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Large eddy simulation of a plane jet
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Large eddy simulations of spatially evolving planar jets have been performed using the standard
Smagorinsky, the dynamic Smagorinsky, and the dynamic mixed models and model performance
evaluated. Computations have been performed both at a low Reynolds numjeB0R6, in order

to make comparisons with a previous DNS at the same Reynolds number, and at a higher value,
Re;=30000, to compare with high Reynolds number experiments. Model predictions with respect
to the evolution of jet half-width, centerline velocity decay, mean velocity profiles, and profiles of
turbulence intensity are evaluated. Some key properties of the SGS models such as the
eddy-viscosity constant and the subgrid dissipation are also compared. It is found that the standard
Smagorsinsky model is much too dissipative and severely underpredicts the evolution of the jet
half-width and centerline velocity decay. The dynamic versions of the Smagorinsky model and the
mixed model allow for streamwise and transverse variation of the constant in the eddy-viscosity
expression which results in much better performance and good agreement with experimental and
DNS data. The mixed model has an additional scale-similarity part whicd pirori tests against
filtered jet DNS data, is found to predict the subgrid shear stress profile. Although the subgrid shear
stress obtained by the dynamic Smagorinsky model is substantially smaller than that obtained in the
a priori tests using the jet DNS data, surprisingly, in #ag@osterioricomputations, the dynamic
Smagorinsky model performs as well as the dynamic mixed model. Analysis of the mean
momentum equation gives the reason for such behavior: the resolved stress in computations with the
dynamic Smagorinsky model is larger than it should be and compensates for the underprediction of
the subgrid shear stress by the Smagorinsky model. The numerical discretization errors have been
guantified. The error due to noncommutativity of spatial differentiation and physical space filtering
on nonuniform grids is found to be small because of the relatively mild stretching used in the present
LES. The modeling error is found to be generally smaller than the discretization error with the
standard Smagorinsky model having the largest modeling error19€9 American Institute of
Physics[S1070-663199)04409-9

I. INTRODUCTION and Prakashhave shown that, near the nozzle, the structures
are predominantly symmetrical for a flat exit profile. After
Jets in complex configurations are typically encounteredhe merging of the shear layers, asymmetric structures appear
in different practical engineering applications such as comin the fully developed region of the jet. The self-preserving
bustors, cooling of energy conversion devices, and exhauségion of the jet is characterized by linear growth of its thick-
of aerospace vehicles, as well as in environmental problemsgiess, quadratic decay of the centerline velocity, and constant
It is then important to understand the physics related to modyalues of the centerline turbulence intensities, when normal-
eling a simple jet to improve prediction methods in moreijzed by the centerline velocity. The ability of LES to give
complex flows. The purpose of this study is to investigate theyuantitatively correct predictions of these quantities is of in-
ability of large eddy simulatiolLES) to predict the overall terest.
field quantities in the plane jet and the evolution of the two ~ Many jet numerical simulations have also been per-
initial shear layers upstream to the jet. formed but most of them have involved temporally evolving
Many experimental studies and results are available ojets as well as a round geometry. Fewer simulations have
jets!~*® Characteristics in the near field of the jet nozzle asheen performed of spatially evolving jets because of the high
well as in the self-preservation region have been investicomputational cost. A large eddy simulation of a round jet
gated. Large statistical structures are seen, especially in theas been performed by Urbin and Metéithat focuses on
near field, that include a Von Karman vortex street and rollthe coherent vortex dynamics. Coannular jets discharging
erlike structures. The works of Antonizt al* and Thomas into a sudden expansion region have been studied by Aksel-
voll and Moin!® Recent large eddy simulations of a plane jet

dpresent address: Lawrence Berkeley National Laboratory, 50A-1148, Berhaveﬂalsq been performgd by Dei al: ?nd We'”p?rger
keley, CA 94720. et al=’ to investigate the influence of the inlet conditions on
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the jet. Both simulations were restricted to the standard Smaut modeled. In this paper, the top-hat filter with a filter
gorinsky model. width A is used. Three filter sizes are testad=h whereh
In direct simulations, the Navier—Stokes equations areepresents the grid spaciny=2h, andA=4h. A filtering
solved and all dynamically important scales of turbulence ar@peration weighted by the densipyis used following the
computed. Such computations are very accurate but requiproach used by Favre for compressible flows:
very refined meshes and small time steps. In large eddy . ——
simulation only the largest scales are simulated and the effect f=pflp. ®)
of small scales on the large resolved scales is modeled. LE$he filtered Navier—Stokes equations, that have been, for
requires less computational effort and can simulate flows aéxample, developed in Lesieur and Cortitare as follows:
higher Reynolds number than direct numerical simulation. = ___
(DNS). An accurate DNS of a spatially evolving jet with a % 9i(PU)) =0, ©)
low co-flow (strong jei has been performed by Stanley and 1
Sarkar*® The simulation studies the evolution of the initial d:(pU;) +d;(pUT;) + d;p= Re’l (7ij)— d;pdij + Rn, (7)
shear layers at the jet edge, their merging at the end of the
potential core, and, finally, the well-developed jet. TheDNS _ _ = vy = y-1_
resultd® are in good agreement with experimental results. %P Ui diPF P dili= g5 di(KaT) + o= 7ij diu; T Ry,
In the present work, large eddy simulation of a planar jet (8)
is performed. Unlike the previous LES studies of the plane
jet, the dynamic Smagorinsky model and the mixed modeYV
are used in addition to the Smagorinsky model and their  g;;=UT; — U;u]. (9)
performance evaluated. Furthermore, the LES results ar,

R, represents the subgrid terms resulting from the nonlinear-
validated against both DNS and experiments. In the first part." P g g

£ th d : h R Id b ity of the viscous terms an®, the subgrid terms in the
oft € study, com_putan_ons aF the same Reyno S number "?%essure equation. The subgrid strggss the dominant sub-
the direct numerical simulation are performed in order to

h I d valid h hod h n?did term. The termR;,, and the subgrid ternR,, in the
compare the results and validate the method. In the seco ean pressure equation can be neglected for the low Mach

part, the Reynolds number of the jet is increased and COMsumbers considered here
pared with higher Reynolds number experiments. '

hereq;; is the subgrid stres&SGS tensor.

Il. GOVERNING EQUATIONS C. Subgrid models

A. Navier—Stokes equations 1. Smagorinsky model

The flow is governed by the Navier—Stokes equations, ~The Smagorinsky mod@ is an eddy-viscosity type
representing mass conservation, model given by:

dp+di(Uip) =0, (D) dij— 30n &= —CZA’[SIS; with [§°=3S,¢Spq  (10)
momentum conservation, and

6’t(PUi)+¢9j(PUin):—t9ip+it?'Ti', i) Si':E ] %)—Eﬂ&' (11

Re ™! Po2\oxg ox) 3ox Y

and energy conservation written as an evolution equation fois the deviatoric part of the rate of strain tensor. The constant
the pressure field, C depends on the particular flow and different values have

1 been proposed. Although simple, the Smagorinsky model is
Lﬁi(kﬁiT)‘*‘ Y_Tij au;. (3 known to be excessively dissipative in transitional flows as
PrRe Re well as flows with strong coherent structures and to have
The tensorr;; represents the viscous stress: poor correlation with the exact subgrid stress tensomin
priori studies. HereC,=0.13 which corresponds to the av-
erage value obtained in the dynamic Smagorinsky model
In the above equations, Re is the Reynolds number and R/ES by Vremaret al?! of the shear layer.

the Prandtl number. Although the compressible Navier— The gradient of the termg 6;;/3, is absorbed in the
Stokes equations are used for future generalization to highpressure gradient for incompressible flows. For the jet stud-
speed flow, the jet Mach numbek};=0.3, is sufficiently ied here, the gradient afy 5;;/3 is found to be small in the

dPp+u; dipt ypdiui=

7y = w(9U;+ diU;) — Sp.8;j AU 4

small that compressibility effects may be neglected. mean momentum balance and neglected.
B. Filtered equations 2. Mixed model
In DNS, Egs.(1)—(3) are directly solved without further Another model, the scale-similarity model, which is not

modeling. To reduce the required numerical resolution, thdased on an eddy-viscosity hypothesis, has been formulated
Navier—Stokes equations in the LES approach are filteredby Bardina et al?? that, among other advantages, allows
Therefore, the small scales are not directly solved for in LESyackscatter of energy from subgrid scales to resolved scales.
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It is built on the assumption that filtering at different levels dynamic eddy-viscosity part while the similarity part allows
results in subgrid stresses with similar structure and is givewther effects such as the backscatter of energy from subgrid
by scales to resolved scales and anisotropic energy transfers be-
tween grid and subgrid scale motion. The mixed SGS model
is given by

The correlation of this model with the subgrid stress tensor is
known to be much better than in the case of the Smagorinsky ~ dij = Uil — G;@; — C4A%[S[S;;. (18)
model. Although less dissipative than the Smagorinsky
model in the transitional zone, it sometimes does not provide
enough dissipation in fully turbulent flows for numerical sta- Hij+CqMjj=L
bility. In the mixed model, the scale-similarity model is

added to the Smagorinsky model to exploit the advantages afhere M;; and L;; are defined by Eqs(16)—(17), respec-

a4y =0 U, U, (12

The dynamic model coefficient is obtained by:

ij» (19

both models, tively, andH;; is as follows:
qi; = —C2A?|S|S; +Uju; — G;(T. (13 — —~
’ ° L Hij=u; uj—u; uj— (Ui uj— Gij). (20)

The recent study of Shaat al?® shows that there is a physi-
cally based reason for the two parts of the mixed model. Th&he dynamic model coefficient is obtained with the least-
scale-similarity part is better suited to account for mean flonsquares approach:

effects on the SGS energy transfer and anisotropy, while the

Smagorinsky model is appropriate for representing the clas- :<Mij('-ij —Hij)) 21)
sical, dissipative energy cascade from the grid scales to the d (MijMij)

subgrid scale motion.

) ) ) IIl. NUMERICAL METHOD
3. Dynamic eddy-viscosity model

A modification of the Smagorinsky model has been pro- 5 . o ) .
posed by Germanet al2* to correct the excessive dissipa- Sarkat® of the plane jet which is based on their earlier
tion of this model and avoidd hocflow-dependent changes studie€®?’is used here and summarized below for complete-

to the coefficient. The square of the const@dtis replaced €SS

by a coefficientCy4 which is dynamically computed and de- A, Spatial integration method
pends on the local structure of the flow. The Smagorinsky
eddy-viscosity formulation is retained:

The numerical method of the recent DNS by Stanley and

The spatial derivatives are computed using a nonuniform
fourth-order compact scheme based on the uniform scheme
0ij — 301 8ij= — CaA?[S]S;;. (14)  of Lele® Nonuniform third-order compact expressiéhs
based on those of Carpentetral?® are used on the bound-
aries. In order to damp the high wave number spurious os-
cillations created at the boundaries, a fourth-order nonuni-

In order to computeC,, a test filter, denoted by a hat and
corresponding to a filter width larger than that of the LES, is

introduced. The consecutivk application of these two fil- o compact filter is applied to the field at each iteration.

ters defines a filter with a filter width ofA. For the top-hat  1he parametew of the filter is optimized in order to keep the
filter, the optimum valuec= JE which corresponds to a test jhuence of the filter as weak as possible and is set equal to
filter width of 2A, was found in a recent study of the mixing o 4983. The valugr=0.5 corresponds to no filtering. The

25 : : :
layer™ The dynamic constant is calculated with a least egyting scheme has overall fourth-order spatial accuracy on

squares approach according to: stretched grids.
(Mj;Lij)
=, 15
(M My;) o=
— B. Time integration
Lij=u; uj—aidj, (16)

- The fourth-order Runge—Kutta scheme of Carpenter
o = 29 - . . . .
Mij:_(KA)2|S|Sij+A2|S|Sij- (17) etal™ is used for the time integration of the convective

) ) N ) terms. It is a five-stage scheme for which the fifth stage is
To prevent numerical instability caused by negative valueg,yqed to improve the stability. To save computational time,

of Cy, the numerator and denominator are averaged in thg,q \iscous terms are advanced using a first-order scheme.
homogeneous directions. The const@gtis artificially setto  thjg is implemented by advancing the Euler terms using the
zero during the few instances when it is still negative. fourth-order Runge—Kutta scheme and then evaluating and
o advancing the viscous terms in time using a first-order
4. Dynamic mixed model scheme. Treating the viscous terms in this way is found to
The dynamic mixed model is still the sum of the simi- have a negligible impact on the solution accuracy because
larity model and the Smagorinsky model but the constant othose terms are small compared to the convective terms for
the Smagorinsky part is dynamically computed. This modethe conditions of the jets simulated here. All the simulations
takes advantage of the correct dissipation produced by thieave been performed using a constant CFL number of 1.5.
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C. Boundary conditions IV. LOW REYNOLDS NUMBER SIMULATIONS

The principal difficulty in the simulation of unsteady A. The jet parameters
flov:/st_m aftruntcabtledboper(; compu(tja_tt_lonalt d?rln(al_n tls the for- The case presented here corresponds to three-
mulation of suitable boundary conditions to take into accounty; o nqjnna| simulations of a “strong” jet. The jet is called

2” thg |r_1formFa].tI|on passing mwarld and f?ut;/_vard gcrohss thestrong since the co-flow velocity, is weak compared to the
of:m tgrlest,)w |de m|n|m|zd|_r:g spur:|ous [)e ections. ug non?et centerline velocity, resulting in a strong shear layer at the
refiecting boundary conditions have been propose prevJ’et edges. The ratio of the velocity between the low- and

; 1
ousII):/, foLexarEcFIe, Thomﬁsa(hahnd Giles’ d1 id IIhigh-speed streams is 0.09. The ratio of the jet slot width to
or the outflow as well as the upper and lower sidewally, o it6 momentum thickness/ 6= 20.

Eounglarletsﬁ thﬁ noPre_fltgctmg <E_ond|t|ons ode?_(r)]mp?(t))n, d The jet Reynolds number of this simulation is jRe
ased on In€ charactenstic equations, are used. 1hese Ounzf)AU,-d/,u=3OOO, whereAU; is the velocity difference be-
ary conditions are allowed to switch between inflow and out-

tween the two streams at the inflow addis the jet slot

flow at each point depending on the instantaneous local NOGidth. The Reynolds number has been chosen to be the same

mal velocity. The corner points are treated as nonreflectin%S those of the direct numerical simulation of Stanley and

in planes 45 degrees from the adjacent boundaries. At th§arkafL8 and is sufficiently small to enable an accurate DNS

?onrfflectlng outfloc\i/vbpo;gtsd an a(;jdsltt'ql? al %sture dcct)rrec;[hat resolves all relevant spatio-temporal scales on the com-
lon term, proposed by Rudy an rikwerdas used to utational mesh. The Reynolds number based on the initial

maintain the pressure near a specified free-stream pressur hear layer momentum thickness is,R&50.

At the inflow boundary, the time variation of the incom- The Mach number of the high-speed stream is 0.35 and
ing characteristic variables is specified while the the equatiotEnne convective Mach number of the shear IayerM%

for the outgoing characteristic variable is solved using inter-_ 0.16. At such Mach numbers, the physical characteristics

e ) : " €bt the flow are similar to those of an incompressible flow.
specification of the incoming characteristic waves at th'SThe subgrid modeling in LES of this flow can then be re-

fbouncti;’j\ry. f';/lor[eovf:’h t0b|50|<'zljte the |rtljt§frlor of tgeffdoma'ngarded as incompressible, which implies that the subgrid
rom the etects of the bounbidary condiions, a bUer 20N€qyess tensog;; is the only subgrid term which needs to be
based on the approach of #us used on the nonreflecting modeled

boundaries. The buffer zone is a numerical construct that Broadband inflow conditions obtained by filtering the
consists of a stretched grid with additional nodes place(ilnflow perturbations in the DNS were used with a maximum

around the computational domain where exponential damH’Iuctuation intensity of/AU=0.1 in the shear layer
ing terms are added to the governing equations. ' '

Periodic boundary conditions are used in #direction. ) )
B. Computational parameters in the DNS

A 205X 189x 60 computational grid is utilized in the
DNS 8 The computational domain of interest has the follow-
ing dimensionsL,=12,L,=15, andL,=4. All the meshes

The longitudinal mean velocity profile at the inflow is a have been nondimensionalized by the jet slot witdltihese
top-hat profile with smooth edges. A hyperbolic tangent prodimensions do not include the additional buffer zones at the
file is used: jet exit and sides. The mesh is uniform in thdirection with
U.tUs U.—U h,=0.0666. In they direction, it is uniform in the center of

i r(l) (220 the jetfromy=8 toy= 12 (wherey=8 represents the center

2 2 20 of the jey with a grid spacindi,=0.0666 and then is slightly
where 6 is the momentum thickneskl, designates the lon- Stretched until the side buffer zones. The mesh is then mir-
gitudinal velocity in the middle of the jet and, is the rored across the centerline of the domain. In the spanwise

co-flow velocity. The co-flow velocity is smallJ,/AU direction, the mesh is also uniform with,=0.0666. This
=0.1, so that, for the streamwise distances considered her@esh is thus almost uniform and homogeneous in all the
the evolution is similar to that of a jet with no co-flow. The directions with a grid spacing=0.0666. This accuracy has
mean lateral velocity is initialized aé=0 while the density been found to be satisfactory and the results compare well
and the pressure are uniform. with the experimental results.

A broadband forcing representative of isotropic turbu-
lence is utilized at the inflow. The three-dimensional energyC. Description of the LES

spectra of the velocity fluctuations at the inflow is For the LES, a 6% 105x 16 computational gridFigs.
K4 1-2) has been constructed with a domain size equal to that of
E(k)= 1—69XF[—2(k/ko)2], (23)  the DNS. The mesh has approximately a factor of 22 fewer
points than the DNS grid. We have tried to keep the grid as
where the peak frequendy is set to the most unstable mode uniform as possible in the LES. In thedirection, the grid is
for the hyperbolic tangent shear layer. The lateral shapeaglatively fine between 0 and 1 witih,=0.1 in order to have
across the jet, is such that the fluctuation intensity peaks iadequate numerical resolution of the inflow region. Between
the shear layers on either side of the jet. x=2 andx=12 the grid is uniform with a grid spacinig,

D. Inflow conditions
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........... f=1
----f=2
— - =4
12 r |— DNs
12 O Thomas 89 Al

0.0 5.0 10.0 15.0
FIG. 1. Computational grid onxay section. The buffer zone, ¥2< 15, at x/d
the outflow and B<y<3, 13<y<16 at the sides is also shown.
FIG. 3. Downstream evolution of the jet half-width with different filter sizes
for the dynamic Smagorinsky model. The ratio of the filter size to the grid

=0.25 and a short transition zone betweenl andx=2. In  SPacing is denoted by
they direction, the grid is relatively fine betwegn=7 and
y=9 with h,=0.066 66 in order to resolve the initial shear 5
layer and then a slight stretching is used until the side buffer  MS(V)=rmgv)+2/3(»/CA)%, (25
zone. In thez—direction the grid is uniform with12=(.).25.. rms(w) = rms(w) + 2/3( v, /CA )2, (26)
A computation was attempted on the LES grid without
any LES model. This computation was unstable which conWhere Cs=0.1. The effect of this correction is to slightly
firms the necessity of a LES model. increase the turbulent intensities calculated from LES.
Subsequently, the Smagorinsky, the dynamic Smagorin-
sky, and the dynamic mixed models are tested. Three filteg. Influence of the filter size

sizes are also tested=h, A=2h andA=4h, whereh is . . . .
Different filter sizes are now tested and compared in

the local grid spacing. ) . ) :
For the dynamic mixed model, it is found necessary toorder to determine the optimal choice. For the filter sive

introduce a small damping coefficient with magnitude be—t:h4h dqnly,t.thebspanmsteh S'ig of(;he don]ag} 'S |rt1r(]:reaseq n
tween 0 and 1 that multiplies the similarity part of the model ez-direction because the 16 nodes avaiiable In the previous

in the initial region G<x<1. If this damping is not present, mesh leads to.prot_)lems during the numerical implementat.ion
the numerical viscosity produced by the Smagorinsky part i f ﬂ;e tﬁSt f|I;e'r I?h;he 3yn§m|ct_procgrdhured..The mesh |fs
not strong enough to stabilize the computation. The similar- ept unchanged in andy directions. The dimensions o

. . : . the new computational domain atg=12,L,=15, andL
t t is then full t t = 1. Yy z
ity partis then fully active downstream af =8, while the number of grid points is &1105x 32.

The downstream evolution of the jet half-width for the
different filter sizes is presented in Fig. 3 for the dynamic
In order to compare the turbulent intensities obtained inrSmagorinsky model. When the filter size increases, the
the LES with corresponding DNS results we have the choicgrowth rate of the jet decreases. The downstream evolution
to either filter the DNS results on the coarse grid as proposedf the centerline fluctuation intensity,, for the different
in Vremanet al,?! or to take into account the energy of the filter sizes are presented in Fig. 4. The results show signifi-
modeled subgrid scales to correct the LES solution for theant deterioration when the filter size is chosen to e
turbulent intensities. The second solution is preferred be=4h as indicated by substantial underprediction of the tur-
cause we also want to make comparisons with available exsulence intensity. The next figures present the dynamic con-
perimental results where filtering on the LES grid is not pos-stant(Fig. 5 and the subgrid viscositfFig. 6) obtained at
sible. The Deardorff correctidh is thus applied to the one section X=10d) for the different filter sizes with the
fluctuations of the velocity: dynamic Smagorinsky model. It can be seen that, when the
_ 2 filter size increases, the value of the constant slightly de-
rms(u) =rms(u) + 2331 /C4A)%, 29 creases. However, the subgrid viscosity increases with filter
size because it involves a factor &f. This increase in sub-
— T grid viscosity with filter size is larger than it should be since,
e as shown in Fig. 3, the jet growth rate is diminished with
=== respect to experimental results far=4h. Although results
= are presented here for only the dynamic Smagorinsky model,
the preceding remarks are also true for the dynamic mixed
FIG. 2. Computational grid on &z section. model.

D. Deardorff correction

z
O =N WA

o5 T 5
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0.40 15.0

............ =1 [

R f=2

— 1= -~ i=4

—— DNs N

0.30 - O Browne 83 ] N
O Thomas 89 / \
P 10.0 + P / \
/ A ! N
. a8 /// v \
) = ’ L) \
% 0.20 = y \\ // \
E / ¥ \
S / \
5.0 r / ST \
0.10 + // : . \\
/ \
/ \
; \
| e . \\\
0.00 ‘ - 0.0 . S
0.0 5.0 10.0 15.0 -3.0 -1.0 1.0 3.0
x/d vis,

FIG. 4. Downstream evolution of the fluctuation of the longitudinal velocity FIG. 6. Comparison of the subgrid viscosity obtained with different filter
with different filter sizes for the dynamic Smagorinsky model. sizes at the section=10d for the dynamic Smagorinsky model.

In the following, only the results produced with a filter by several author$Ghosal and Moirt? Geurts*® Vasilyev
size of 2\ are presented. This size has been chosen becauseal®’) and additional terms in the LES equations or modi-
the importance of the subgrid stress in the balance of théed filters have been proposed.
momentum equations is higher than for the filter sizeAof In our computation, where the stretching is small, we try
without deterioration of the results. to estimate the error due to the noncommutativity of the
filtering operation with the differentation using a formula
proposed by Ghosal and Moin:

F. Influence of the nonuniformity of the grid o

A4 Al ’ 2
In thex andz directions, the grid is uniform except for a d_¢: d_¢_ h') d% +0(kh)4 (27)

slight stretching between<ix< 2. But in they direction, to dx  dx h | dx?

resolve the initial shear layer instabilities, the grid is as fineyjith

as the DNS grid in the center of the jet{¥<9) and then .

a slight stretching is used until the buffer zone. The nonuni- a:f £2G(§)d¢, (28)

formity of the grid requires the use of filters with a variable —o

filter width. The use of such filters invalidates the standaquhereG represents the filter function, which is in our case

derivation of the basic equations for the filtered fields since[he “top-hat” filter. The error is first computed on the aver-

the filtering operation, in general, does not commute with th%ged profile of the longitudinal velocity at the sectian

operation of differentiation. This problem has been studied_ 10d and then on an instantaneous profile at the same sec-
tion. In Fig. 7, the error for the longitudinal velocity at the
sectionx=10d is presented. The gradients of the averaged

0.030 ‘ ' and instantaneous longitudinal velocity are also plotted in

o Fig. 8 to compare with the error term.

e As expected, the error is larger on the instantaneous field
than on the mean field. In the center of the jet, the error is
equal to zero because the mesh is uniform. The region of
stretching begins at the border of the jet but the error though
nonzero is very small. The local extrema, even in the instan-
taneous error, are less than 0.2% of the corresponding values

of the velocity derivative.

0.020

0.010 |

G. Separation between modeling and numerical
errors

Large eddy simulations are performed on grids that are
5 just fine enough to resolve the important large-scale flow
Yi0os structures and numerical discretization errors on such grids

FIG. 5. Comparison of the dynamic constant obtained with different filter 2N have considerable effeCt_S on the S.imU|ati0n results. This
problem has been recently discussed in the

0.000 - ' _
3.0 210 10 3.0

sizes at the sectior=10d for the dynamic Smagorinsky model.
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FIG. 9. Comparison of the numerical and the modeling error obtained on the
evolution of the jet half-width with the dynamic Smagorinsky and the Sma-
gorinsky model.

FIG. 7. Comparison of the commutativity errordu/dy on the mean and
instantaneous longitudinal velocity profile at the section10d for the
dynamic Smagorinsky model.

and the differences between the fine grid LES and the DNS

literature—Vremari® Salvetti and Beau®’ Kravchenko and represents the modeling error:

Moin.*° The difference between LES and DNS is referred to
as the total error. It is the sum of two terms: a modeling error
arising from the subgrid model and the discretization error

caused by the numerical method. A method to separate those Figure 9 shows the effects of those two errors on the
two errors has been-proppse-d by Vrgﬁ?ahased on the evolution of the jet half width. The discretization error is
expectation that the discretization error in the LES decreaseg%enerally smaller than the modeling error. The modeling er-
when the resolution is increased with the filter width keptror associated with the Smagorinsky mo;jel is much larger
constant. < . . A keening he!N@N that produced by the dynamic Smagorinsky model indi-
Anew LES is then performed on a finer grid keeping the .a4in the superiority of the dynamic procedure. The discreti-
same filter width. The grid step has been divided by o ini0n error and the modeling error have opposite signs
thex andz directions. In they direction, the same grid step IS \ e implies that the discretization error assists the subgrid

kept because in the center of the jet, it is as fine as the DNﬁ]odel and that the total error is then smaller than the mod-

€lMmod=€lMine grid LES €MoNs: (30)

grid. he diff b h heling error. This observation suggests that, for this example,
f The f |herence _et\;veen t ose two LES represents t ﬁrid refinement may not necessarily give rise to smaller total
efiects of the numerical error: errors. Nevertheless, both modeling and discretization errors

ElMyym= €M Es—€Mine grid LES (29 are small with the dynamic Smagorinsky model. Interest-

ingly, Vremari® also observed opposite signs of numerical
and modeling errors in the temporally-evolving mixing layer.

2.0

—— mean profile H. Computational results

instantaneous profile

1. Evolution of the mean flow

The profiles of the longitudinal velocity obtained with
the dynamic Smagorinsky modéfig. 10 and with the dy-
namic mixed modelFig. 11) are first presented. Similarity
coordinates are used with the transveysdirection normal-
ized by the local jet half-width5, 5 and the jet velocity dif-
ference with respect to the small co-flow normalized by its
value at the centerlindU,.

The longitudinal mean velocity profile at the inflow is

; flat and then, forx>6, develops rapidly to self-preserving
205 50 10 o0 10 20 30 profiles. We can see that far=2 the self-preserving profiles
ViAgs are not yet established and that for 8 the agreement with
FIG. 8. Comparison of the derivative of the mean and instantaneous Iongi'Ehe e)_(p_erlmental resuns IS gOOd for both models.
Similarity profiles of the transverse velocifpot shown

tudinal velocity profile at the sectiox=10d for the dynamic Smagorinsky - '
model. herg for the dynamic Smagorinsky model and for the dy-

dUfdy

-10
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FIG. 12. Downstream evolution of the jet half-width.
FIG. 10. Dynamic Smagorinsky model: Profiles of the longitudinal velocity
at different streamwise locations.

o ) . wakelike evolution expected for large coflow velocities. Fig-
namic mixed model are compared with experimental resultsre 12 shows the evolution of the jet half-width while Fig. 13
The overall agreement with the experimental data is alsQpows the evolution of the inverse square of the jet velocity
good. _ _ o excess; both should show linear evolution if self-similar con-

The downstream evolution of the jet half-widtfig. 12 itions are achieved. The self-similar behavior of the jet half-
and the centerline velocity excesBig. 13 are now pre-  \idth can be fitted 105 5= K, d(x/d+K>).
sented together with the DNS results. The experimental data The DNS evolution in the region Zx/h<12 is well-
from Thomas and Chufor a jet with Rg=8300 and from described by a linear cur¥® with K,=0.094 andK,
Browneet al® for a jet with Rg=7620 are also plotted. The =0.904. The dynamic Smagorinsky model gives,
excessive dissipation of the standard Smagorinsky model is. g g4 andK ,= 1.38 while the dynamic mixed model gives
confirmed and the evolution of the jet half-width and center-Kl:0_106 and,=0.4. The LES and DNS results are con-
line velocity excess arseverelyunpredicted by this model. gistent with experimental data where the growth rate
The two other models both give reasonable results comparqgié0 /dx=Kj is found to vary between 0.1 and 0.11. The jet
with the DNS and experimental results. From the poor prQVeldcity in the self-similar region can be described &k)2
diction of the Smagorinsky model, it is clear that the dy'zclAuﬁ(x/dJrCZ), whereAU(x) is the jet velocity eJx-
namic approach is required when it is applied to the jet.  cgagg that decreases withwhile AU is the constant inflow

When self-similar, the planar jet grows linearlfos  jet velocity excess. The DNS results g =0.208 and
«X, while the jet velocity excesaU.=U.—U, decreases C,=—0.577 while the LES results giv€,=0.19 andC,

aSAUcmellz- Note that the jet velocity;>U,, the co-  _( g9 with the dynamic Smagorinsky model, whi@,
flow velocity, so that jetlike behavior is expected without the _ 5 55 andC,=0.18 with the dynamic mixed model.

15
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O Bradbury 65 —-— Dyn mixed o
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= .
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x/d
FIG. 11. Dynamic mixed model: Profiles of the longitudinal velocity at
different streamwise locations. FIG. 13. Downstream evolution of the centerline velocity excess.
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FIG. 14. Profile of the subgrid shear strgssg,). FIG. 16. Dynamic Smagorinsky model: balance of the streamwise momen-

tum equation at the sectior=10d.

2. Comparison of the subgrid stress tensor

A few instantaneous DNS fields have been filtered ordynamic mixed mode(Fig. 15. It can be seen that the con-
the LES grid, averaged in the spanwise direction, and thegibution of the Bardina part is much larger than that of the
ensemble averaged to get an estimate of the Reynolds avesmagorinsky part. Also, the Smagorinsky part in the mixed

age(q;;) of the subgrid stress tensor defined by Bd). The  model is similar in magnitude to the dynamic Smagorinsky
most important component is the subgrid shear sti@gs) model.

(obtained byz direction averaging and time averaging
which is compared with the DNS estimate in Fig. 14. The
componentgq,,) and(qy,) are negligible.

The dynamic mixed model compares much better with
the DNS results than the dynamic Smagorinsky model. The To see the importance of the subgrid scale term com-
Smagorinsky model is known to have a lower correlationpared to the other terms, the balance of the momentum equa-
level with the subgrid stress tensor than the similarity modetion is presented for the dynamic Smagorinsky model and for
and this finding is confirmed by the present results. The dythe dynamic mixed model.
namic mixed model predictions of the diagonal components  The filtered momentum equation, E), can be Rey-
(dxx+{Ayy).(d,2 (not shown hereare also in good agree- nolds averaged by averaging in teelirection and time in
ment with the DNS results. the jet so that:

The (qy,) component of the Reynolds stress is decom- 1

posed into its Smagorinsky part and its Bardina part for th@j(<ﬁ}(uwi>(uNj>)+aj<Rij>+¢9i<5}— Reaj{T_‘jﬂ a,{ai;) =0,

3. Balance of the momentum equation

(31
0.004 ; ‘ where(.) denotes Reynolds averaging. The terms on the left
—— Smag. partin dyn. mixed hand side represent mean convection, the resolved turbulent
~~~~~~~~~~~ Bardina part in dyn. mixed ) A
---- dyn Smag. stress, the pressure gradient, the viscous stress, and the sub-
0.002 | ] grid stress, respectively. Note that the resolved st(&9

=p(U{T;) represents the stress associated with the turbulent
part of the resolved velocity field whilgy;;) represents the
SGS stress associated with the unresolved, modeled part of
the fluctuations. The contribution of these terms to the bal-
ance of mean streamwise momentui@}(U;), is shown in
Figs. 16 and 17. The dominant balance is between mean
—0.002 | | convection and the transverse gradient of the resolved Rey-
nolds shear stress(R;,).

The contribution of the subgrid term is much larger in
the case of the dynamic mixed model than in the case of the
‘0-004_30 _1' 0 1'0 3.0 dynamic Smagorinsky model and increases with the filter

' ' Vi3, ' ' size. However, the sum of the resolved stress term and the
; subgrid stress term is approximatehe sameFig. 18 for
FIG. 15. Decomposition of the subgrid shear stress for the mixed model.the two models which explains why the LES predictions of

0.000
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v/s, FIG. 19. Downstream evolution of the fluctuation of the longitudinal veloc-
0.5

ity: comparison between the different models.

FIG. 17. Dynamic mixed model: balance of the streamwise momentum
equation at the section=10d. . . . .
sipation of the Smagorinsky model is again shown by the

unrealistically small values of the streamwise turbulence in-
the mean flow evolution in Figs. 12-13 are similar despitetensity. This model will not be discussed further in the fol-
the much better agreement of the mixed model subgrid stredewing plots. The two other models give the same results
with DNS. Thus, even though the subgrid shear stress in thentil x=5d, then the dynamic Smagorinsky model predicts
dynamic Smagorinsky model is far too small relative to thehigher values.
exact value(see Fig. 14 the large resolved stress compen-  The fluctuation intensity profiles, s (Fig. 20 are com-
sates for the small subgrid term in computations with thepared with experimental data and DNS. The section

dynamic Smagorinsky model. =11d is chosen because it is the region where self-similarity
in the fluctuating quantities begins and is far from the out-
4. Comparison of the turbulence intensities flow boundary. The overall agreement with the DNS and the

experimental results is good. The dynamic Smagorinsky

The downstream evolution of the longitudinal centerline | A h iahtly ol h
fluctuation intensities is presented in Fig. 19. The experimen[nOOle prediction is perhaps slightly closer to the DNS pre-

tal results of Browneet al® and Thomas and Chiare also ~ diction.

shown. The fluctuating quantities, consistent with experi- ]

mental studies, develop much slower toward self-preserving- K€Y properties of the SGS models

profiles than the mean flow. The streamwise rms value in- The downstream evolution of the dynamic consi@g.
creases slowly before=2.5d and then increases rapidly to 21) and the subgrid dissipatioffrig. 22 are first presented
reach the similarity values after=10d. The excessive dis- for the dynamic Smagorinsky model. The dynamic constant

0.40
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-_dyn. mixed e Dyn Smag.

: — — - Dyn. mixed

0.020 + © Ramaprian 85
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-
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0.10 |
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Y18y 5 ¥/8y5

FIG. 18. Comparison of the sum of the resolved stress term and the subgrid
stress term for the dynamic Smagorinsky model and the dynamic mixedFIG. 20. Comparison of the streamwise turbulence intensity obtained with
model at the sectior=10d. the different models at the sectior+ 11d.
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FIG. 21. Dynamic Smagorinsky model: downstream evolution of the dy-FIG. 23. Comparison of the dynamic constant obtained with the different
namic constant. models at the sectior=10d.

is very small in the shear layer near the inflow, increases

. . “>=22h. However,C4=C2=0.017 is smaller than the values
rapidly, and aftex=6 does not vary much with streamwise (not shown hergobtained with the dynamic models and a
distance. The evolution of the subgrid dissipation is similar.

It is very small near the inflow due to the small value of theﬂlter size ofA=h. The baseline Smagorinsky model has no
y ) mechanism to adjust the constant level to the filter size.

. L L q\/loreover, the magnitude of the eddy-viscosity coefficient
streamwise direction. In the transverse direction, the Smag sredicted by the dynamic model near the inflow is much

rlnslt<y Ipoefﬁc:ent and subgnd lflSSlzattlhon w(;creasg frt?]m fth smaller than its value in the fully developed region.
centerine value, reach a peak, and then decay in the ree- - ,q subgrid dissipation is higher for the dynamic mixed

s:reri[lm. ;’?:szrggng_rkg or;_the ev?[lutlofn Otf) t?r(]eddynamlc Co;];nodel due to the contribution of the scale-similarity part.
stantandhe ISsipation are frue for both dynamic Mot eddy-viscosity contribution is similar for both the dy-

els. o : .
. . e namic mixed and dynamic Smagorinsky models. For the dy-
(Fi ng) dyn(;’:l?;]lc COQS'[%I’(FIQ. 2.3)’ Fhezsgjb%;'q dl(Sijlpa;[rlwon namic mixed model, the two parts of the subgrid dissipation,
719. 2%, and the subgri V'S.COS"(}F'Q' obtained fortne ., o Smagorinsky part and the similarity part, are of the same
different models at one sectior 10d) are compared. The order

dynamic constant levels are similar between the dynamic Concerning the subgrid viscosity, the difference between

Smagc;.rlltnsky. mo?_il alnd tlhe fd%nar:c m|xgd lr(nodel W'thtthethe dynamic Smagorinsky results and the dynamic mixed
same filter size. The level of the Smagorinsky consip results is very small which is a consequence of the same

=C§=0.017 is also plotted. It is higher than the constant L .
predicted with the dynamic model with a filter size Af level of the constant. The subgrid viscosity produced by the

15.0
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,,,,,,,,,,, Dyn. Smag.
— — - Dyn. mixed - Lo

esgs/sm

—1I .0 1.0 3.0
y/5,

L L

-1.0 1.0
/8y

3.0

FIG. 22. Dynamic Smagorinsky model: downstream evolution of the sub+IG. 24. Comparison of the subgrid dissipation obtained with the different
models at the sectiox=10d.

grid dissipation.
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FIG. 27. DNS: contours of the-component of vorticity on ay-plane.
Results from DNS of Stanley and Sark#ef. 18.

.. 28) and the dynamic mixed modéFig. 29 are presented
3.0 and compared with the DNS contouisig. 27).
V13, s For x<5d the largest Kelvin—Helmholtz rollers of the
two mixing layers at the jet edge appear clearly. These mix-
FIG. 25. Comparison of the subgrid viscosity obtained with the differenting layers develop symmetrically and start breaking down
models at the section=10d. into small scales. Aftek=5d the two mixing layers merge,
a rapid breakdown of the large structures with a growth of
Smagorinsky model without the dynamic procedure is mucihe small structures.occurs, 'and the development of the jet
higher. becomes asymmetric. The instantaneous large-scale struc-
tures of the jet in the LES compares well with the DNS
6. Temporal auto-spectrum results. Although the LES qualitatively captures the large-
The auto-spectrum in time of the centerline longitudinalscale structures in the DNS, the small-scale features are ab-
velocity fluctuation is shown in Fig. 26 for the dynamic sent as would be expected.
mixed model. The spectrum develops rapidly from its initial
form at x=2d. Further downstream, the spectral shape forv. HIGH REYNOLDS NUMBER COMPUTATIONS

large frequenciesf(s/AU>0.3) appear to collapse well A higher Reynolds number jet is now considered. The

L e e b B eynols number i et o REGOOOD corespondng (0 e
periments at the Strouhal numberSts, /AU=0.11. Al- éxperiment of Gutmark and Wygnanskh strong influence

though there is significant energy at=81.11 as shown in of the Reynolds number is, however, not observed in experi-

Fig. 26, a dominant discrete peak is not observed for th(%nental data for jets developing from turbulent initial condi-

turbulent jet simulated here ions.
: ' The length of the computational domain is also increased

SO as to capture a larger extent of the jet development. Con-
sequently, the height of the computational domain is also
Instantaneous isocontours of spanwise vorticity are novincreased to account for the expansion of the jet. The dimen-
presented in ary-plane. The contours of thecomponent of  sjon of the new domain ard:,=20,L,=32, andL,=6.
vorticity obtained by the dynamic Smagorinsky modélg.  These dimensions do not include the buffer zone. For
<12d, we have tried to keep the grid as close to the preced-
ing grid as possible. The new grid has>@B37X 16 points.
No DNS results are available because the Reynolds number
is too high to resolve all scales of motion. The LES results
are now compared with experimental results.

7. Isocontours of vorticity

E(k)/(AU &,,)

[l
BN

10% TS 10
f 8,/ AU
FIG. 28. Dynamic Smagorinsky model: contours of theomponent of

FIG. 26. Dynamic mixed model—evolution of the time spectrum. vorticity on anxy-plane.
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A. Evolution of the mean flow Y78y 5

The downstream evolution of the jet half-width is first F_IG. 31. Comparison ofthe_streamwisg turl:_;ulence intensity obtained the the
presented for the two models together with experimental rediferent models at the sections=19d: jet with Rgy=30 000.
sults (Fig. 30. For x<<12, the results are similar to those
obtained on the preceding grid for the lower Reynolds numit can be seen that, after=14d, the profiles approach self-
ber. Note that both the low and high Reynolds number simusjmijlarity.
lations jets have turbulent inflow conditions. The coefficients
of the linear curve fit to the jet half-width evolution aka ¢ ey properties of the SGS model
=0.094 andK,=1.66 for the dynamic Smagorinsky model . ) o
andK,=0.091K,=1.97 for the dynamic mixed model. The _1he dynamic constariFig. 33 and the subgrid dissipa-
values of the growth ratt, are in good agreement with the tion (Fig. 34 obtained by the two models are plotted and

values obtained in experiments. compared at the sectiorx€19d). The dynamic constant
obtained with the two models remains the same and is
B. Comparison of the turbulence intensities slightly smaller than the constant at the sectxen8d in the
simulation of the lower Reynolds number jet.
Profiles of streamwise fluctuation intensity,,s, at a The subgrid dissipation compared to the molecular dis-

single sectionX=1%h) are plotted in Fig. 31 and compared sjpation is much higher here than for the low Reynolds num-
with the experimental data of Gutmark and Wygnahskid  per case due to the decrease in the molecular dissipation. The
Ramaprian and Chandrasekhardhe agreement with ex- gissipation produced by the dynamic mixed model remains

perimental results is good although the difference betweeRjgher than the Smagorinsky model due to the scale-
the two models is larger at this section. Similar to the lowergjmilarity part.

Reynolds number computations, the maximum of the fluc-
tuation intensity for the dynamic mixed model is somewhaty; coNCLUSIONS
smaller than the dynamic Smagorinsky model. Profiles at

various streamwise locations are then preseffegl 32 and In this papera posterioritests of LES in the case of a
spatially developing jet have been presented. The computa-
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25 ¢+ O Browne 83 4 e x=12d
OThomas 89 — x=14d
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FIG. 30. Downstream evolution of the jet half-width: high Reynolds numberFIG. 32. Profiles of the streamwise turbulence intensity obtained with the
jet with Rg;=30 000. dynamic mixed model at different sections: jet with,R80 000.
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0.03 : » A=2h. Moreover, this filter size has been suggested by Vre-
~—"Dyn. Smag. manet al?! in the case of high-order finite difference simu-

o mbed lations.

Predictions of the three mode(standard Smagorinsky,
dynamic Smagorinsky, and dynamic miyeatre compared.
The standard Smagorinsky model is used with a coefficient
Cs=0.13 which, although lower than the value for isotropic
o turbulence, has been found to be better suited to shear flows.
Even so, it is found that the subgrid dissipation given by the
standard Smagorinsky model during the initial evolution of
the jet is excessively high resulting in substantial underpre-
diction of the jet width. It is clear that, when the Smagorin-
sky model is used, a dynamic procedure is required to predict
the growth rate of the jet as well as its turbulence intensities.

0.00 == — : Concerning the overall prediction of the mean field and the

-3 -1.0 1.0 3.0 ;
y/5 Reynolds strgss, the. two other models are both in gqod
03 agreement with experimental and DNS results. The evolution
FIG. 33. Comparison of the dynamic constant obtained with the differentof the jet growth rate and the centerline velocity excess com-
models at the section=19d: jet with Re;=30 000. pares well and self-similarity profiles are obtained. The
growth of the turbulence intensities is also relatively well
predicted. The evolution and comparison of some quantities
tion starts from the initial region of the jet with broadband such as the dynamic constant, the subgrid viscosity, and the
inflow disturbances and captures its natural developmenfubgrid dissipation are also presented. There is substantial
from a turbulent inflow. Three different subgrid stress mod-variation of the dynamic Smagorinsky coefficient across the
els are compared: the standard Smagorinsky model, the djet and during the initial streamwise evolution. The subgrid
namic Smagorinsky model, and the dynamic mixed modeldissipation associated with the dynamic mixed model is
Different filter sizes corresponding d=h, A=2h, andA  |arger than that given by the dynamic Smagorinsky model.
=4h are also tested. A series of simulations at a low Rey-  From previousa priori tests, the dynamic mixed model
nolds number Rg=3000 is performed to enable comparisonsis known to provide a much better representation of the sub-
with DNS data. Then the Reynolds number is increased angrid stress tensor and that is confirmed by auposteriori
simulations are performed at a high Reynolds numbey, Resimulations. On the other hand, the dynamic Smagorinsky
=30000, more typical of engineering applications. model severely underpredicts the magnitude of the subgrid

The quality of the LES model is determined by compari-shear stress but, surprisingly, provides satisfactory overall
son with previous DN and experimenté:” Computations  results concerning the mean flow. It is of interest to deter-
performed on the LES grid without the LES model showmine why LES with the dynamic Smagorinsky model is
numerical instability which confirms the necessity of a Sub-equally successful as the dynamic mixed model despite the
grid stress model. Comparison of different filter sizes ShOW%oor prediction of the subgrid stress. After examination of
that the filter sizel =h andA =2h give similar good results, the mean momentum balance, it is found that the sum of the
while, with the filter sizeA = 4h, the results are poorer. Sub- resolved and subgrid shear stress is similar with both models,
sequent results are presented and compared with a filter sizgus explaining their similar performance.

The second series of LES considers a jet at a much
higher Reynolds number, Re30 000, in a larger computa-

0.02

0.01 |

100.0 ' ’ tional domain. No DNS results are available for comparison
T i Smeg. since the Reynolds number is too high to accurately resolve
80.0 r 1 all the scales, but experimental results are available. Com-
pared to the lower Reynolds number, R8000 computa-
60.0 r tions, no strong differences in the results appear which is
consistent with the experimental data in jets starting with
& 400 ¢ turbulent inflow conditions. The downstream evolution of
3 the mean flow compares well with experimental data and
20.0 r similarity profiles are obtained for the intensities of velocity
fluctuations. The subgrid dissipation compared to the mo-
0.0 lecular dissipation is much higher than that in the low Rey-
nolds number case.
20.0 . :
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