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Tidal conversion and turbulence at a model ridge:
direct and large eddy simulations
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Direct and large eddy simulations are performed to study the internal waves generated
by the oscillation of a barotropic tide over a model ridge of triangular shape. The
objective is to go beyond linear theory and assess the role of nonlinear interactions
including turbulence in situations with low tidal excursion number. The criticality
parameter, defined as the ratio of the topographic slope to the characteristic slope of
the tidal rays, is varied from subcritical to supercritical values. The barotropic tidal
forcing is also systematically increased. Numerical results of the energy conversion
are compared with linear theory and, in laminar flow at low forcing, they agree
well in subcritical and supercritical cases but not at critical slope angle. In critical
and supercritical cases with higher forcing, there are convective overturns, turbulence
and significant reduction (as much as 25 %) of the radiated wave flux with respect
to laminar flow results. Analysis of the baroclinic energy budget and spatial modal
analysis are performed to understand the reduction. The near-bottom velocity is
intensified at critical angle slope leading to a radiated internal wave beam as well
as an upslope bore of cold water with a thermal front. In the critical case, the entire
slope has turbulence while, in the supercritical case, turbulence originates near the top
of the topography where the slope angle transitions through the critical value. The
phase dependence of turbulence within a tidal cycle is examined and found to differ
substantially between the ridge slope and the ridge top where the beams from the two
sides cross.
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1. Introduction
Internal tides are internal gravity waves generated by the interaction of an oscillating

barotropic flow with bottom topography in a stratified fluid. Some of the energy
converted from the barotropic tide to the baroclinic flow is locally trapped and
dissipated due to small-scale turbulence near the topography while the rest is radiated
away from the topography. The tidal energy thus radiated is considered to have a
significant contribution to the mixing of the stably stratified ocean (Polzin et al. 1997;
Munk & Wunsch 1998; Ledwell et al. 2000; Wunsch & Ferrari 2004). Enhanced
conversion to internal tides is found near sea-mounts (Kunze & Toole 1997; Lueck &
Mudge 1997), submarine ridges (Rudnick et al. 2003; Klymak et al. 2006), submarine
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canyons (Polzin et al. 1996; Carter & Gregg 2002), continental slope (Cacchione,
Pratson & Ogston 2002; Moum et al. 2002; Nash et al. 2004, 2007) and deep rough
topography (Polzin et al. 1997; St. Laurent, Toole & Schmitt 2001).

Inviscid linear estimates of the tidal energy radiated from various bottom
topographies are well established in the literature. Linearization requires that the
product εEx � 1 (Balmforth, Ierley & Young 2002) where the criticality parameter,
ε = tanβ/ tan θ , is the ratio of the topographic slope tanβ to the slope of internal
wave characteristic tan θ =√(Ω2 − f 2)/(N2∞ −Ω2), and the excursion number, Ex =
U0/Ωl, characterizes the ratio of the fluid excursion during a tidal cycle to the
topographic length. Applications of linear theory (Bell 1975a,b; Balmforth et al. 2002;
St Laurent & Garrett 2002; Llewellyn Smith & Young 2002; Khatiwala 2003) invoked
weak topography approximation (WTA) that requires a shallow slope topography with
ε � 1 and topographic height much less than the vertical wavelength of the internal
tide. Linear theory shows that the radiated internal wave energy flux is proportional
to π/ρ0U2h2

√
(N2 −Ω2)4 and provides analytical estimates of the proportionality

coefficient, M. Supercritical slopes that occur at sites of steep topography, e.g. at
the Hawaiian ridge, are also of interest and a key result of the analytical studies of
Llewellyn Smith & Young (2003) and St Laurent et al. (2003) is that the wave energy
flux at steep topography can be substantially larger than at gentle slopes. Pétrélis,
Llewellyn Smith & Young (2006) estimated the conversion rate for two different
topographies: a triangular and a polynomial ridge and performed a parametric study of
the effect of the topography height and width as well as water depth. For the triangular
ridge to be examined in the present study, they showed that, for low-to-moderate
values of the ratio of ridge height h to water depth H, the normalized wave flux,
M, is a weak function of slope angle in the subcritical regime, increases abruptly at
critical slope and then increases slowly in supercritical topography. Echeverri et al.
(2009) performed laboratory measurements of wave conversion at a two-dimensional
ridge with subcritical to supercritical slopes and showed that, at low excursion number,
results from experiment, computation and theory agreed well for the low modes. Small
differences in velocity profiles were attributed to differences in higher modes.

Numerical process studies to study wave radiation and local losses have provided
insights into nonlinear effects on wave conversion and frequency spectra. These
simulations are at geophysical scales but employ large values of molecular viscosity
to stabilize the algorithm so that turbulence is not permitted. Legg & Huijts (2006)
employed two-dimensional simulations with the MIT model to quantify the effect of
varying velocity amplitude over Gaussian topography of various aspect ratios and
heights. They found that the numerical results showed good agreement in many
respects with linear theory predictions, e.g. the proportionality of wave flux to U2

0
and h2, the increase of wave flux from subcritical slopes to supercritical slopes, and
the appearance of high harmonics when the barotropic velocity increases. Narrow
topography (strongly supercritical slope angle) had larger values of viscous dissipation
(in laminar flow state) owing to high vertical wavenumber modes. Legg & Klymak
(2008) further examined internal wave dynamics in the case of strongly supercritical
topography with ε = 4, low excursion number and low Froude number. Overturns and
large values of viscous dissipation (laminar flow) were found near the top and in the
lee, i.e. behind the obstacle with respect to the flow at the ridge top. It was proposed
that breaking lee waves and transient hydraulic jumps that occur when ε > 3 cause
these overturns. In a following study, Klymak, Legg & Pinkel (2010) parameterized
tidal dissipation in supercritical topography from nonlinear breaking of lee waves and
assessed its role in two-dimensional simulations.
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FIGURE 1. (Colour online) (a) Schematic of the problem: stratified fluid flows over a
two-dimensional topography as a response to oscillatory forcing, F0(td), in the streamwise
direction. (b) Profiles of the smoothed triangular topography (solid line) used in the present
work and the triangular topography (dashed line) used by Pétrélis et al. (2006).

Three-dimensional, high-resolution simulations that resolve turbulence are necessary
for numerical studies to help understand the microstructure associated with wave
breaking. The first turbulence-resolving simulations of internal tide generation were
performed by Gayen & Sarkar (2010) for flow over an asymmetric sloping bottom,
corresponding to a model continental slope, at critical slope angle, i.e. ε = 1.
These simulations showed strong near-bottom intensification of the velocity and
a strong outgoing internal wave beam similar to the laboratory experiment of
Zhang, King & Swinney (2008). However, unlike the laboratory experiments, the
simulations that were performed at higher Reynolds numbers showed transition to
turbulence at Res ≡ (U0

√
2ν/Ω)/ν ' 100. Both convective and shear instabilities

were observed during different phases of the flow. Lim, Ivey & Jones (2010), using
laboratory experiments, found beam formation, boundary-layer turbulence and upslope
propagation of bores depending on the value of the Reynolds number. Gayen &
Sarkar (2011b) employed direct numerical simulation (DNS)/large eddy simulation
(LES) to demonstrate that the beam width, beam velocity and bottom turbulence
energy and dissipation tend to increase with increasing length (height) of critical slope.
Both Gayen & Sarkar (2010) and Gayen & Sarkar (2011b) employed a streamwise
inhomogeneous formulation to model internal wave generation in contrast to the
streamwise periodic domain employed by Slinn & Riley (1998) who performed the
first turbulence resolving simulation of internal wave reflection. The mechanisms of
turbulence generation at various phases during the oscillating flow over a sloping
bottom are explained in the later work of Gayen & Sarkar (2011a) using LES of
a small patch of an internal tidal beam, scaled up to a width of 60 m. Turbulent
dissipation rate was found to peak when the near-bottom flow was near zero and
reversed from downslope to upslope as in the observations of Aucan et al. (2006) at
a bottom mooring on a deep flank at Kaena Ridge in Hawaii. Convective instability
leading to overturns that span the internal wave beam was found to occur during flow
reversal from down to up.

An outstanding question is how do nonlinear processes and bottom turbulence
affect the internal wave generation and, in particular, what is the effect on the
energy conversion to the baroclinic flow and on the wave flux radiated away from
the topography? We address this question through turbulence-resolving simulations of
oscillating flow over a smoothed triangular ridge, shown in figure 1(b). The symmetric
triangular topography allows quantitative comparison with the linear theory results
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of Pétrélis et al. (2006). Another important goal is to determine the phasing and
energetics of the turbulence. The problem is formulated in § 2, where the solution
methodology is given and the simulated cases are listed. Methods, based on linear
theory, to extract the mode strength and calculate the tidal conversion factor are briefly
presented in appendix B. Results in the low-Re laminar flow regime are described
and compared with linear theory for three values of criticality parameter in § 3.
In § 4, changes in the conversion to internal waves at critical slope topography in
higher-Re turbulent flow are discussed. Turbulence generation, phasing and energetics
are discussed in § 5. Supercritical slope topography in the turbulent regime is briefly
addressed in § 6. Finally, conclusions are presented in § 7.

2. Formulation of the problem
The near-bottom flow resulting from a current oscillating over a two-dimensional

ridge is illustrated in figure 1(a). The bottom is adiabatic while there is a background
thermal stratification with constant buoyancy frequency, N∞. The flow is forced by an
imposed pressure gradient oscillating in time (td),

F0(td)= ρ0U0Ω cos(Ωtd), (2.1)

in the horizontal direction that results in a background barotropic current, U(x) sin(φ),
where φ is the tidal phase. Coordinates x, y and z denote the streamwise, spanwise
and vertical directions and u, v and w are the corresponding velocity components. A
larger view of the model ridge is shown in figure 1(b). The triangular ridge, without
smoothing, can be described mathematically as

z(x)=
h0

(
1− |x|

l0

)
if |x|6 l0,

0 otherwise,
(2.2)

where h0 = 0.4 m and l0 = 1.5 m. After smoothing, the ridge has a height of h =
0.328 m and a half-length of l= 1.9 m. The constant slope portion of the ridge ranges
from z= 0.13 m to 0.28 m on both sides which correspond to 0.45 6 |x|6 1.01.

2.1. Governing equations
The dimensional quantities in the problem are the free stream velocity amplitude
U0, the tidal frequency Ω , the background density gradient dρb

d/dzd|∞ and the fluid
properties molecular viscosity, ν, thermal diffusivity, κ , and density, ρ. The variables
in the problem are non-dimensionalized as follows:

t = tdΩ, x= (x, y, z)= (xd, yd, zd)

U0/Ω
, p∗ = p∗d

ρoU2
o

,

u= (u, v,w)= (ud, vd,wd)

U0
, ρ∗ = ρ∗d

U0

Ω

dρd

dzd

∣∣∣∣
∞

.

 (2.3)

The resulting non-dimensional form of the governing equations is as follows:

∇ ·u= 0 (2.4a)

Du
Dt
=−∇p∗ + cos(t)i+ 1

Re
∇2u− Bρ∗k−∇ · τ (2.4b)

Dρ∗

Dt
= 1

RePr
∇2ρ∗ + w−∇ ·λ (2.4c)
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Here, p∗ denotes deviation from the background hydrostatic pressure and ρ∗ denotes
the deviation from the linear background state, ρb(z).

The governing equations have three non-dimensional parameters: Reynolds number
Re, Buoyancy parameter B and Prandtl number Pr , where

Re≡ lexU0

ν
= U2

0

Ων
, B≡−g

dρb
d

dzd

∣∣∣∣
∞

1
ρ0Ω2

= N2
∞
Ω2

, Pr ≡ ν
κ
. (2.5)

Here, lex = U0/Ω is the tidal excursion length and N∞ is the background value of
buoyancy frequency, assumed constant. The following Reynolds number,

Res = Uδs

ν
=√2Re, (2.6)

based on the Stokes boundary layer thickness, δs = √2ν/Ω , is a commonly used
alternative to Re. The ridge geometry is given by the slope angle, β, and the
slope length in the x-direction, l. The angle of the internal wave phase lines with
the horizontal is given in a non-rotating environment by θ = tan−1

√
Ω2/(N2∞ −Ω2).

Thus, in addition to those listed in (2.5), there are three other independent non-
dimensional parameters: the excursion parameter Ex = U0/(lΩ), the slope angle β
and the slope criticality parameter ε = tan(β)/ tan(θ). The topographic Froude number,
Fr = U0/(N∞h), although not independent of the six non-dimensional parameters listed
above, is also of interest.

The governing equation (2.4) are written in the following coordinates (see Gayen &
Sarkar (2011b) for details) and transformed to the strong conservation law as described
by Fletcher (1991):

ξ = ξ(x, z), η = η(x, z), ζ = ζ(y), (2.7)

where, at the bottom topography, ξ points parallel to and across the ridge while η is
normal to the ridge.

2.2. Numerical method
Transfinite interpolation (TFI) is used to generate the boundary conforming grid and
the transformed governing equations are solved using a mixed spectral/finite difference
algorithm as described by Gayen & Sarkar (2011b). Variable time stepping with a
fixed Courant–Friedrichs–Lewy (CFL) number 0.8 is used. Time steps are the order of
10−3 s.

Periodicity is imposed in the spanwise (ζ = ζ(y)) direction on velocity, density ρ∗
and pressure p∗.

The bottom boundary, η = 0, has zero velocity and zero density gradient. Grids are
designed to be orthogonal near the boundary so that

∂ρ

∂η
= 0⇒ ∂ρ∗

∂η
=−∂ρ

b

∂η
at η = 0. (2.8)

At the top of the domain, ∂u/∂η = 0, v,w = 0, and ρ∗ = 0. At the left and right
sides, ∂u/∂ξ = 0, v,w = 0 and ρ∗ = 0. To match the boundary condition for the
density deviation, ρ∗, between the left and the bottom (similarly, the right and the
bottom) boundaries, ∂ρ∗/∂η is set to zero at both the left and right ends of the bottom
boundary, then it gradually reaches the value given by (2.8) within the width of the
sponge layer from both of the ends and it is fixed at this value for the remaining
extent of the bottom boundary. The pressure boundary conditions are ∂p∗/∂η = 0
at the bottom and the top boundaries and p∗ = 0 at the left and the right of the
computational domain.
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Rayleigh damping or a ‘sponge’ layer is used at the left and right boundaries
of the computational domain as shown in figure 1(a) so as to minimize spurious
reflections from the artificial boundary into the ‘test’ section of the computational
domain. The velocity and scalar fields are relaxed towards the background state in
the sponge region by adding damping functions −σ(ξ, η)[ui(x, t) − 0] (i = 2, 3) and
−σ(ξ, η)[ρ∗(x, t) − 0] to the right-hand side of the momentum and scalar equations,
respectively. The value of σ(ξ, η) is zero everywhere except in a region close to left
and right boundary where it increases quadratically and reaches a maximum value
corresponding to σ(ξ, η)1t ∼ O(0.1) where 1t is the time step of the simulation.
Since 1t ∼ O(10−3), it follows that σ(ξ, η)∼ O(100).

The dynamic eddy viscosity model (Zang, Street & Koseff 1993; Vreman, geurts
& Kuerten 1997) is used for the subgrid scale (SGS) stress tensor, τ , when the
simulation is performed in LES mode. The SGS heat flux, λ, is obtained using a
dynamic eddy diffusivity model (Armenio & Sarkar 2002). The expressions for the
SGS models are described by Gayen & Sarkar (2011b).

2.3. Selection of simulated cases
Table 1 gives important parameters of the simulations. Cases A–C are simulations
performed at a fixed value of Res in the laminar flow regime, and the buoyancy
frequency (N∞) is varied to study the effect of the criticality parameter (ε). Cases A–C
correspond to subcritical, critical and supercritical flow, respectively, with results to
be compared with linear theory later. A different series of simulations, cases 1–7, are
performed to assess the effect of increasing forcing amplitude U0 and therefore Res.
The criticality parameter shows that cases 1 to 7 are near-critical (ε ∼ 1) and have
excursion number, Ex � 1, except for cases 6 and 7 where Ex is O(0.1). In these
cases, the buoyancy frequency is fixed and the barotropic free stream velocity U0 is
varied to study the effect of Res. Cases 4 and 5 are turbulent flow DNS while cases 6
and 7 correspond to a resolved-LES model with a dynamic eddy viscosity model. In
order to assess the effect of forcing in the supercritical regime, cases 2sup, 4sup and
5sup are simulated with values of Res that match cases 2, 4 and 5, respectively.

The flow is statistically homogeneous in the spanwise direction and a y average is
used to compute the time-dependent mean, 〈A 〉y(x, z, t), as follows:

〈A 〉y(x, z, t)= 1
Ly

∫ Ly

0
A (x, y, z, t) dy. (2.9)

The turbulent fluctuations are inferred via departures of instantaneous velocity,
pressure and density from the spanwise average. Statistics of turbulent quantities are a
function of x and z, and are computed by spanwise averaging.

The computational domain lengths in the horizontal directions, Lx and Ly, and the
vertical domain length, Lz which is equal to H, are specified in table 1. The spanwise
domain length Ly is chosen so as to accommodate the largest possible spanwise
vortical structures. Cases A–C and 1–3 are laminar flow simulations while cases 4–7
are turbulent flow simulations. The laminar flow simulations are over-resolved for
consistency among grids; an order of magnitude lower spanwise resolution leads to
less than 3 % change in the wave flux. The turbulent flow simulations require high
resolution. Case 5 is a DNS with the distance to the first grid point from the wall
z+1 = 2.5 in terms of the viscous wall unit ν/uτ and minimum grid resolution in the
streamwise direction 1x+min = 21. Here, uτ is the cycle average of the instantaneous
friction velocity (=√τw/ρ0) based on the wall shear stress (τw) at the midslope.
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FIGURE 2. (Colour online) Streamwise velocity at Res = 30 in different flow regimes shown
at time 51.75 s, phase of the barotropic velocity φ ≈ π/2. Frequency spectra at point A
(midslope and in the boundary layer) and B (above point A and in the wave beam) will be
shown later. Topography shown in white.

The spanwise direction has spectral accuracy with uniform grid spacing in physical
space, 1y+ = 16. Cases 6–7 correspond to a resolved-LES mode with a dynamic
eddy-viscosity model.

3. Results in the laminar flow regime
3.1. Effect of criticality on the internal wave structure at Res = 30

The criticality parameter, ε, is an indicator of nonlinear response near the topography
and determines the structure of the flow field such as formation of higher modes which
combine to form an internal wave beam. For fixed geometry of the topography and
forcing frequency, ε is varied by varying the level of stratification that determines
the internal wave characteristic slope. At Res = 30, the flow remains laminar and two-
dimensional. Figure 2(a–c) show the instantaneous streamwise velocity at Res = 30 in
subcritical, critical and supercritical flow regimes, respectively. In subcritical flow, as
shown in figure 2(a), internal waves originating near the topography radiate upward
along the characteristic direction given by θ = sin−1(Ω/N∞). The baroclinic response
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FIGURE 3. (Colour online) Frequency spectra for (a) subcritical flow and (b) critical flow
at Res = 30. Point A is located in the boundary layer at midslope and point B is located
vertically above A and in the beam as shown in figure 2(b).

in subcritical flow is weaker compared with the barotropic forcing. In critical flow,
as shown in figure 2(b), since the internal wave characteristic slope matches with
the topographic slope, resonant interaction of the internal wave with the topography
generates higher spatial modes which combine to form an intensified internal wave
beam. In supercritical flow, as shown in figure 2(c), resonant beam intensification
occurs in a small region near the crest of the topography where the topographic
slope is equal to the internal wave characteristic slope, and the beams are directed
both upwards and downwards. The baroclinic response is significantly stronger in both
critical and supercritical flow.

3.2. Frequency spectra in laminar flow cases
Fast Fourier transform (FFT) of the time series data of the streamwise velocity
component is performed at two different points, A and B, shown in figure 2(b).
The frequency spectra at locations A and B are shown in figure 3(a) for subcritical
flow and in figure 3(b) for critical flow at Res = 30. In figure 3(a), at both locations
A and B, the frequency spectrum has a sharp peak at the fundamental frequency.
In figure 3(b), in addition to the peak at the fundamental frequency, the spectra
has discrete peaks at higher harmonics that are below the buoyancy frequency
(N∞/Ω = 3.9). More than 99 % of the energy is contained at the fundamental
frequency in cases with laminar flow. Hence, the modal decomposition (see
appendix B) is performed solely for the velocity field corresponding to the
fundamental frequency.

3.3. Modal structure in laminar flow cases
Figure 4(a) shows profiles of the baroclinic component of the vertical velocity field,
computed using the procedure described in appendix A, at location x = R = 3 m,
indicated in figure 2. In figure 4(a), the subcritical flow profile is dominated by
modes 3–5 whereas critical and supercritical flow profiles suggest the superposition of
several additional normal modes to represent the intensified beam. The positive narrow
peak of w(z) in critical flow at z ≈ 1.2 m corresponds to the intensified beam at a
fundamental frequency followed by a broad region of negative peak. The local peaks



190 N. R. Rapaka, B. Gayen and S. Sarkar

z 
(m

)
Sub-critical
Critical
Super-critical

Mode (n)

0

0.5

1.0

1.5

2.0

2.5

3.0

–0.005 0 0.005

10–4

10–3

10–2

10–1

20 40 60 80 100

(a) (b)

FIGURE 4. (Colour online) (a) Example profile of the baroclinic vertical velocity profile in
the laminar case, Res = 30. Profile shown at x= 3 m and time 51.75 s, phase of the barotropic
velocity φ ≈ π/2. (b) Modal structure of the baroclinic field.

M Subcritical Critical Supercritical

DNS 0.56± 0.01 0.67±0.01 0.92± 0.02
Pétrélis et al. (2006) 0.56 0.59a 0.95± 0.02b

TABLE 2. Conversion factor (M) at Res = 30. a M increases from 0.59 to 0.77 abruptly as
ε changes from 1 to 1.05. b The value is not quoted and the error band is associated with
the digitization of figure 5(a) in Pétrélis et al. (2006).

in supercritical flow at z≈ 0.75 m and z≈ 0.02 m correspond to the primary generated
beam with group velocity directed upwards and a secondary beam formed by bottom
reflection of the downward generated beam, respectively.

Modal analysis is performed using the time series of the baroclinic component of
the vertical velocity profiles at the location x = R = 3 m (see appendix B) and the
corresponding modal structure is shown in figure 4(b). The supercritical flow has a
relatively wide range of active modes. The sinusoidal structure superimposed on the
decaying profile of the modal distribution in supercritical flow is due to the presence
of two beams which have vertical components of the group velocity in opposite
directions at the generation region. The number of modes required to contain a given
percentage of the total energy increases from the subcritical to supercritical flow: in
subcritical flow, the first 9 modes are sufficient to represent 90 % of the total energy
whereas critical and supercritical flows require the first 30 and 50 modes, respectively.

3.4. Radiative conversion
The radiative conversion factor, M in (B 3), is the value of the radiated wave
energy flux integrated over the boundary of a domain enclosing the topography and
normalized with πρ0U2h2

√
(N2 −Ω2)/4. The quantity M is computed at Res = 30

for three different values of ε and presented in table 2 along with the analytical
estimate given by Pétrélis et al. (2006) using inviscid linear theory. In both theory
and simulations, the conversion to radiated wave flux increases from subcritical to
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FIGURE 5. (Colour online) The effect of increasing barotropic forcing on: (a) the normalized
radiated baroclinic flux and the energy conversion in critical (bottom two curves) and
supercritical (top two curves) cases; and (b) the intensification of near-bottom velocity in
critical cases.

supercritical flow. The simulations agree well with the theory in subcritical and
supercritical cases. However, the linear theory underestimates the radiated flux when
ε ∼ O(1) in agreement with Khatiwala (2003). Note that, as shown in figure 1(b),
the critical length on the slope of the smoothed triangular ridge is shorter than the
triangular ridge used in the linear analysis by Pétrélis et al. (2006). This is due to the
smoothing performed at top and bottom of the ridge to avoid numerical instabilities
during the simulation. The value of M in critical flow DNS would be even higher than
0.67 if the level of smoothing was decreased.

4. Effect of forcing on the internal wave field in the critical slope case
The decrease of radiative conversion factor, M, i.e. the normalized wave flux, with

increasing forcing is a major result of this paper. As shown in figure 5(a), with
increasing forcing, thereby Res and Ex, the quantity M (the line with circles) in the
critical slope cases 1–7 decreases in the laminar regime, has a sharper decrease when
the flow transitions to turbulence at Res ' 100, and eventually exhibits a gradual
drop at the higher values of forcing. The value of M in case 7 with Res = 400,
Ex = 0.168 is reduced by 25 % of the peak to a value that is even lower than that
in the corresponding subcritical case. The energy conversion factor, C, decreases and
will be discussed in § 4.1 on the baroclinic energy budget. In the present series
of simulations, when forcing is increased, extensive patches of three-dimensional
turbulence fluctuations are seen at Res ' 100 and above. In figure 5(b), intensification
of the along slope velocity is shown as a function of Res and Ex. The intensification
drops owing to increased drag and mixing of momentum. It is also found (not shown)
that the intensification during downslope flow is greater than that during upslope flow.
It is of interest to compare the normalized wave flux in the case with Res = 177 in the
present flow over a ridge with that for a single-slope topography with similar length
and with Res = 177 given by Gayen & Sarkar (2011b). The present case with two
slopes and, consequently, a beam on each side of the topography has approximately
twice the normalized flux, M = 0.28, of the single-sloped topography.
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FIGURE 6. (Colour online) Vertical profiles of the normalized values of: (a) baroclinic
velocity amplitude; (b) baroclinic pressure amplitude; and (c) the product of pressure and
velocity amplitudes. Profiles shown at x=−3 m, a location away from the topography.

To compute M, the vertically integrated values of cycle-averaged outgoing energy
flux, p̂bcubc, were computed at x = ±3 m, summed and then normalized. To further
understand the decrease of M, the vertical profiles at x = 3 m of the amplitude of pbc

computed as the root mean square of pbc(z, t), and the amplitude of ubc, computed
similarly, are plotted in figure 6(a,b). The peak velocity amplitude occurs in the
internal wave beam and drops with increasing Res when Res exceeds 75. This decrease
in velocity is the primary reason for the drop of peak wave energy flux seen in
figure 6(c).

Figure 7(a) shows the effect of forcing, denoted by Res, on frequency spectra at
locations A and B, shown earlier in figure 2. The contribution of the higher harmonics
relative to the fundamental increases with increasing forcing. In the case with Res = 10
without turbulence, the continuous spectrum at frequencies beyond N∞ is identical
between A and B. The higher Res cases show significantly higher energy beyond the
buoyancy frequency at point A in the boundary layer and, although at a somewhat
lower level, also at point B in the beam. In these higher Res cases, the energy at
ω > N∞ resides both at discrete peaks corresponding to evanescent internal waves
and a broadband continuous component that corresponds to turbulence. Most of the
energy is carried by the fundamental frequency. In general, away from the generation
region, more than 90 % of the energy is carried by the fundamental frequency. Hence,
the modal analysis is performed for the fundamental frequency even for the turbulent
flow simulations. The modal amplitudes are shown in figure 7(b). When forcing
(Res,Ex) increases, the peak modal amplitude decreases as can be anticipated from
the systematic decrease of the peak of velocity profile with increasing forcing that
was seen in figure 6(a). Interestingly, the amplitude of the higher modes decrease
substantially in the simulations with Res > 100. We will show later that the conversion
to turbulence (measured by turbulent production) also increases substantially when
Res > 100.

4.1. Baroclinic energy budget
In the case of inviscid theory, the internal wave flux is equal to the conversion
from the barotropic to the baroclinic wave field. DNS/LES allows the separation of
effects of forcing on conversion from those on wave flux. The velocity is split into
a mean field (computed by spanwise averaging) and a three-dimensional fluctuation
field, e.g. u(x, y, z, t) = 〈u〉(x, z, t) + u′(x, y, z, t). The mean field is then partitioned
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FIGURE 7. (Colour online) The effect of forcing in the critical slope case: (a) frequency
spectra, with point A in the boundary layer (shown in red in the online version) and point B in
the beam (shown in green in the online version); and (b) modal distribution at x= 3 m.

into a barotropic and a baroclinic component as follows and as further discussed in
appendix A,

〈u〉 = U + ubc, 〈w〉 =W + wbc, 〈p∗〉 = P∗ + pbc,

where p∗ is the deviation from the hydrostatic pressure. Here U,W,P∗ are the
barotropic components and ubc,wbc, pbc are baroclinic components defined such that
U,P∗ are the depth average of 〈u〉, 〈p∗〉, respectively, and W(z)=−∂/∂x([z − h(x)]U).
The buoyancy is defined as b ≡ −g〈ρ∗〉/ρ0 where ρ∗ is the deviation from the
background density.

The equation for the baroclinic energy (see Carter et al. 2008; Kang & Fringer
2012) with advective and diffusive fluxes of the wave energy neglected is

∂

∂t
(KE + PE)+∇ ·F= C − εbc − P̄, (4.1)

where

KE = 1
2
(ubc

2 + vbc
2 + wbc

2), PE = 1
2

N−2b2, F= pbcubc, C = ∂p∗

∂z
W, (4.2)

εbc = ν ∂ (ubc)i

∂xj

∂ (ubc)i

∂xj
, P≡−〈u′iu′j〉y 〈Sij〉y−〈τij〉y 〈Sij〉y . (4.3)

The overbar represents depth integration, C̄ represents conversion from the barotropic
to baroclinic wave field, εbc represents viscous dissipation of the baroclinic energy and
F represents the linear wave energy flux. The term, −P̄, is not present in Kang &
Fringer (2012) but is required here to account for turbulence. In the turbulent kinetic
energy (TKE) equation, P appears with a positive sign on the right-hand side and is
commonly referred to as turbulent production since P is generally (but not always)
a source for TKE. In the absence of a density field and at Res = 177, the flow is
laminar; therefore, all of the turbulence in the present case with density stratification
is associated with the baroclinic field. Therefore, in the present context, P can be
interpreted as local conversion from the internal tide to turbulence. Here τij is the SGS
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Case Res Ex Tendency Conversion Wave flux Baroclinic Turbulent Residual
to waves dissipation production

(C) (Fbc or M) (εbc ) (P)

1 10 0.004 0.009 0.695 0.676 0.030 — −0.020
2 30 0.013 0.011 0.702 0.671 0.027 — −0.007
3 75 0.031 −0.005 0.669 0.658 0.020 — −0.004
4 100 0.042 −0.008 0.629 0.622 0.018 0.022 −0.025
5 177 0.074 −0.008 0.572 0.551 0.013 0.025 −0.009
6 300 0.126 −0.001 0.558 0.515 0.011 0.061 −0.028
7 400 0.168 −0.009 0.547 0.504 0.010 0.051 −0.009
2sup 30 0.013 −0.008 0.951 0.923 0.017 — 0.019
4sup 100 0.042 −0.005 0.898 0.895 0.012 0.011 −0.015
5sup 177 0.074 −0.008 0.843 0.824 0.007 0.028 −0.008

TABLE 3. Baroclinic energy budget, integrated over an area of the computational domain
from x = −3 to x = +3 m and averaged over three tidal cycles, in the critical slope cases.
All terms are normalized with (π/4)ρ0U2h2

√
(N2 −Ω2).

stress tensor discussed in § 2.2. The bottom drag term that appears in Kang & Fringer
(2012) is not present in (4.1) since viscous effects at the bottom are resolved in the
present study without recourse to any explicit drag parameterization in the momentum
conservation equation.

At steady state, the conversion from barotropic to baroclinic tide, C̄, is balanced
by the radiative conversion, ∇ · F, in the linear inviscid approximation. In general,
there are two additional terms, the viscous dissipation, ε̄bc, of the mean field
and the conversion to turbulence, P̄. The radiative conversion was shown earlier
to decrease with increasing forcing. We now assess the behaviour of the other
terms in the baroclinic energy balance. Each term in (4.1) is integrated over
−3 < x < 3 m in the horizontal direction, averaged over three tidal cycles, normalized
by (π/4)ρ0U2h2

√
(N2 −Ω2), and shown in table 3. The residual, computed as the sum

of all terms in (4.1) with the tendency and flux terms taken to the right-hand side, is
generally small and ranges from 1 to 5 % of the conversion.

The primary inference from table 3 is that the initial drop of the wave flux from
the laminar case, Res = 30, is primarily associated with a reduction in conversion.
An additional contribution to the decrease in wave flux is the increasing value
of conversion to turbulence, P̄, which reaches approximately 10 % of the energy
conversion, C̄, at higher values of Res. The viscous dissipation, ε̄bc, of the mean
baroclinic component decreases substantially in the turbulent flow cases, owing to
reduced baroclinic shear.

5. Turbulence at the ridge in case 5 with critical slope
In this section, turbulence near the ridge in case 5 is characterized by computing

the statistics at three different locations: the centre of the left slope of the ridge
(x = −0.77 m), a location where the left slope experiences a change in its slope
(x=−0.4 m) and near the centre of the ridge (x=−0.1 m), represented by the dashed
vertical lines in red, white and black in figure 8(a), respectively. Since the ridge is
symmetric about x = 0, the dynamics on the right slope of the ridge are similar to
those on the left but with a phase difference of approximately 180◦ and hence are not
discussed.
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The governing equation for TKE, K = 1/2 〈u′iu′i〉y, is given below:

∂K

∂t
+ 〈u〉y

∂K

∂x
+ 〈w〉y

∂K

∂z
= P− ε + B− ∂Tx

∂x
− ∂Tz

∂z
. (5.1)

Here, T is the transport of TKE including pressure transport, turbulent transport,
viscous transport and subgrid scale (SGS) transport,

Tx ≡ 1
ρ0
〈p′u′〉y+

1
2
〈u′iu′iu′〉y−ν

∂K

∂x
+ 〈τ ′i1u′i〉y (5.2)

Tz ≡ 1
ρ0
〈p′w′〉y+

1
2
〈u′iu′iw′〉y−ν

∂K

∂z
+ 〈τ ′i3u′i〉y (5.3)

and P is the production term, defined in (4.1). The turbulent dissipation rate, ε, is
defined as the sum of the resolved and SGS components:

ε ≡ ν
〈
∂u′i
∂xj

∂u′i
∂xj

〉
y

− 〈τijSij〉y. (5.4)

Finally, B is the buoyancy flux defined as

B≡− g

ρ0
〈ρ ′w′〉y . (5.5)

Figure 8(a–d) display snapshots of TKE, isopycnals and velocity profiles near
the topography at different times over a tidal cycle. Turbulence across the ridge is
inhomogeneous in both the streamwise and vertical directions. TKE patches are spread
across the topography with varying magnitude and thickness. Close to the centre of
the ridge, TKE shows structures of large vertical extent. The phasing of turbulence
relative to the near-bottom velocity was discussed by Gayen & Sarkar (2011a) who
assumed an internal wave beam profile with streamwise homogeneity that allowed LES
of a thick beam with width of approximately 60 m and M2 forcing of 12.4 h. There
is an important similarity (turbulence generation by convective instability during flow
reversal from down to up) and an important difference (large shear production) in the
present problem. The difference is because, by construction, the streamwise periodic
boundary conditions employed by Gayen & Sarkar (2011a) to study the evolution
of the stratified bottom jet that forms during critical slope generation did not allow
the inhomogeneous wave propagation found here. Furthermore, there are substantial
differences near the top of the ridge because of the crossing of the two beams at
opposite sides, a phenomenon not present in either the turbulent beam simulation of
Gayen & Sarkar (2011a) or the simulation of generation at a slope by Gayen & Sarkar
(2011b).

The times shown in figure 8 are chosen on the basis of near-bottom velocity at
x = −0.77 m, a midlocation on the left slope of the ridge: part (a) corresponds to
peak downward velocity (taken to be phase −90), part (b) to zero velocity (phase
0), part (c) to peak upward velocity (phase 90), and part (d) to zero velocity (phase
180). Figure 8(a) shows downward flow over the entire left slope and a thin turbulent
layer of thickness approximately equal to the beam width. Figure 8(b) shows a thicker
turbulence patch on the left slope. At this time and at the midslope, x = −0.77 m, the
near-bottom velocity is almost zero (taken to be phase of zero) and the near-bottom
isopycnals show steepening to almost vertical. A convective instability associated with
wave breaking is seen. The turbulent patch and the density front propagate upward
as a bore. The vertical extent of the turbulence patch at phase 90 in figure 8(c) is



Tidal conversion and turbulence at a model ridge 197

0.4

0.3

0.2

–1.0 –0.5 0 0.5 1.0

0.5

0.1

z 
(m

)

0.4

0.6

0.5

0 0.2 0.30.1 0.4

x (m) y (m)

0 0.05–0.05

0 0.5 5.0

(a) (b)

FIGURE 9. (Colour online) (a) Plot of Rig and isopycnals near the topography in case 5 is
shown at time 44 s corresponding to phase 0 of the streamwise velocity at x=−0.77 m in the
beam centre. (b) Density perturbations in the spanwise vertical plane at the centre of the ridge
(x= 0 m) shown at time 25.2 s corresponding to phase 0 of the streamwise velocity for case 5.
The forcing time period is T = 2π s and the ridge height is h= 0.328 m.

largest at x ' −0.4 m and spans a region of reduced stratification as can be seen by
the increased distance between isopycnals. At phase 180, shown in figure 8(d), there is
turbulence at the top of the ridge.

The location of turbulence relative to the near-bottom velocity is of interest. The
initiation of turbulence on the critical slope, shown in figure 8(b), corresponds to flow
reversal from down to up, similar to Gayen & Sarkar (2011a), when the local near-
bottom velocity passes through zero and there is a convective overturn. The convective
overturns that are seen at this phase in the present critical slope case followed by
bore-like features are similar to those noted by Legg & Klymak (2008) in their study
of a strongly supercritical (ε = 4) ridge. However, an important difference is that,
unlike Legg & Klymak (2008) who find overturns in the lee (rearward with respect to
the flow on the ridge) of the topography, we find overturns both on the windward side
(figure 8a,c) and on the leeward side (figure 8b,d).

The gradient Richardson number, Rig(x, z) = N2(x, z)/S2(x, z) where N is the mean
buoyancy frequency and S is the mean shear, is an indicator of unstable regions.
Figure 9(a) is an example corresponding to the time instant corresponding to
figure 8(b). Convectively unstable regions (Rig < 0) and regions susceptible to shear
instability (0 < Rig < 0.25) can be seen clearly. Consequently, the evolution of terms
in the TKE balance to be discussed below show that both positive buoyancy flux
and positive shear production lead to TKE generation. In figure 9(b), the density
perturbations in the spanwise plane at the ridge centre (x= 0) are shown at time 25.2 s
corresponding to phase 0. It shows three-dimensionality of the flow in case 5.

To understand the phase dependence, the evolution of vertical profiles of turbulence
statistics at the midslope x = −0.77 m is shown in figure 10(b–e) over two tidal
cycles after the simulation has reached a quasi-steady state. Note that the simulations
are performed for nine tidal cycles and the quasi-steady state is observed after five
cycles. In figure 10(a) the evolution of the mean velocity and the density profiles at
different z locations (z = 0.2 m to z = 0.28 m) are shown. Upper to lower z locations
are represented by lighter to darker lines, respectively. The time series data leads to the
following results: (i) there is significant asymmetry between upslope and downslope
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FIGURE 10. (Colour online) Flow and turbulence in case 5 at x =−0.77 m, the centre of the
left slope of ridge: evolution of (a) streamwise velocity (solid lines) and density (dashed lines)
at various locations, z = 0.2 m (the darkest) to z = 0.28 m (the lightest); (b) TKE, m2 s−2;
(c) production, m2 s−3; (d) buoyancy flux, m2 s−3; and (e) dissipation, m2 s−3. The solid lines
in black in (b–e) represent isopycnals. Four filled circles shown at times 42.5, 44, 44.8 and
46.3 s are used to illustrate the phase dependence of the statistics. The forcing time period is
T = 2π s and the ridge height is h= 0.328 m.
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flow, e.g. the upslope flow shows a rapid acceleration (corresponding to an upslope
bore, also seen previously by Gayen & Sarkar (2011b)) and it occupies a shorter
duration of the cycle; (ii) there is significant asymmetry between acceleration and
deceleration stages; (iii) the density lags behind the velocity by a substantial amount,
as much as 90◦ phase during some stages of the cycle; and (iv) the stratification is
significantly reduced during some portions of the cycle. The evolution of statistics
shown begins with a phase corresponding to the peak downslope velocity.

In figure 10(b), four distinct phases can be observed in the periodic evolution of
TKE, each indicated by a black circle in that figure and by a corresponding grey circle
(orange in the online version) in the streamwise velocity evolution of figure 10(a).
The first black circle at t = 42.5 s corresponds to the phase of maximum downslope
velocity during which TKE is prominent in a small region slightly above the bottom
wall, around z = 0.2 m. At this phase, turbulence is shear driven as reflected by the
presence of significant production in figure 10(c) and absence of positive buoyancy
flux. The second circle at t = 44 s corresponds to down-to-upslope flow reversal during
which a large TKE structure extending from the wall at z = 0.2 m to z = 0.27 m is
observed. Notably, the buoyancy flux at this time, corresponding to the flow reversal,
is positive. The reason is that continued downslope flow replaces the heavier fluid in
the jet core region with lighter fluid from the top. The corresponding density profile
has a positive gradient in the region above the peak velocity; an unstable configuration
that results in turbulent overturns. Density inversions can also be seen in figure 10(a)
where the heavier density lines shown in dark cross the lighter density ones. The
third circle at t = 44.8 s corresponds to maximum upslope velocity during which
TKE is prominent in a thin region with vertical extent of z ≈ 0.01 m, attached to
the bottom wall. The buoyancy flux is negative and the shear production is positive
signifying that the TKE is largely due to shear and not convective instability. The
fourth circle at t = 46.3 s corresponds to up-to-downslope flow reversal during which
TKE is somewhat elevated. The turbulent dissipation shown in figure 10(e) is similar
to the TKE and shows patches associated with wave breaking that originate away from
the boundary as well as boundary patches associated with boundary layer shear.

We now describe the behaviour at x=−0.4 m, a location where there is a change in
the slope angle from the critical value. Figure 11(a) shows the evolution of streamwise
velocity and density at various locations, z = 0.29 m to z = 0.39 m. There are some
differences with respect to the previously shown midslope location since x = −0.4 m
is closer to the centre of the ridge and the outer portion of the profiles is influenced
by the beam from the other side of the ridge leading to substantial distortion of the
isopycnals. For instance, the first circle in figure 11(b) shows TKE at a larger distance
away from the bottom relative to the corresponding phase at the midslope. The cause
is a density overturn that appears at z ≈ 0.45 m due to the interaction with the outer
beam and, correspondingly, a positive value of buoyancy flux. The TKE corresponding
to the second circle at t = 44.8 s is significant up to larger heights (twice as much
compared with that at x = −0.77 m). At this time, the positive buoyancy flux is more
detached from the boundary relative to similar phase at x =−0.77 m. The outer beam
contributes to development of a wider density overturn and positive density deviation.
The other two phases, one with peak bottom shear and the other with restratification,
indicated by third and fourth circles in figure 11(b) are qualitatively similar to those in
figure 10(b). The evolution of the dissipation is similar to the TKE and is not shown.

We now turn to the evolution of turbulence near the top of the ridge, x = −0.1 m
where the behaviour is found to be qualitatively different from that at midslope as
can be seen by comparing figure 12 with figure 10. The reason is that leftward
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FIGURE 11. (Colour online) Flow and turbulence in case 5 at x = −0.4 m, end of the left
slope of ridge: (a) evolution of streamwise velocity (solid lines) and density (dashed lines) at
various locations, z = 0.29 m (the darkest) to z = 0.39 m (the lightest); and (b) TKE, m2 s−2.
The solid lines in black represent isopycnals. Four filled circles shown at times 43, 44.8, 45.6
and 47 s are used to illustrate the phase dependence of the statistics. The forcing time period
is T = 2π s and the ridge height is h= 0.328 m.

and rightward beams originating from the two slopes cross, leading to a significant
interaction at x = −0.1 m. At the top of the ridge, there are two events of TKE
with large vertical extent in a cycle in contrast to one such event per cycle at the
midslope. Each of the four TKE events in figure 12(b), that shows the evolution over
two tidal cycles, originates away from the boundary in a region where the isopycnals
(black lines in the figure) show a lower stratification than the background value. The
region of lower stratification moves downward with increasing time in figure 12(b)
and so does the TKE. The downward propagating phase is consistent with the upward
propagating energy in the internal wave field.

The TKE at given spatial regions varies over a cycle. Figure 14 shows the cycle
variation of terms in the area-integrated TKE budget at three different regions: A,
B and C, shown in figure 13. Figure 14(a), corresponding to the midslope region
A, shows that, during 41 < t < 44.5 s that spans peak downslope flow to flow
reversal, primarily shear production as well as buoyancy flux and advection lead to
accumulation (−∂K/∂t is negative in the figure) of TKE and some dissipation. During
the rest of the cycle, TKE decreases in time primarily by advection out of the region
and also because of dissipation and mixing indicated by negative buoyancy flux. The
behaviour in the adjacent region B, where the slope angle decreases from critical, is
shown in figure 14(b). Early in the cycle, TKE accumulates as a result of advection
from the critical slope region. Later, during 43.5 < t < 45 s, there is accumulation
of TKE owing to shear production, buoyancy flux and advection. At t = 45 s, TKE
starts to decrease despite positive production and buoyancy because of the advection
term, which is a sink of TKE during 45 < t < 46.5 s. During the same time period of
45 < t < 46.5 s, advection acts as a source for TKE in the adjacent region at the top



Tidal conversion and turbulence at a model ridge 201

0.2

0

–0.2

42 44 46 48 50 52 54

(a) 2.80

2.90

2.85

2.95

3.00

0.4

–0.4

Time (s)

z 
(m

)

(b)

42 44 46 48 50 52 54

0.55

0.45

0.35

–2.7

–3.2

–3.7

–4.2

–4.7

2.79
2.79

2.83

2.83 2.
86

2.
86

2.75

2.75

2.90 2.92.902.94 2.94

FIGURE 12. (Colour online) Flow and turbulence in case 5 at x=−0.1 m, close to the centre
of the ridge: evolution of (a) streamwise velocity (solid lines) and density (dashed lines) at
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46.1 and 47.6 s are used to illustrate the phase dependence of the statistics. The forcing time
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FIGURE 13. Shaded regions A, B and C correspond to a region on the critical slope
(−1 < x < −0.6 m), a region where the slope changes from critical (−0.5 < x < −0.3 m)
and a region at the top of the ridge (−0.25 < x < 0 m), respectively. These regions are used
to analyse the evolution of the TKE budget terms shown in figures 14 and 16, and the cycle
averaged TKE budget terms shown in table 4.

of the ridge as shown in figure 14(c). At the top of the ridge, region C, the primary
balance is between advection and tendency terms. Temporal integration of the terms
plotted in figure 14, shown in table 4, lead to the following result for cycle-averaged
values. Turbulent production acts as the main source of TKE and it acts primarily
at the critical slope and the top end of the critical slope. At the top of the ridge,
advection from depth acts as the primary source of TKE. Cycle-averaged turbulent
dissipation does not vary significantly among the three regions.
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Case 5 Tendency Advection Production Dissipation Buoyancy Transport

Area A −2.19× 10−4 −7.45× 10−4 4.69× 10−3 −2.05× 10−3 −1.48× 10−5 2.77× 10−5

Area B −1.38× 10−5 −9.51× 10−4 2.71× 10−3 −1.17× 10−3 5.78× 10−4 −2.25× 10−4

Area C −5.38× 10−5 1.38× 10−3 1.44× 10−3 −1.61× 10−3 1.64× 10−4 −2.77× 10−5

Case 5sup Tendency Advection Production Dissipation Buoyancy Transport

Area A 4.78× 10−5 −7.46× 10−6 9.46× 10−5 −2.21× 10−4 −4.85× 10−5 2.22× 10−5

Area B 3.58× 10−4 3.66× 10−4 9.82× 10−3 −3.52× 10−3 −1.92× 10−3 −4.06× 10−4

Area C 4.63× 10−5 −5.98× 10−4 1.32× 10−3 −1.60× 10−3 −1.73× 10−4 1.09× 10−4

TABLE 4. Cycle averaged TKE budget, integrated over areas A, B and C (shown in
figure 13), in the critical and supercritical slope cases. All terms are normalized with
(π/4)ρ0U2h2

√
(N2 −Ω2).

6. Effect of forcing in the cases of subcritical and supercritical slopes
In simulations performed up to Res = 177, there was little turbulence in the

subcritical case in contrast to the supercritical case. The normalized values of radiative
and energy conversion exhibit little change.
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FIGURE 15. (Colour online) Supercritical case with Res = 177. log10(TKE) and isopycnals
near the topography in case 5sup are shown in (a,b) at time 42.5 and 44 s, same as (a,b) of the
corresponding figure 8 of the critical case. The dashed vertical lines (highlighted in red, white
and black in the online version) in (a) indicate x = −0.77 m (midslope), −0.4 and −0.1 m,
respectively.

To illustrate the characteristics of turbulence and the effect of forcing on the energy
conversion in supercritical flow, three cases were investigated: Res = 30, 100 and 177,
indicated by 2sup, 4sup and 5sup in table 1, respectively. At Res = 30, the flow is
laminar and, for Res = 100 and above, the flow is turbulent.

Similar to the critical case, the normalized energy conversion in the supercritical
cases decrease at higher forcing levels. The baroclinic energy budget for supercritical
cases is included in table 3. The wave energy conversion and the wave radiative
conversion decrease by 12.5 and 10.5 %, respectively, from Res = 30 to Res = 177 as
the flow becomes turbulent. The baroclinic dissipation also decreases from Res = 30
to Res = 177, similar to the critical case. The turbulent production and dissipation
increase with Res, similar to the critical case. Overall, the percentage decrease in
conversion from Res = 30 to 177 in supercritical slope is smaller (12.5 %) compared
with the critical slope (19 %). This is due to the smaller area over which turbulence is
significant in the supercritical case relative to the critical case.

We will discuss turbulence in case 5sup and compare with the critical case 5 at the
same value of Res = 177. Figure 15(a,b) display snapshots of TKE, isopycnals and
velocity profiles near the topography corresponding to case 5sup at the same phases
as figure 8(a,b), respectively, for case 5. TKE patches are clustered in a small region
near the top of the ridge where the internal wave beam generation occurs. In contrast
to case 5, the constant slope region in case 5sup is not critical and, therefore, does not
have the significant level of TKE associated with breaking waves.

Figure 15(a) shows that TKE is present at both windward and leeward sides of
the topography. Figure 15(b), corresponding to a later phase, shows elevated levels of
TKE primarily on the leeward side in a region around x = −0.4 m where the slope
is near-critical, and secondarily in the downward beam on the windward side. The
large patch of turbulence around x = −0.4 m is associated with convective overturns
and flow reversal from down to up discussed earlier in the critical case. However,
the corresponding velocity profile at this time indicates stronger shear relative to
the critical case 5 and, therefore, the turbulent production in this region is also
significantly higher when compared to case 5 as will be shown.

TKE is generated primarily in a region (area B, shown in figure 13) above and
adjacent to the constant slope region, where the slope angle transitions through
the critical angle. Figure 16 shows evolution over a tidal cycle of the TKE budget
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Note that −ε (dissipation) and −∂K/∂t (tendency) are plotted. The barotropic velocity is
U0 sin(2πt/T).

integrated over three different areas, similar to case 5 shown in figure 14. Figure 16(a)
shows that, in contrast to case 5, the budget terms at area A in the midslope region are
an order of magnitude lower than the corresponding values in area B (figure 16b) and
C (figure 16c). This behaviour is consistent with the finding that TKE levels are not
significant at the constant slope region in case 5sup. In figure 16(b), area B exhibits
strong shear production that is substantially larger than that at midslope or at the top
of the ridge. The advection term indicates transport of the generated TKE from area B
to area C between time 50.5 and 51.5 s. The shear production of TKE in area C near
the top of the ridge, shown in figure 16(c), although smaller than that in area B, shown
in figure 16(b), is also significant.

The cycle-averaged values of terms in the TKE budget are given in table 4. The
largest production and dissipation of turbulence is over the critical slope region (area A
of case 5 and area B of case 5sup) of the model ridge.

For completeness, the influence of forcing on the modal distribution in the
supercritical and subcritical regime has been examined and the results are plotted
in figure 17. The supercritical cases, similar to the critical cases, show that high modes
are progressively eliminated when the forcing increases. On the other hand, subcritical
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FIGURE 17. (Colour online) The effect of increasing barotropic forcing on modal
distribution at x= 3 m in supercritical and subcritical cases.

cases where there is little turbulence, show an enhancement of energy content at the
high modes with increased forcing.

7. Conclusions
Three-dimensional DNS and LES approaches have been used to examine the

local flow as well as the radiated internal tide at a model ridge taken to have
triangular topography. Nonlinear effects on the tidal energy conversion are examined
by increasing the tidal forcing so that the excursion number increases, while remaining
significantly smaller than unity, and the Reynolds number, Res, based on the Stokes
boundary layer thickness also increases. Implications of the present work for linear
predictions of internal wave flux from sloping topography in the regime of excursion
number less than O(1) are as follows. Linear theory works well in subcritical cases
where there is little turbulence for all values of tidal forcing examined here and
for supercritical cases with low forcing where there is also little turbulence. In
critical or supercritical cases with higher forcing, the energy conversion to the internal
waves decreases with increasing forcing, as much as 25 % in the present simulations
compared with the laminar value.

Nonlinear effects on the tidal energy conversion are examined in the critical slope
ridge by increasing the tidal forcing so that the excursion number increases from 0.004
to 0.168 and the Reynolds number, Res, increases from 10 to 400. The simulated
cases with higher forcing exhibit wave breaking leading to a near-bottom layer of
turbulence and upslope propagation of turbulent bores along with radiated internal
wave beams. The internal wave energy flux is found to decrease substantially with
the onset of turbulence. The radiative conversion (normalized wave flux) decreases to
a value of M ' 0.50, smaller than the corresponding subcritical case, corresponding
to a substantial reduction from the laminar value. Evaluation of the baroclinic energy
balance shows that the decrease in M is associated with a decrease in normalized
energy conversion, C, from the barotropic to baroclinic flow and additionally because
of conversion to turbulence, i.e. the turbulent production, P. Modal analysis of the
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radiated wave field shows that, with increasing forcing, not only does the peak
modal amplitude decrease but also the high modes are progressively eliminated. The
contribution of higher temporal harmonics relative to the fundamental increases with
increasing forcing. Turbulence varies over a cycle with a systematic dependence
on tidal phase and is found at both leeward and windward sides of the ridge.
Both convective and shear instability mechanisms are found to initiate transition to
turbulence within a cycle. There is a substantial variation in turbulence properties
when comparing three locations: at the middle of the critical slope, at the upper ridge
where the slope angle changes from critical to smaller values, and at the top of the
ridge where internal wave beams from opposite sides interact.

Supercritical ridges also exhibit decreases in energy conversion and radiated wave
flux with increasing forcing. In contrast to the critical slope case, turbulence is
insignificant at the constant supercritical slope portion and is limited to the region
between the critical portion and the top of the ridge. Owing to the reduced area of
turbulence, the decrease in energy conversion is less in the supercritical case compared
with the critical case. Turbulence is present at both leeward and windward sides of the
ridge. Subcritical ridges do not exhibit turbulence in the range of parameters studied
here and, correspondingly, the energy conversion factor shows little change.
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Appendix A. Decomposition of pressure and velocity
Decomposition of the flow field into barotropic and baroclinic components is

performed using the method described by Nash et al. (2004) except for pressure
for which they impose hydrostatic balance. In the present work, since the pressure
field is discretely available throughout the domain, we use the same procedure for
pressure as that for the velocity field. The procedure for a generic spanwise-averaged
variable φ(x, y, t)= 〈u〉, 〈p〉 is summarized below.

The baroclinic component of φ(x, t) is defined as

φbc(x, t)≡ φ(x, t)− φ̂(x)− φb(x, y, t) (A 1)

where φ̂(x) = ∫ T+t
t φ(x, t) dt/T is a cycle-averaged mean and φb(x, y, t) is calculated

by enforcing baroclinicity: ∫ H

h(x)
φbc(x, t) dz= 0. (A 2)

Here, h(x) is height of the ridge topography with respect to the flat bottom.

Appendix B. Methods for modal analysis and conversion factor
The far-field vertical velocity that describes the linear baroclinic response to flow

oscillating with frequency Ω over an isolated two-dimensional ridge in a linearly
stratified finite-depth ocean is (see Pétrélis et al. 2006; Echeverri et al. 2009)

wbc(X,Z, t)= U

µ
Re

{ ∞∑
n=1

γn sin(nZ)ei(nX−Ωt+π/2)
}
, (B 1)
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where

Z = πz

H
, X = πx

µH
, µ=

√
N2∞ −Ω2

Ω
. (B 2)

Here, n is the mode number and γn is the mode amplitude.
The non-dimensional conversion factor, M, is given by (see Pétrélis et al. 2006),

M ≡
2
∫ h

0
J(x > l, z) · x̂ dz

π

4
ρh2U2

√
N2 −Ω2

= 2
B2

∞∑
n=1

γnγ
∗
n

n
(B 3)

where J denotes the phase average of the baroclinic energy flux, (pbcubc, pbcwbc), x̂ is
the unit vector in the horizontal direction and B= πh/H.

The mode amplitude γn, is calculated as follows (see Echeverri et al. 2009). Define
γn = |γn|eiφn and project the baroclinic vertical velocity profile (the procedure used to
extract baroclinic component from the simulated flow field is described in appendix A)
at a location away from the topography, X, onto the sinusoidal vertical basis modes of
the linear stratification:

FGn(t)≡
∫ π

0
wbc sin(nZ) dZ =

(
πU

2µ

)
|γn|Re{ei(φn+nX−Ωt+π/2)} (B 4)

and the mode amplitude corresponding to the fundamental frequency is given by

|γn| =
2
T

√(∫ T

0
FGn cos(Ωt) dt

)2

+
(∫ T

0
FGn sin(Ωt) dt

)2

(
πU

2µ

) (B 5)

where T consists of a complete number of wave periods associated with the
fundamental frequency Ω .
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