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Direct numerical simulation (DNS) is used to investigate the evolution of intermittent
patches of turbulence in a background flow with the gradient Richardson number, Rig ,
larger than the critical value of 0.25. The base flow consists of an unstable stratified
shear layer (Rig < 0.25) located on top of a stable shear layer (Rig > 0.25), whose shear
and stratification are varied. The unstable shear layer undergoes a Kelvin–Helmholtz
shear instability that develops into billows. Vortices associated with the billows are
pulled into the bottom shear layer and stretched by the local shear into a horseshoe
configuration. The breakdown of the horseshoe vortices generates localized patches
of turbulence. Three cases with different levels of shear and stratification, but with the
same Rig , in the bottom shear layer are simulated to examine the popular hypothesis that
mixing is determined by local Rig . In the case with largest shear and stratification, the
vortices are less likely to penetrate the bottom layer and are quickly dissipated due to the
strong stratification. In the case with moderate shear and stratification, vortices penetrate
across the bottom layer and generate turbulence patches with intense dissipation rate.
The case with the mildest level of shear and stratification shows the largest net turbulent
mixing integrated over the bottom layer. Analysis of the turbulent kinetic energy budget
indicates that the mean kinetic energy in the bottom layer contributes a large amount of
energy to the turbulent mixing. In all cases, the mixing efficiency is elevated during the
penetration of the vortices and has a value of approximately 0.35 when the turbulence
in the patches decays.

Keywords: stratified shear layer; turbulence; vortices

1. Introduction

Shear instability is an important turbulence-generating processes in many environmental
flows and the understanding of associated heat and momentum fluxes is of fundamental
interest. Previous works have shown that a stratified shear layer with a gradient Richardson
number, Rig , less than 0.25 somewhere in the layer can develop a shear instability. Here,
Rig is the ratio of a squared shear rate S2 to a squared buoyancy frequency N2. Subsequent
nonlinear evolution, such as the formation and the breakdown of Kelvin–Helmholtz (KH)
billows, results in turbulence in the vicinity of the shear layer. Recent studies [1,2] indicate
that turbulence can be found in regions with Rig > 0.25, where other flow conditions such
as large-scale kinetic energy and local shear rate can play an important role in turbulent
mixing. In the present study, we use direct numerical simulations (DNS) to investigate how
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2 H.T. Pham et al.

turbulence characteristics in a stratified shear layer with Rig > 0.25 depend on different
flow conditions.

Linear shear stability theory predicts that a critical value of Rig < 0.25 somewhere in
a flow is a necessary condition for an instability [3]. Although there are discussions, using
field data [4, 5] and laboratory experiments [6], of a shear instability at a larger value, the
reported Rig is often averaged over a time span larger than that of a shear instability. In the
present study, we target turbulence found in a stratified shear layer that is linearly stable by
the stability theory. Turbulence as a result of the breakdown of KH billows in a stratified
shear layer with local Rig < 0.25 has been studied using laboratory experiments [6–8] and
numerical simulations [9–12]. The associated mixing efficiency, defined as a ratio of the
dissipation rate of turbulent potential energy, ερ , to that of turbulent kinetic energy (TKE),
ε, is found to be significantly larger than 1.0 during the development of the KH billows and
has a value in the range of 0.3–0.6 during the decay of turbulence, which is significantly
larger than the value of 0.2 used in many ocean models. In a study of the interaction between
an unstable shear layer (Rig < 0.25) and a stable jet (Rig > 0.25), Pham and Sarkar [2]
reported turbulence patches in the jet. Horseshoe vortices associated with KH billows in
the shear layer can penetrate the jet and generate turbulence there. The horseshoe vortices
are shown to interact with the jet by extracting its mean kinetic energy and dispensing the
energy to turbulent mixing. The mixing efficiency in the turbulent patches inside the jet is
found to be as large as the value in an unstable shear layer.

The work of Pham and Sarkar [2] has shown that although the local Rig > 0.25, its
mean kinetic energy can still be tapped for turbulence, and therefore, any variations in the
background flow can alter its turbulence characteristics. In this investigation, we aim to look
at: (1) How do variations in the background shear and stratification affect the turbulence
triggering process, i.e., the horseshoe vortex penetration? (2) How do turbulent statistics
and mixing differ as the vortices interact with different shear rates and stratification levels?
Answers to these questions will help determine if specific details, beyond local Rig , about
a flow are crucial to the mixing process.

2. Methods

Different from Pham and Sarkar [2], we consider the interaction between two adjacent
stratified shear layers in a temporal-evolving frame. One of the shear layers is unstable and
located above a stable layer with shear. Initial background flow conditions are homogeneous
in streamwise (x) and spanwise (y) directions and vary in the vertical direction (z) in which
gravity acts. The initial streamwise velocity profiles shown in Figure 1(a) are constructed by:

〈
u∗

0

〉 = −�U ∗

2
tanh

(
z∗

0.5δ∗
ω,0

)
+ Sd�U ∗tanh

(
z∗ + 3.5δ∗

ω,0

δ∗
ω,0

)
,

where the brackets < · > indicate a horizontal x–y average, superscript ∗ denotes
dimensional quantities, and subscript 0 denotes initial values at time t∗ = 0. �U ∗ is the
velocity difference across the top unstable shear layer centered at z∗ = 0 and δ∗

ω,0 is its
initial thickness. The bottom stable shear layer centered at z∗ = −3.5δ∗

ω,0 has a thickness
of 2δ∗

ω,0 and a shear rate of S∗
d at its center. With the velocity in the top shear layer kept

constant, three cases with different values of S∗
d in the bottom shear layer are considered

in this study. The profiles of the shear rate S are shown in Figure 1(b).
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Figure 1. (a) Schematics of initial mean streamwise velocity < u >, (b) shear rate S, (c) nondi-
mensional Richardson number J , and (d) gradient Richardson number Rig . The dashed vertical line
in (d) indicates marginal value for shear instability Rig = 0.25.

Each of the shear layers is linearly stratified in the vertical direction, with the density
gradient in the top shear layer weaker than that in the bottom shear layer. The background
density has the following stratification profile:

J (z) = Jt + Jb

2
+ Jt − Jb

2
tanh

(
z∗ + 2.5δ∗

ω,0

0.5δ∗
ω,0

)
.

Here, J (z) = N (z)∗2δ∗2
ω,0/�U ∗2 is the nondimensional Richardson number with the squared

buoyancy frequency N∗2 = −(g∗/ρ∗
0 )d < ρ∗ > /dz∗. The J profiles shown in Figure 1(c)

have Jt equal to 0.05 in the top shear layer for all cases. In the bottom shear layer, J is varied
with different values of Jb = 0.0625, 0.25, and 0.5625 such that the gradient Richardson
number Rig at the center of the bottom shear layer z = −3.5 is equal to 0.25 in all cases.
Linear stability analysis of the profiles in Figure 1 indicates that a KH shear instability
develops in all cases, with the eigenfunction of streamwise velocity u concentrated in
the top shear layer. Nevertheless, according to Pham and Sarkar [2], horseshoe vortices
associated with the nonlinear evolution of the KH instability in the top shear layer are able
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4 H.T. Pham et al.

to penetrate the bottom shear layer and generate turbulence there. In the present study, we
will examine the interaction between the horseshoe vortices and the bottom stratified shear
layer in different background configurations but with the same Rig .

The incompressible Navier–Stokes equations with the Boussinesq approximation are
solved in Cartesian coordinates with dependent variables: velocity u, v,w, pressure p, and
density ρ; and independent variables: x, y, z, and t . Using δ∗

ω,0, �U ∗, and δ∗
ω,0d < ρ∗ >

/dz∗|−∞ as the characteristic length, velocity, and density, respectively, the nondimensional
governing equations take the following form:

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇) u = −∇p + 1

Re0
∇2u − Jbρ

′δi3, (2)

∂ρ

∂t
+ (u · ∇) ρ = 1

Re0Pr
∇2ρ, (3)

where

Re0 = �U ∗δ∗
ω,0

ν∗ , Jb = N∗2
b δ∗2

ω,0

�U ∗2
, Pr = ν∗

κ∗ . (4)

Here, ν∗ and κ∗ are the kinematic viscosity and molecular diffusivity, respectively. In all
cases, Re0 and Pr are equal to 1000 and 1, respectively. Hereafter, all quantities are discussed
in nondimensional form.

A second-order finite difference method on a staggered grid is used for spatial discretiza-
tion and the simulation is marched in time with a third-order low-storage Runge–Kutta
scheme. The domain size is 50.4 × 33.6 × 42.7 and the grid has 384 × 256 × 320 points
in the x-, y-, and z- direction, respectively. Domain decomposition with MPI (message-
passing interface) is utilized. The grid is uniform is the streamwise (x) and spanwise (y)
directions, with a spacing of 0.13. In the vertical direction, the grid is uniform in the region
−6 < z < 3.75, with a spacing of 0.075, while it is stretched at the rate of 2% outside.
Low-amplitude velocity perturbations with a broadband spectrum,

E (k) ∝
(

k

k0

)4

exp

[
−2

(
k

k0

)2
]

,

are added to initialize the flow. Here, k0 is set such that the spectrum peaks at 1.7. Fluctua-
tions are introduced only in the shear layer with the shape function,

A(z) = exp(−z2),

and with a maximum amplitude of 0.1% (�U ).
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Journal of Turbulence 5

Periodic boundary conditions are used in the streamwise and spanwise directions. The
top and bottom faces of the domain have the following conditions:

u (zmin) = 〈u0〉 (zmin) ,

u (zmax) = 〈u0〉 (zmax) ,

v (zmin) = v (zmax) = 0,

p (zmin) = p (zmax) = 0,

∂w

∂z
(zmin) = ∂w

∂z
(zmax) = 0,

∂ρ

∂z
(zmax) = −Jt ,

∂ρ

∂z
(zmin) = −Jb.

A sponge region is constructed at the top (z > 10) and the bottom (z < −20) boundaries
in which the velocity and density are damped toward their initial values at the boundaries.
More details about the numerical methods can be found in [13, 14].

3. Visualizations of the turbulent patches

The linear growth of KH shear instability, the nonlinear development of KH billows, and the
transition of KH shear instability to turbulence in the top shear layer have been demonstrated
in many previous studies [10,12,15,16]. In this study, we only focus on interaction between
the horseshoe vortices and the bottom shear layer. Visualizations of the density fields are
provided in this section to show the presence of localized patches of turbulence in the region
with Rig > 0.25.

Vertical x–z slices of the density field at y = 16.7 in the case with bottom shear of
Sd = −0.5 are shown in Figure 2(a)–(c) at times t = 100, 150, and 200, respectively. At
t = 100, KH billows roll up in the top shear layer at z = 0, with the isopycnals overturned.
In the bottom shear layer centered at z = −3.5, the isopycnals are flat. At t = 150, the
billows break down and the top shear layer transitions to turbulence. At the base of the
top shear layer, z = −2 and x = 40, an isopycnal overturn with size smaller than that of
the KH billows begins to leave the top shear layer and penetrate the bottom shear layer.
This overturn is driven by localized spanwise vortex tubes formed during the breakdown
of the KH billows. These tubes are pulled by and interact with the background spanwise
vorticity provided by the shear in the bottom layer. At t = 200, a large vertical isopycnal
displacement is observed in the region 36 < x < 45 and −5 < z < −2.5. The displacement
has amplitude as large as the vertical extent of the KH billows in the top shear layer. The
isopycnal fluctuations in the bottom shear layer are spatially localized, while they are
horizontally widely spread in the top shear layer. From x = 36 to x = 41, the isopycnal at
z = −2.5 is displaced downward to z = −5 due to the penetration of the vortex tubes into
the bottom shear layer. From x = 41 to x = 43, the isopycnal at z = −5 is displaced upward
and is overturned. It is important to emphasize that this overturn contributes significantly to
local turbulent mixing, besides the downward fluxes associated with the descending vortex
tubes.
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6 H.T. Pham et al.

Figure 2. Case Sd = −0.5: x − z slices at y = −16.7 of the density fields at three times. Arrows
indicate the center of the bottom shear layer.

Figure 3(a) provides a 3D view of the density field at t = 200 in Case Sd = −0.5. It
is noted that the figure is flipped upward to ease visualization. The red isosurface depicts
isopycnal fluctuations in the top shear layer at z = 0. The fluctuations are broadband and
homogeneously spread in the horizontal direction. The green isosurface shows fluctuations
in the bottom shear layers at z = −3.5. The fluctuations at this depth are localized and
clustered into patches. It is noted that Figure 2(c) only shows one vertical slice of the
domain at y = 16.7, and therefore, depicts only one event of a descending vortex. In fact,
Figure 3(a) shows multiple distortions of the isopycnal corresponding to several descending
vortices that occur at the same time but at different horizontal locations. In Figure 3(b), the
red isosurface depicts the 3D structure of the vortices using the λ2 criterion, which locates
the pressure minimum in a plane perpendicular to the vortex axis and accurately defines
vortex cores [17]. Comparing Figure 3(a) to Figure 3(b), it is certain that the patches of
density fluctuations in the bottom shear layer are triggered by the penetrations of horseshoe
vortices. The vortices, which originate as spanwise vortex tubes in the top shear layer,
are drawn in and stretched into a horseshoe configuration by the background shear of the
bottom layer. In the study of Pham and Sarkar [2], one horseshoe vortex is observed in
the spanwise y-direction. In this study, we increase the spanwise domain length twice as
large and two vortices can occur at a fixed x-location, e.g., at x = 2 in Figure 3(b). The
spanwise domain length is significantly larger than two spanwise lengths of the vortices,
so it is unclear if the vortex dimension is related to a spanwise instability of the KH shear
instability in the top shear layer. During the nonlinear evolution of a KH shear instability,
large vortices associated with KH billows break down into smaller vortices. Pham and
Sarkar [2] observed that the vortices associated with the KH billows penetrate downward
into the jet below. In the present study with a larger spanwise domain, the large vortices
break down and only the smaller vortices are observed to penetrate the bottom shear layer.
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Journal of Turbulence 7

Figure 3. Case Sd = −0.5: (a) Isosurfaces of the density field at t = 200: ρ = 0 (red); ρ = 0.019
(green). The red isosurface shows horizontally homogeneous broadband turbulence at z = 0, while
the green isosurface indicates localized patches of turbulence at z = −3.5. (b) Isosurface (red) of
λ2 = −15 illustrates the horseshoe vortices, which originate from the unstable shear layer at z = 0,
penetrate, and generate turbulence across the stable shear layer. The horizontal plane shows contours
of λ2 at depth z = −3.5. The figure is flipped such that negative z-axis is upward.

Regardless of how a spanwise vortex forms in the top shear layer, if it meanders
in close proximity to the bottom shear layer, it is likely to be pulled by the vorticity
in the layer. Therefore, a larger shear rate supports stronger attraction and stretching of
the vortex. In contrast, a larger density stratification opposes the penetration since the
vortex needs to overcome a larger potential energy difference. Figure 4(a)–(c) compares
the density fluctuations among the three cases, each at t = 180. In Case Sd = −0.5, the
vortex penetration is observed at x = 36 and z = −3. At later time, t = 200, as shown in
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8 H.T. Pham et al.

Figure 4. Density fields in x − z slices at y = −16.7 in the three cases at t = 180. Arrows indicate
the center of the bottom shear layer.

Figure 2(c), the vortex is advected rightward and downward to z = −5. In Case Sd = −1.0,
the patch of the density fluctuation is present in the region 0 < x < 10 and the penetration
depth is down to depth z = −5. The vortex is least energetic in Case Sd = −1.5 since
the stratification is strongest in this case. The penetration depth is shallow, with patches of
fluctuations observed in the region 9 < x < 15 and limited to the region above −3. Overall,
the vortices in the case with the weakest shear and stratification penetrate to the greatest
depth and persist for the longest duration. In Case Sd = −0.5, vortices are observed as late
as t = 200, at which time they are already dissipated in the other two cases. In the case
with the strongest shear and stratification, the vortices cannot penetrate as deep and are
quickly dissipated. The vortices in the case with medium shear (Sd = −1.0) generate the
most energetic bursts of turbulence with the strongest dissipation rate, as will be discussed
in Sections 5 and 6.

4. Evolution of mean flows

The evolution of KH shear instability in the top shear layer significantly alters the mean
quantities there. Momentum and energy are extracted from the mean shear and transferred
into turbulence. The shear rate at z = 0 decreases in time due to the energy extraction.
The stratification there also decreases due to mixing. These observations agree well with
previous studies [10, 18]. In contrast, the mean flow conditions in the bottom shear layer
vary little in time despite the vortex penetration and the density fluctuations discussed in
the last section. Figure 5(a) shows the time evolution of the shear rate S at depth z = −3.5,
normalized by its initial value S0. Prior to t = 150, the shear decreases in all cases due
to viscous effects. As the vortices reach this depth, the shear slightly increases in Case
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Figure 5. Evolution of mean conditions at depth z = −3.5: (a) shear rate and (b) squared buoyancy
frequency, both normalized by the corresponding initial values at the same depth; (c) gradient
Richardson number.

Sd = −0.5, while the variations are minimal in the other two cases. Similar trends are
observed in the stratification, as shown in Figure 5(b). The squared buoyancy frequency
N2 in Case Sd = −0.5 increases between t = 150 and t = 200, during which the vortices
penetrate the region. The vortices eject light fluid from the top shear layer down into the
strongly stratified bottom region, and therefore, steepen the density gradient locally. The
squared buoyancy frequency shows a slight increase at t = 150 in Case Sd = −1.0, while
the elevation is not observed in Case Sd = −1.5. Over the simulated time, the stratification
in these two cases decreases due to molecular diffusion. The gradient Richardson number
is shown in Figure 5(c). During the time period 150 < t < 200, the values of Rig are larger
than 0.35, significantly larger than the critical value 0.25 for a linear shear instability.

It is important to emphasize that the mean quantities discussed here are the values
averaged over the entire horizontal domain. Since the size of the vortices is significantly
small with respect to the horizontal domain and the patches of density fluctuations are
localized, the local values differ greatly from the mean value. For example, the local gradient
Richardson number in the bottom shear layer can be less than 0.25, or even negative in
regions with positive density gradient, as shown in Figure 4. While the mean Rig can be
used as an indicator of shear-driven turbulence in the top shear layer, it is not an appropriate
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10 H.T. Pham et al.

metric for characterizing the intermittent turbulence in the bottom shear layer. The present
simulations clearly demonstrate that the turbulence in the top shear layer is driven by the
KH shear instability and that in the bottom layer is triggered by the penetration of vortices.
While both layers have shear and stratification, linear stability theory is not able to account
for the turbulence in the bottom layer.

5. TKE budgets

In this section, the turbulent kinetic budget (TKE) is examined to demonstrate how the
background conditions in the bottom shear layer influence the intermittent turbulence. The
TKE budget for the simulated flows is described by the following equation:

dK

dt
= P − ε + B − dT3

dz
, (5)

where, K = 1/2 < u′
iu

′
i > is the TKE, P is the production rate, defined as

P = − 〈u′w′〉 d 〈u〉
dz

,

ε is the dissipation rate,

ε ≡ 2

Re0

〈
s ′
ij s

′
ij

〉
; s ′

ij = 1

2

(
∂u′

i

∂xj

+ ∂u′
j

∂xi

)
,

and B is the buoyancy flux, defined as

B = −Jb

〈
ρ ′w′〉 .

The transport term dT3/dz is defined as

T3 = 1

2

[〈
w′u′u′〉+ 〈

w′v′v′〉+ 〈
w′w′w′〉]+

〈
p′w′〉
ρ0

− 2

Re0

[〈
u′s ′

31

〉+ 〈
v′s ′

32

〉+ 〈
w′s ′

33

〉]
.

In Equation (5), the apostrophe indicates fluctuating quantities within the framework of
Reynolds decomposition. In the present study, which involves a continuously stratified
background density, TKE can be transported by internal waves and turbulence. The dy-
namics of internal waves excited by a KH shear instability has been discussed at length
in previous literature [2, 18]. Here, we focus on the turbulent transport associated with the
penetration of the vortices.

Figure 6(a)–(c) plots the dissipation fields corresponding to the density fields shown in
Figure 4. The dissipation rate inside the patches of density fluctuations in the bottom shear
layer is comparable to the value in the top shear layer. Therefore, the turbulence triggered
by the vortex penetrations is not negligible even though it is localized and intermittent. The
patches of dissipation with values greater than 10−3, shown in red in the bottom shear layer,
are larger in size and impinge to a greater depth in Cases Sd = −0.5 and −1.0 compared
with Case Sd = −1.5. In the latter case, the vortices are quickly broken down by the strong
stratification. It is noted that in Case Sd = −0.5, the red patch at x = 36 and z = −3 in
Figure 6(a) continues to deepen and reach z = −5 at t = 200, as shown in Figure 2(c). At
this late time, the vortices in the other two cases have been dissipated.
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Figure 6. Dissipation fields in x − z slices at y = −16.7 in the three cases at t = 180. Arrows
indicate the center of the bottom shear layer.

The TKE budgets at t = 150 before the vortex penetration are shown in Figure 7(a), (c),
and (e) and those at t = 180 during the penetration are plotted in Figure 7(b), (d), and (f) for
the three cases. Prior to the vortex penetration, the budgets are similar among the cases, with
the production and dissipation concentrated in the top shear layer. At z = −2 between the
top and the bottom shear layer, the transient term dK /dt is balanced by the transport term
dT3/dz. TKE is extracted from the center of the top shear layer at z = 0 and is transferred
downward via pressure (wave) and turbulent transport. At t = 180, significant production
and dissipation are observed inside the bottom shear layer. In Case Sd = −0.5 shown in
Figure 7(b), at z = −4, the positive transient term is balanced by the downward turbulent
transport associated with the penetration of the vortices. The production increases due to
the interaction of the transported turbulence with the background shear. The dissipation
is not yet elevated, although at later time, when the penetrating vortex breaks down, the
dissipation is higher at this depth. In Case Sd = −1.0 shown in Figure 7(d), the profiles in
the budget spread down to z = −5. At this time, the vortices have broken down so that the
profiles of the transient and transport terms in the bottom shear layer change signs rapidly in
the vertical direction. The budget in Case Sd = −1.5 shown in Figure 7(f) does not spread
as deep. The production and dissipation in the bottom shear layer are significantly smaller
than the values observed in other cases.

To illustrate the time evolution of the TKE budget, we plot the budgets at depth z = −3.5
as a function of time in Figure 8(a)–(c). Prior to the penetration, the terms in the budgets
are not zero due to the activity of internal waves propagating across the bottom shear
layer; however, the energetic effects due to waves are small relative to the effects of vortex
penetrations [2]. When the vortices penetrate the center of the bottom shear layer z = −3.5,
the transport term exhibits sudden bursts of downward energy transport, resulting in a gain
in TKE (positive dK /dt). It is important to emphasize that these bursts in the transport term
are attributed to turbulence transport (the triple velocity correlation in the definition of T3),
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(a) Sd = −0.5, t = 150 (b) Sd = −0.5, t = 180
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(e) Sd = −1.5, t = 150 (f) Sd = −1.5, t = 180
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Figure 7. Turbulent kinetic energy budgets for the three cases at t = 150 and 180.

not wave transport (the pressure–velocity correlation). The number of bursts are different
among the cases. In Case Sd = −1.5, the stratification is so strong that the vortices are likely
to be broken down before reaching this depth. In contrast, the shear in Case Sd = −0.5 is
so weak that not as many vortices can be ejected from the top shear layer. Case Sd = −1.0,
with a moderate value of shear and stratification, has the largest number of bursts. The
intensity of each burst also varies and reflects the strength of the penetrating vortices.
With each burst in the transport, there is an accompanying burst in the production. The
production burst is due to the Reynolds stress < u′w′ > transported down by the vortices
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(a) Sd = −0.5
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Figure 8. Turbulent kinetic energy budgets for the three cases at depth z = −3.5.

seeing the shear in the bottom layer. The dissipation increases after the first burst. After
t = 180, when all the bursts have occurred, the production continues to be large at this
depth. The production during this late period is due to the interaction of residual turbulent
fluctuations with the existing mean shear, which is equivalent to extraction of TKE from
the bottom current. For Cases Sd = −0.5 and −1.0, integrating the terms in the budget
over time yields a net production that is larger than the energy transports, and therefore,
the mean shear in the bottom current must be a source of TKE. Clearly, even though the
gradient Richardson number is as large as 0.4 at this depth, as shown in Figure 5(c), TKE
can still be extracted from the background flow.

In Figure 9(a)–(c), we plot the terms in the TKE budget, integrated over the region
−7 < z < −2, for the three cases to illustrate the net effects of the vortices on the energetics
of the bottom shear layer. Among the cases, the peak values of all terms are smallest in Case
Sd = −1.5, where the strong stratification opposes the vortex penetrations. It is noted that
the largest peak value of transport, which occurs in Case Sd = −0.5, does not trigger the
largest production and dissipation. Although the peak transport value in Case Sd = −1.0
is smaller, the peak value of production and dissipation are larger. The larger shear in this
case contributes more energy to the TKE budget. Integrating the production and transport
in Figure 9(b) over the simulated time for Case Sd = −1.0 indicates that the net production
is approximately three times larger than the net downward energy transport by the vortices.
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(a) Sd = −0.5
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Figure 9. Integrated turbulent kinetic energy budgets for the three cases over the region −7 < z <
−2.

While the turbulent flux of the penetrating vortices is crucial in triggering the turbulence
generation, the available mean kinetic energy in the background flow is the major contributor
to TKE for mixing.

6. Turbulent mixing

The intermittent patches of turbulence in the bottom shear layer are not only highly dissipa-
tive, as shown in the last section, but the mixing rate there is also intense. Figure 10(a)–(c)
shows the scalar dissipation fields, χρ , corresponding to the TKE dissipation fields in Fig-
ure 6. Here, χρ is computed as 2Re−1

0 Pr−1 < (∂ρ ′/∂xi)2 >. It is clear from the figures that
the scalar dissipation inside the turbulence patches in the bottom layer is as strong as that
in the shear-driven turbulence in the top layer at t = 180. The vortices not only carry TKE
but also push light fluid downward into the strongly stratified bottom layer. The deeper
the vortices impinge, the larger are the buoyancy flux and the scalar dissipation. The red
patch of scalar dissipation in the region 0 < x < 10 and −5 < z < −2 in Figure 10(b) is
significantly larger than the size of the horseshoe vortices, so dynamics local to the region
also contribute to the mixing. For example, recall that the isopycnals in Figure 2(c) in the

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 1
7:

06
 1

7 
N

ov
em

be
r 

20
14

 



Journal of Turbulence 15

Figure 10. Scalar dissipation fields in x − z slices at y = −16.7 in the three cases at t = 180.
Arrows indicate the center of the bottom shear layer.

region 40 < x < 45 in the bottom shear layer have large-amplitude displacement, so they
subsequently overturn and contribute to mixing.

To compare the mixing among the cases, we plot the time evolution of the dissipation
rate of the turbulent potential energy, ερ , at z = −3.5 in Figure 11(a). This quantity is
defined as ερ = χρ/N

2. Case Sd = −1.0 has the largest peak value of ερ , while Case
Sd = −0.5 has the longest time period of mixing. While the peak value in the former
is 25% larger, its duration is approximately 40% shorter. Integrating over time, the net
potential energy dissipation in Case Sd = −0.5 is twice as large as that in Case Sd = −1.0.
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Figure 11. (a) Dissipation rate of the turbulent potential energy at depth z = −3.5; (b) mixing
efficiency at depth z = −3.5.
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Thus, the bottom shear layer in Case Sd = −0.5, with the weakest stratification, has the
largest net mixing. The evolution of the TKE dissipation rate ε at z = −3.5 also shows that
this case has the largest time-integrated TKE dissipation. With a fixed gradient Richardson
number, a weak shear and a low stratification in the bottom shear layer yield the largest net
dissipation in both the turbulent kinetic and potential energy budgets.

The time evolution of the mixing efficiency, τd = ερ/ε, at z = −3.5 is shown in Fig-
ure 11(b). As the vortices penetrate this depth, the mixing efficiency spikes to a large value.
This mixing elevation due to vortex dynamics is also observed in the top shear layer when
vortices associated with KH billows are formed. In Case Sd = −0.5, the peak value for
mixing efficiency is 0.8 in the bottom layer (in Figure 11(b)) and is 2.2 (not shown) at
z = 0 in the top layer during the roll-up of KH billows. With the size of horseshoe vortices
significantly smaller than that of a KH roller, a mixing efficiency of 0.8 is significant. After
the vortices break down at t = 180, the mixing efficiency is clustered about the value of
0.35 in all cases, which is comparable to the value of decaying turbulence in a unstable shear
layer [11] as well as that of decaying turbulence generated by Taylor–Green vortices [19].

7. Conclusions

In the present study, we have used DNS to examine the evolution of turbulence patches
driven by horseshoe vortices penetrating a stable shear layer with the gradient Richardson
number Rig greater than 0.25. The horseshoe vortices are intermittently formed during the
nonlinear evolution of an unstable shear layer (Rig < 0.25) located above. The background
condition in the stable shear layer is varied to illustrate how the the vortices affect the
dynamics of the turbulence patches. Three cases having the same value of Rig in the stable
shear layer are simulated with different values of shear rate, Sd , and stratification.

In Case Sd = −1.5, in which both the shear and the stratification are strongest, the
vortices are less likely to penetrate deep into the stable shear layer and are quickly dissipated
due to the strong stratification. In Case Sd = −1.0, with moderate values of shear and
stratification, the vortices penetrate across the stable shear layer. Localized patches of
turbulence with intense dissipation rate are observed inside the layer. Lastly, in Case
Sd = −0.5, with the weakest level of shear and stratification, the vortices not only penetrate
the stable shear layer but also persist for the longest duration. The net TKE dissipation as
well as the net turbulent potential energy dissipation are largest, and therefore, the net
mixing is strongest in this case. Analysis of the TKE budget indicates that although the
vortex penetrations trigger the generation of the turbulence patches, dynamics local to the
stable shear layer contribute a larger amount of energy to turbulent mixing. The evolution of
mixing efficiency is similar in all cases, with an elevation to a large value, up to 0.8, during
the vortex penetration and a decrease to a value of 0.35 during the decay of the patches.
The latter value is comparable to that observed during the decay stage of turbulence driven
by an unstable shear layer with Rig < 0.25.
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