs to model the small unresolved turbulent scales, the latter
have a more universal character, unlike turbulent parameterizations that need to account for the
much less universal instabilities at the origin of the turbulent cascade. A challenge is to resolve
turbulence while maintaining the correct geometric aspect ratio. There are few LES with realistic
aspect ratios [e.g., the shallow angle (5◦) slope considered by Gayen & Sarkar (2011b)]. LES is now
being extended to realistic-shape topography with promising results [e.g., the 1:100 scaled-down
model of a cross section of a Luzon ridge ( Jalali et al. 2016)].

It is possible to nest a high-resolution model within a low-resolution ocean model, so that
the latter can drive the former (e.g., Blayo & Debreu 2006, Debreu et al. 2012). This technique
works best when the area that needs high resolution can be predicted a priori. Unfortunately,
when dealing with internal waves over complex topography, turbulence may be intermittent in
space and time. An active area of research is the development of models involving grids whose
resolution can be dynamically adapted to accommodate evolving features. The models differ on
the specific implementations. Some employ a finite-element discretization based on unstructured
meshes (Piggott et al. 2008). Every so often, a new grid is generated, with the local density of
elements determined by the character of the solution. The fields are then transferred from the old
to the new grid, and the solution proceeds until the next regridding point is reached. This allows
geometrical flexibility, but conservation of mass and momentum during the regridding step is a
delicate issue. More recently, Santilli & Scotti (2015) developed a model based on a hierarchy of
grids. Their approach is closer to the standard embedding of finer models within coarser ones,
only in this case the grids are two-way coupled, and at any given level of the hierarchy, finer grids
can be moved or added as needed. The model is based on a finite volume approach, which makes
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transfer of information between grids easier. Also, it is easier to enforce continuity of fluxes across
the fine-coarse interface. Embedding LES closure into this model is a topic of ongoing research.

4. TURBULENCE AT GENERATION SITES

The tidal velocity in deep water is usually small, and the turbulent boundary layer on a flat bottom
dissipates a small [O(10−3 W/m2)] amount of energy. It is the nonlinear baroclinic response on
sloping topography that leads to intensified fluid velocity, waves with small horizontal and vertical
scales, and separated flows (Figure 2) leading to turbulence. Under conditions discussed below,
the velocity U becomes sufficiently large, and the vertical scale δ of the flow becomes sufficiently
small with the following possible outcomes: (a) The instantaneous stratification becomes locally
unstable [N 2(t) < 0], resulting in transition to turbulence by convective instability. (b) The shear
intensifies so that the local value of Ri decreases to less than the critical value of 0.25 so that there
is shear instability. Both of the above outcomes become more likely for a boundary layer if the
velocity is intensified and for a propagating wave when the fluid velocity U becomes comparable
to the phase speed, c p, so that the wave Froude number Frw = U /c p ∼ O(1) (Baines 1995).

The stratified, oscillatory boundary flow over rough topography exhibits turbulence with spatial
and temporal intermittency: Velocity and temperature fluctuations occur at different phases in the
tidal cycle and at different locations, as discussed below. Additionally, unlike the flat-bottom
boundary layer, turbulence occurs in layers with nonhomogeneous fluid that are detached from
the thin well-mixed wall layer, enhancing the ability of turbulence to sustain diapycnal mixing.

4.1. Critical Slope

Where the slope angle is critical, there is a resonant baroclinic response. The boundary velocity
increases, and the singularity associated with inviscid, linear theory is healed by viscous dissipation
in the boundary layer. The boundary flow takes the form of a stratified, oscillating jet. Figure 2c,d
presents an example where a boundary layer with intensified velocity can be seen on the flank of
the obstacle whose slope is near critical.

The intensification, U/U0, can be large; for example, it exceeds a value of 7 in the laboratory
experiment of an oscillating plate by Zhang et al. (2008) with laminar flow (Re s � 1). When the
Reynolds number is sufficiently high, exceeding approximately Res � 100 in the DNS of Gayen &
Sarkar (2010), there is transition to turbulence when the boundary flow reverses from downslope
to upslope through zero velocity.

The warmer water that flows from above during the downslope phase of the flow decreases the
background stratification sufficiently to create N 2 < 0. The ensuing convective instability creates
turbulence and energizes an upslope surge of colder water as an internal bore, and shear production
further enhances the fluctuation kinetic energy. There is observational evidence of patches of low
or an inverted potential temperature gradient during upslope flow at near-critical slope associated
with M2 internal tides, for example, at the northeast Atlantic continental slope (White 1994) and
at the northwest Australian shelf (Bluteau et al. 2011) where the measured bottom intensification
is U/U0 � 6. The turbulent loss increases with increasing length of the critical slope, reaching up
to approximately 18% of the radiated flux in the DNS and LES of Gayen & Sarkar (2011b).

4.2. Top of a Supercritical Ridge

Figure 2e,g shows that, at low Ex (also Fr), there is intensified velocity at the top of the ridge.
The downslope jet in the lee leads to shear-driven, boundary layer turbulence, which peaks at
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maximum downslope flow. When the flow reverses, a transient lee wave is released and travels
upward, leading to overturned isopycnals [e.g., the 2D simulations of Legg & Klymak (2008) that
find lee waves]. 3D simulations show that, midway during the upslope phase, the wave steepens
and breaks, and a patch of turbulent kinetic energy (TKE) builds up. With increasing tidal forcing
velocity, the turbulent patches owing to wave breaking occur earlier during the upslope phase and
become taller and have larger TKE. Kaena Ridge, Hawaii, is a steep, supercritical (ε ∼ 4) ridge,
and recent transects with towed instruments at its southern slope by Alford et al. (2014) present
observational evidence for the formation and breaking of lee waves, with overturns as large as
100 m during the upslope phase of the flow and near the ridge top.

4.3. Supercritical Slope

There are observations of turbulence at deep, supercritical slopes (Aucan et al. 2006, Van Haren
et al. 2015), far away from the top of the obstacle. Aucan et al. (2006) detected O(100 m) overturns
at a 2,425-m-deep bottom mooring on the south flank of Kaena Ridge, Hawaii, which was in the
path of a downward wave beam. The overturns occurred when the shear was zero and a thermal
front surged upslope. The LES of Gayen & Sarkar (2011a) of the boundary flow associated with an
internal wave beam grazing the bottom supports the mechanism of convective instability during
flow reversal from down- to upslope flow as a trigger for turbulence, and the model dissipation
(peak of 4 × 10−7 W/kg and time average of 10−8 W/kg) is close to the observations of Aucan
et al. (2006).

4.4. Wave-Wave Interaction

Broad, multiscale topography in the abyssal ocean such as the Mid-Atlantic Ridge (MAR) in the
Brazil Basin is not particularly steep nor tall. Nevertheless, the dissipation and diffusivity over
the rough patches in Brazil Basin are intensified with respect to the abyssal plain. Here, nonlin-
ear wave-wave interactions (Polzin 2009) are thought to be responsible for the enhanced mixing
over a depth of order 1 km and above the boundary layer that spans tens of meters. 2D simula-
tions of model Brazil Basin topography by Nikurashin & Legg (2011) support the mechanism of
wave-wave interaction, finding waves of frequency �− f with a vertical scale smaller than the M2
internal tide and susceptible to wave breaking. 3D simulations that resolve turbulence have not
yet been performed for this problem.

4.5. Small-Scale Topography

Multiscale abyssal topography (e.g., the MAR) has substantial coverage, with small-scale roughness
having a length scale that is not much larger than the tidal excursion length so that Ex is not
small. When such small-scale, subkilometer hills have near-critical or supercritical slopes, there
are breaking waves on the lee side and also above the roughness (Figure 2d,f,g,h) as well as
upslope-moving convectively unstable fronts of cold water in the bottom boundary layer. The
laboratory-scale simulations of Jalali et al. (2014) of flow over a triangular obstacle indicate that,
at Ex = 0.4, the turbulent patches extend vertically up to twice the obstacle height, and for even
larger Ex, the turbulent patches extend horizontally away from the obstacle. Measurements at
deep, small-scale roughness are scant, although Dale & Inall (2015) recently reported enhanced
turbulence owing to upslope bores and breaking lee waves in a 100–200-m-thick bottom layer
over subkilometer roughness features at a 49◦ N site at the MAR.
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5. BAROCLINIC ENERGY BUDGET

Quantification of the energetics of the internal wave field is of utmost importance and can be done
through the baroclinic energy equation (Kang & Fringer 2012), written for the sum of kinetic
energy Ek and available potential energy (in the limit of small deviation from equilibrium) EAPE

of the baroclinic motion, where

Ek = 1
2
ρ0

(
u2

bc + v2
bc + w2

bc

)
, EAPE = ρ0

2
N −2b2,

and the subscript bc denotes baroclinic. Let us consider an oscillatory tidal flow with amplitude
U0 flowing over topography with height h(x, y). The baroclinic energy equation is written below
in the notation of Jalali et al. (2014):

∂

∂t
(Ek + Ep ) + ∇H · F = C − ρ0εbc − P . (3)

The quantities in Equation 3 are depth integrated, and ∇H denotes horizontal divergence. The
dominant term of the energy flux F is the wave energy flux p∗ubc where p∗ is the pressure deviation
relative to the hydrostatic distribution, and the contribution of the advective flux ubc(Ep + Ek)
becomes important only when Ex approaches O(1). The conversion, C , provides the energy input
into the wave field and, in the linear case, is given by C = p∗

s U0 · ∇h, where p∗
s is the pressure at

the surface of the topography (see Kang & Fringer 2012 for a more general expression for C). The
term εbc represents the viscous dissipation of the baroclinic energy, and the term −P represents
the conversion to turbulent kinetic energy through the turbulent production term.

Let us consider the integral of Equation 3 over a domain enclosing the generation site and
over a few tidal cycles. The net energy conversion (C) from the barotropic tide (a) is dissipated
by viscosity (εbc) or converted to turbulence (P ), (b) leaves the generation site as an internal wave
flux (M ) plus an advective flux (M adv), and (c) leads to a temporal change in baroclinic energy
content whose cyclic integral is close to zero if the state is close to statistically steady. The quantity
q = 1 − M /C measures the local energy loss, which, by construction, is zero in inviscid linear
theory. DNS/LES results, albeit at laboratory scale, can be used to calculate all the terms in
Equation 3, balance the budget with near-zero residual, and accurately obtain q . Results obtained
thus far show that q increases with increasing values of Ex, Re , fractional length of critical slope,
and bottom steepness, reaching values up to 0.3. Observations and 2D models have also been used
to infer the value of q . The Hawaiian Ridge is less dissipative with q ∼ 0.15 (Klymak et al. 2006)
compared to the double-ridge Luzon Strait, which has more energetic internal tides and q ∼ 0.4
(Alford et al. 2015). However, the quantitative accuracy of the Luzon and Hawaii estimates is
uncertain, and q needs sharpening through numerical modeling.

The terms in Equation 3 are needed by ocean models that typically do not resolve internal
tides. C sets the wave component of deep-ocean bottom drag in barotropic tidal models. Global
climate models need C and q to set the energy input to local turbulent fluxes of buoyancy and
momentum. M , the energy transported by internal waves that can propagate hundreds of kilome-
ters, is an input for remote mixing. Thus, C , q , and M need parameterization in ocean models.
For instance, St. Laurent et al. (2002) utilized dissipation measurements at the MAR and energy
flux from linear theory to find q = 0.3 ± 0.1 and turbulence distributed exponentially with a
characteristic vertical length, 500 m. This recipe and a prescribed mixing efficiency � give the tur-
bulent diffusivity. Klymak et al. (2010) proposed a parameterization of q for supercritical obstacles
assuming linear theory for conversion and that high modes with phase speeds less than the ridge-
top velocity amplitude are dissipated locally. It is clear from observations and simulations that
the local dissipation strongly depends on topographic size, shape, and environmental parameters.
Moreover, the vertical distribution of tidally driven turbulence, both local (Saenko & Merryfield
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2005, Melet et al. 2013) and remote (Oka & Niwa 2013, Melet et al. 2016), strongly influences
the meridional overturning circulation. Therefore, improved physically based parameterizations
of dissipation and mixing are imperative.

Mixing in a stratified environment pumps buoyancy against a gravitational potential gradient.
This requires an energy input, and we can relate the mixing efficiency to the fraction of energy
added to the system that irreversibly raises its center of mass. The efficiency is best defined in
terms of the ratio of dissipation of available potential energy to the dissipation of total (available
plus kinetic) energy (for a review of the relevant concepts, see Scotti & White 2014, and references
therein). In oceanographic practice it is common to define the mixing efficiency (�) as � = B/ε,
where B is the buoyancy flux and ε is the turbulent dissipation. The flux Richardson number (Rif )
is defined as Rif = B/P , where P is the shear production of TKE, and � is related to Rif as
follows:

� = Ri f

1 − Ri f
. (4)

Following Osborn (1980), it has been common practice to set Ri f = 1/6. This allows the estimation
of the amount of mixing from estimates of the turbulent dissipation rate ε, which is easier to
measure than either turbulent buoyancy fluxes or the available potential energy dissipation rate.
Relating efficiency to the Richardson flux number by Equation 4 has been widely criticized in
the recent literature (see Ivey et al. 2008, and references therein) because the equality is valid for
stationary processes in which production of TKE is balanced locally by dissipation and turbulent
buoyancy fluxes. In particular, this implies that the flow of energy is from the mean kinetic energy
into the turbulent available potential energy and TKE reservoirs. This condition is realized in
shear-driven mixing, but not in mixing driven by large-scale statically unstable flow arrangements.
In the latter case, the turbulent buoyancy flux switches sign, signaling a transfer of mean available
potential energy to TKE. Under these conditions, the mixing efficiency can be larger than 50%
(Dalziel et al. 2008, Chalamalla & Sarkar 2015). Conversely, efficiencies much lower than the
canonical value have been measured in stratified boundary layers (Walter et al. 2014).

The picture that emerges is that over complex terrain, different paths to turbulence and mixing
are present, often at the same time, but in different parts of the domain. Close to material bound-
aries, the no-slip condition generates turbulent boundary layers; away from boundaries, it is often
found that large-scale overturns, regions of statically unstable buoyancy distribution with little or
no shear, develop (Chalamalla & Sarkar 2015). Perhaps the most interesting conclusion from these
simulations is that the standard mixing paradigm à la Osborn (1980), which is based on turbulence
and mixing deriving their energy from the mean kinetic energy field via the shear-production
mechanism, is not always appropriate. The alternative mechanism, based on the conversion of
available potential energy contained in the large-scale field into TKE via convective instabilities,
needs to receive more attention. Finally, both mechanisms can be present. Gayen & Sarkar (2014)
showed mixing starts as convective driven and only at a later time becomes sustained by shear.

6. PROPAGATION

Internal waves can leave the generation area either as narrow beams or as modal waves, which
represent collective excitation of the entire water column, the most common being mode-1 and
mode-2 waves. The case of Luzon Strait discussed above provides an illuminating example as
to the form taken by the internal wave field. In the area between the east and west ridges,
beams dominate, whereas in the far field on either side of the strait the internal tides acquire a
mode-1 structure (Li & Farmer 2011) propagating long distances without significant attenuation
(Zhao 2014). Given our emphasis on processes leading to turbulence, we focus on the evolution
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Figure 4
Flow and turbulence at a transect of the Luzon west ridge illustrated with cycle-averaged quantities: (a) mean kinetic energy (MKE),
(b) turbulent kinetic energy (TKE), (c) turbulent dissipation rate (ε), and (d ) local slope criticality. Quantities are normalized with the
barotropic tidal amplitude U0 and the buoyancy frequency N at the top of the ridge at x = 0. Turbulent dissipation, shown in panel c,
is enhanced near the top of the supercritical subridges, at the near-critical slope (between x = −45 and −55 m), and at a supercritical
slope (between x = 35 and 50 m) owing to processes discussed in Section 4. Dissipation is also enhanced during the propagation of
internal wave beams owing to the processes discussed in Section 6. The large-eddy simulation (LES) uses realistic bathymetry that is
scaled down 1:100 in both directions, preserving the original aspect ratio, and environmental parameters that are scaled up to preserve
the values of important nondimensional parameters defined in Table 1, except Re , which is smaller in the LES.

of wave beams during propagation and consider low-mode waves briefly. Figure 4 shows that, at
realistic multiscale topography, turbulent processes are important at generation and in the regions
where the beams propagate.

6.1. Beam-Pycnocline Interaction

If the water column is uniformly stratified all the way to the surface, beams reflect just like
ordinary waves. A slow variation in stratification causes a beam to bend and refract, an effect that
can be considered within the framework of WKB theory. However, when a pycnocline separates
the surface layer from the more weakly stratified interior layer, the change in stratification occurs
on a scale that can be short relative to the typical vertical size of beams at tidal frequencies. In
this case, the reflection of beams is associated with a host of nonlinear effects that can lead to
turbulence. In the case of a thin pycnocline, ISWs with large interfacial displacement have been
observed (New et al. 2013), and the process has been characterized using theory and simulation
(e.g., Gerkema 2001, Grisouard et al. 2011, Mercier et al. 2012). Numerical simulations of beams
refracting through a pycnocline (Gayen & Sarkar 2013, Diamessis et al. 2014) show that higher
harmonics can be trapped within the pycnocline and propagate. Diamessis et al. (2014) found
that refraction through a thin pycnocline of a wave beam with frequency ω, wave number k,
and beam angle greater than 30◦ relative to the horizontal plane led to the trapped harmonic
(2ω, 2k) propagating as an interfacial wave. They applied weakly nonlinear theory to the analogous
plane wave case with some success in the prediction of the harmonic amplitude in the simulations.
However, being 2D simulations, these studies could not directly address the role of turbulence.
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Parametric
subharmonic
instability (PSI):
instability that
transfers energy from a
wave of frequency �

and wave vector k to
two waves of lower
frequency, such that
k = k1 + k2 and
� = �1 + �2

Critical layer: region
where the local
background velocity
matches the phase
velocity of the wave
and the Doppler-
shifted frequency
approaches zero

Gayen & Sarkar (2013) found within 2D simulations that, when the pycnocline thickness
is not small compared to the vertical thickness of the incident beam, parametric subharmonic
instability (PSI) occurs as the incident beam refracts through the pycnocline. Given that the
vertical components of k1 and k2 can be an order of magnitude larger than that of k, PSI is
effective in cascading wave energy toward turbulence. In later 3D LES, Gayen & Sarkar (2014)
demonstrated the cascade to turbulence of the subharmonic. Only 30% of the incident wave
energy is contained in the main reflected beam, with the remaining carried by subharmonics from
PSI (20%), ISWs and harmonics trapped in the pycnocline (15%), and other downgoing waves
(35%). That only 30% of the incoming energy is carried away by the reflected beam may explain
why energetic beams are typically confined near the source region (e.g., at Kaena Ridge) (Cole
et al. 2009). The mixing efficiency of the ensuing turbulence was approximately 0.3, almost twice
the canonical value. This may result from turbulence being initially driven by overturns, and later
sustained by shear.

6.2. Beam-Beam Interaction

When two beams emanating from different locales interact, the superposition can lead to nonlinear
phenomena, including higher harmonics (Akylas & Karimi 2012). The effect can be particularly
important when the beams originate from different points along a single 3D topographic feature.
The common origin means that phases and frequencies along the intersecting beams are correlated,
providing an example of wave focusing (Bühler & Muller 2007). Experiments with purely inertial
wave beams (Duran-Matute et al. 2013) show that the focusing can lead to sustained levels of
turbulence. More research is needed to determine how much energy can be lost via beam-beam
interaction, and how efficient the process is in the stratified case.

6.3. Within-Beam Turbulence

The beams that emerge from rough topography can be strongly nonlinear if they are sufficiently
energetic so that Frw ∼ O(1) and, when Ri becomes sufficiently small, there is turbulence ( Jalali
et al. 2014). The presence of internal wave beams that emerge from the two flanks of Kaena
Ridge is clear in the velocity variance observed by Cole et al. (2009), and the inferred turbulent
dissipation is found to be large in the region bounded by the beams as they propagate toward
the upper ocean pycnocline. PSI can also result in the instability of freely propagating beams, as
shown experimentally by Bourget et al. (2014) and analytically by Karimi & Akylas (2014), who
demonstrated that the beam must be sufficiently wide and Frw must be sufficiently large for PSI
to occur.

6.4. Critical Layer

Internal waves can also interact with shear layers to generate turbulence at so-called critical layers.
This mechanism has been widely studied using theory and laboratory experiments, and observa-
tionally in the atmospheric context, but less so in the ocean. Waterman et al. (2012) presented
evidence that this occurs for both near-inertial waves propagating downward and internal (lee)
waves propagating upward in the Antarctic Circumpolar Current.

6.5. Low-Mode Wave

The energy flux of the internal tides in the far field of ridges has a low-mode structure, primarily
modes 1 and 2, with large horizontal wavelength. The low mode interacts with currents, eddies,
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and fronts during propagation that may cascade energy to smaller vertical scales. However, direct
evidence of such a cascade is scant.

PSI can transfer energy to high vertical modes and can be especially potent for the M2 tide at
the critical latitude (28.9◦) when the M2/2 subharmonic frequency exactly matches f , as shown
numerically by MacKinnon & Winters (2005). Alford et al. (2007) observed intense, vertically
standing, near-inertial waves near 28.9◦ that suggest PSI, but with no significant loss in the M2
tidal energy flux, and consistent with these observations, the numerical simulations of Hazewinkel
& Winters (2011) find the energy transfer through PSI to be small. Later analysis of these obser-
vations by MacKinnon et al. (2013) revealed PSI-consistent energy transfer at 28.9◦ N, but it did
not lead to a catastrophic decay of the M2 tide.

Superharmonics with 2ω and 2k found in the refraction of an internal wave beam can also
occur through the nonlinear self-interaction of a low-mode wave that propagates in nonuniform
stratification. Wunsch (2015) examined this process using weakly nonlinear theory to evaluate the
steady-state amplitude of the superharmonic as a function of upper-ocean pycnocline properties.
Sutherland (2016) evaluated the unsteady evolution of the problem using numerical simulation
and noted the appearance of vertical scales in the superharmonic that are smaller than in the
primary wave.

Scattering off topography in the mid-ocean and reflection at the rough continental slope are
likely to be the important sinks for the low-mode energy. Reflection is surveyed in the following
section. The problem of scattering of waves by roughness has been treated using theory or sim-
ulation by Bühler & Holmes-Cerfon (2011), Legg (2014), and Mathur et al. (2014). Scattering
may involve local energy dissipation or a shift of transmitted and reflected wave energy to higher
modes. Bühler & Holmes-Cerfon (2011) showed analytically that wave energy can be focused
into high modes with beam-like character as a mode-1 wave propagates over a rough bottom with
continuous subcritical topography. The energy loss from the mode-1 wave with wave number k
was shown to be substantial after approximately O(10) surface bounces of the wave characteristic
for sinusoidal topography that is a harmonic of the incoming wave or for random topography.
From the simulations of Legg (2014), it appears that significant turbulent loss during scattering at
isolated mid-ocean roughness requires tall features and/or near-critical slopes. Accurate quantifi-
cation of the turbulence and attendant mixing by scattering of low-mode wave energy will require
3D, turbulence-resolving simulations.

7. REFLECTION AT SLOPING TOPOGRAPHY

A substantial portion of the energy generated at generation hotspots escapes as low-mode internal
tides and is able to propagate to the continental slope. Interaction of internal tides with rough
topography can generate fine-scale shear and strain, as well as boundary layer turbulence. The
following discussion of internal wave reflection excludes ISWs, comprehensively reviewed by
Lamb (2014).

7.1. Theory for Beams Incident upon Slopes

According to linear theory, the angle of phase lines (equivalently, the group velocity) with respect
to the horizontal plane is preserved after the reflection of an internal wave beam. The wave number
decreases as the wave angle (α) approaches the slope angle (β), and within inviscid theory, the
wave speed increases to preserve wave energy flux. Theory in frequency space shows that for a
wave with incident Fri = U/c p = uk/ω, the Froude number of the reflected wave satisfies

Frr

Fri
=

[
sin(α + β)
sin(α − β)

]2

. (5)
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The singularity at critical slope angle (α = β) is usually resolved by the inclusion of viscosity
or nonlinearity. Analysis in the time domain (Dauxois & Young 1999, Scotti 2011) allows the
construction of a laminar inviscid solution even at criticality and thus the examination of possible
pathways to turbulence. For example, Scotti (2011) found both convective and shear instability.
Exact criticality is not necessary for nonlinear processes. When the off-criticality (α−β) is small, the
amplification of Fr is large: by a factor of 100 (10) when the slope off-criticality is approximately
18% (48%) of the wave angle according to Equation 5, where we have replaced sin(·) by its
argument. Thus, the reflected wave can have Fr = O(1) even though the incident wave has small
steepness, begetting nonlinear phenomena including harmonics, PSI, and wave breaking. The
Richardson number, Ri = N 2/S2, proportional to Fr−2, strongly decreases when α − β is small
to facilitate shear instability.

The incident and reflected waves interact. Even though both waves may be linear, the inclusion
of nonlinearity in the interaction can lead to propagating harmonics and a mean Eulerian current.
It is possible for the forced harmonic (2� or higher) to interact resonantly with the incident and
reflected waves, and the second-order or higher interactions to steepen the waves in the interaction
region (Thorpe 1987).

7.2. Observations

Eriksen (1982) analyzed near-bottom data from several sites with rough topography, finding inten-
sified spectral levels at the local near-critical band of frequencies, Rig ∼ 0.25 at vertical separations
up to 40 m, and well-mixed patches. Thorpe et al. (1990) observed O(100 m) isopycnal displace-
ments and transient mixed layers with M2 variability at two sites on the continental slope of Ireland
and associated them with critical-slope reflection and resonant second-order reflection. Reflec-
tion of low-mode internal wave energy at near-critical slopes has been implicated in observations
of enhanced M2 band shear and turbulent dissipation at a steep continental slope off Virginia
(Nash et al. 2004), and also at the Oregon continental slope (Nash et al. 2007) with hotspots of
dissipation, ε > 10−7 W/kg. Near-critical generation could also play a part at the Oregon slope.

The recent Tasmanian Tidal Dissipation Experiment (T-TIDE) examines the fate of a coherent
low-mode internal wave that is incident on the continental slope off Tasmania, an area that has
specific sites with a preponderance of either supercritical or near-critical topography. The objective
is to measure how much of the incoming wave energy is dissipated locally and to quantify the
downscale cascade of incident wave energy. As summarized by Pinkel et al. (2015), a suite of
shipboard observations, gliders, and deep moorings is being used along with numerical modeling.

The mixed fluid in the boundary layer at continental slope roughness could spread across
isopycnals to provide interior mixing, as first proposed by Armi (1978). Intermediate nepheloid
layers observed near continental margins (Moum et al. 2002, McPhee-Shaw 2006) lend some
support to this hypothesis. Although mixed fluid can propagate away from the slope, initially
propelled by its buoyancy anomaly and then mesoscale processes, it is not clear how far can it
propagate. Intermediate nepheloid layers are usually found extending only O(10 km) from the
margins. However, this may be a limitation of the tracer used to map them (usually suspended
sediments). Irrespective of where the mixed fluid associated with rough topography forms, in
the bottom boundary layer or by wave breaking further away in the bottom water column, its
horizontal spread needs further investigation.

7.3. Laboratory Experiments

The reflection of high-mode internal wave beams has been the subject of several experimental
studies, which have showed that turbulence during the reflection process can occur both attached
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to the wall and in regions detached from the boundary (De Silva et al. 1997). In the past decade or
so, there have been exciting developments in experimental techniques. Gostiaux et al. (2006) used
a beam generator, later perfected by Gostiaux et al. (2007), to investigate how beams reflect from
sloping boundaries. These generators enable beams with tunable properties and have been used
to study the formation of harmonics during reflection (Rodenborn et al. 2011). New techniques
have also been developed to extract quantitative information from experiments, e.g., the use of
synthetic schlieren imaging (Peacock & Tabaei 2005) or planar laser-induced fluorescence (Troy
& Koseff 2005).

Whereas reflecting finite-width beams affect only a small area along the slope, low-mode waves
in a uniformly stratified fluid interact with the entire slope. The interaction region in the case of a
low-mode wave incident on a linear slope with critical angle takes the form of a turbulent boundary
layer over the entire slope, as first shown experimentally by Ivey & Nokes (1989), who found
turbulence if the wave Reynolds number exceeded a critical value of 15–20. A background with
two-layer stratification supports the horizontal propagation of interfacial sinusoidal waves as well as
internal solitary waves. Lamb (2014) reviewed the breaking of such horizontally propagating waves
as they shoal onto a slope and pointed out essential differences with the uniformly stratified case.

7.4. Numerical Simulations

The interaction of a plane wave with a linear slope in a uniformly stratified fluid has been studied
using 3D simulations at the laboratory scale. Chalamalla et al. (2013) assessed the effect of incoming
wave properties through 3D DNS, expanding on the earlier work of Slinn & Riley (1998) on
critical slopes. The reflected wave Frr increases with the incoming wave amplitude in accord with
Equation 5: Multiple harmonics are radiated, and the boundary layer transitions to turbulence
when Frr � 0.3. Interestingly, off-critical slopes also exhibit turbulence when α − β is not too
large. In fact, because of weaker frictional effects and the stronger interaction between the incident
and reflected waves, some off-critical slopes were found to exhibit taller overturns and larger TKE
than the critical slope at the same Fr . For the same off-criticality, the supercritical slope has
stronger turbulence than the subcritical slope because of larger Frr, and may have turbulence that
exceeds that at a critical slope if the off-critical angle is not too large.

In the case of wave beams, the reflected wave can undergo PSI under off-critical conditions
owing to an increase of Fr , as demonstrated through 2D simulations by Chalamalla & Sarkar
(2016). Higher-amplitude and wider incoming beams result in reflected waves with enhanced
subharmonic growth rate, similar to freely propagating beams considered by Bourget et al. (2014)
and Karimi & Akylas (2014), and there is a threshold for Frr before the onset of PSI. The potential
cascade of subharmonics of the reflected beam to turbulence remains to be assessed.

Venayagamoorthy & Fringer (2006) studied the energetics of the interaction of mode-1 waves
with a shelf break at the laboratory scale using 2D simulations. They found that reflection is
negligible for a shallow slope (γ < 0.75) and is large for a steep, supercritical slope. Increasing
the incoming Fri and slope angle resulted in the formation of boluses but did not change the
energy transmission much for critical slopes and beyond because the boluses provide bursts of
energy onto the shelf. The dynamics of the nonlinear internal boluses that carry dense, cold
water on shelf were further examined by Venayagamoorthy & Fringer (2007), who found that the
boluses have properties consistent with gravity currents propagating in a stratified fluid. Recently,
Winters (2015) examined the interaction of a mode-1 wave with a supercritical slope (γ = 1.9)
using high-resolution, 3D simulations. The Reynolds number, Re = U2

0 /Nν = 5.5×104, is large,
and the incident wave has Fri = 0.128. Although off-critical, there is turbulence associated with
quasi-periodic bores, which enhances the effective diffusivity of synthetic tracer released at the
boundary.
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8. NONTIDAL TURBULENCE AT TOPOGRAPHY

Motions of nontidal origin such as currents, mesoscale eddies, and fronts can impinge on rough
topography in the deep ocean to generate internal waves whose local and remote breaking can lead
to turbulent mixing, e.g., in the Southern Ocean where such nontidal motions are strong and deep,
extending to the seafloor. Naveira Garabato et al. (2004) observed widespread (order of 1,000-km
horizontal distance) enhancement of internal wave fluctuations over rough bathymetry underneath
the Antarctic Circumpolar Current, which was attributed in part to nontidal, geostrophic motions.
Nikurashin & Ferrari (2010) found that radiated internal waves interact with the shear of near-
inertial oscillations, leading to wave breaking in their 2D simulations. Wind-driven geostrophic
flow develops energetic meso- and submesoscale motions that can interact with rough topography.
Using nonhydrostatic simulations with the MITgcm, Nikurashin et al. (2013) found that a dom-
inant fraction of the wind power was converted from geostrophic eddies to small-scale motions,
which, within the bottom 100 m over the seafloor, led to most of the diagnosed dissipation.

Strong overflows can provide turbulent mixing (Thurnherr et al. 2005, St. Laurent &
Thurnherr 2007) at major deep ocean passages as well as smaller passages that are typical in
the rough topography of mid-ocean ridges. Observations by St. Laurent & Thurnherr (2007) at
such a passage near the crest of the MAR in the subtropical Atlantic Ocean indicate large turbulent
diffusivities near the bottom, which remain significant up to the base of the main thermocline.
The measured Froude number supports the notion of hydraulic control at a sill with a possible
downstream hydraulic jump in the passage.

9. CONCLUSIONS AND FUTURE DIRECTIONS

The large-scale mechanical forcing of the world oceans takes primarily two forms: lunisolar tides
and wind forcing at the surface. Understanding how this energy reaches, in the stratified ocean
interior, the small scales at which turbulence and mixing occur has been a long-standing question
in physical oceanography. The amount of tidal energy that is not dissipated over shallow seas
energizes internal waves by interaction with topography, and this review considers recent advances
in understanding the interplay of internal waves and turbulence over the cycle of internal wave
generation, propagation, and reflection.

The field has benefited tremendously from a series of large coordinated experiments over
the past decade, involving field measurements, numerical models, and theoretical work, starting
with HOME, followed by IWISE, and continuing with the recently concluded T-TIDE, which
have been made possible by a combination of better observational platforms and instrumentation,
better regional ocean models and process models run on more powerful computers, and better
remote-sensing tools.

We are now in a position to satisfactorily answer questions related to how the energy injected at
the generation site is split between energy lost locally to turbulence and energy that radiates away
as a function of the parameters that describe the geometry of the topography and the nonlinearity
of the process. Similarly, we can address similar questions for the reflection process although we
are not as far along toward the answers. At the same time, the high-resolution numerical models
are challenging some long-held assumptions regarding the mixing efficiency of different turbulent
processes.

Although these findings help us understand how turbulence generated during generation and
reflection influences mixing in the proximity of boundaries, the way internal waves propagating
in the water column affect mixing remains more obscure. Over complex topography, nonlinearity
and turbulence can be generated by the interaction of beams coming from multiple generation
sites, but internal waves can also interact with critical layers, or with a region of strongly varying
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background stratification. Most modeling work in this area has been 2D (with exceptions) and
thus not able to directly address the role of turbulence.

Looking at the future, we see great potential in modeling frameworks that can span increasingly
broader ranges of spatial and temporal scales as well as 3D topography while accounting for
instabilities and turbulent processes through a combination of nested, high-resolution subdomains
and physics-based parameterizations. However, we must recognize the role of observations in
providing a grounding truth, as well as the role of theoretical frameworks to pose the right questions
and extract the right answers out of ever expanding numerical and observational data sets.

SUMMARY POINTS

1. The nature of the internal waves generated by an oscillating tidal flow over topography
depends on the steepness, excursion number, and topographic Froude number. At low
excursion numbers, high-mode beams are generated. As excursion numbers approach
O(1), lee waves are more common. Near-critical slopes have intensified boundary flows.
At low Froude numbers, there is flow blocking, and for steep supercritical topography,
there are downslope jets and breaking lee waves.

2. Internal wave beams are more commonly found near the generation region, whereas
farther away low-mode waves dominate.

3. Proper simulation of turbulent processes requires 3D domains and resolution of convec-
tive and shear instability. With LES, it is possible to access the turbulence produced by
waves generated by quasi-2D topography.

4. Patches of turbulence are more commonly associated with high-mode internal wave
beams and lee waves than with low-mode waves.

5. Wave-wave interactions, resonances, and intersecting beams from multiple features pro-
mote turbulence at sites with multiscale topography.

6. Nontidal topographic internal waves can contribute significantly to turbulence and mix-
ing in the Antarctic Circumpolar Current system.
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