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Scalar transport and mixing by active turbulence in a high Reynolds number inhomoge-
neous stratified shear layer are investigated using three-dimensional Direct Numerical
Simulation. Two density profiles are considered: (i) two layers of homogenous fluid with
different density, namely the two-layer case, and (ii) a continuously stratified background
ambient, namely the Jd case. The evolution of the mixing layer includes shear instability,
formation of Kelvin–Helmholtz rollers, transition to turbulence, fully developed active
turbulence, and, finally, decay toward a laminar state. In the Jd case, internal gravity
waves carrying momentum and energy are observed to propagate away from the shear
layer. Although different during the initial evolution, the eddy diffusivity and mixing
efficiency when plotted as a function of buoyancy, Reynolds number takes similar values
between the two cases later in time during the stage when turbulence decays. During
this stage, the mixing efficiency computed based on the buoyancy flux is approximately
0.35, while the mixing efficiency estimated from the scalar dissipation is approximately
0.4. Parameterization of the eddy diffusivity in terms of Reynolds numbers and gradient
Richardson number is also discussed.

Keywords: stratified shear layer; turbulence; internal waves

1. Introduction

In the past decades, turbulent mixing in a stratified fluid driven by a background shear has
been one of the focal research topics in terms of understanding the mechanism of mixing
as well as its parameterization in models of large-scale environmental flows. Although
there has been much progress [1–3], a number of unresolved questions remain, including
the following: (i) the interaction of internal gravity waves that can transport significant
amount of momentum and energy to the ambient, with local mixing, and (ii) the influence
of Reynolds number (Re). These issues are addressed by the current study that utilizes three-
dimensional (3D) Direct Numerical Simulation (DNS) to investigate turbulent mixing in a
high Re shear layer in a continuously stratified ambient where internal waves are supported.

Turbulent mixing in homogenous flows has been thoroughly investigated including
parameterization schemes for mixing. Jacobitz et al. [4] use 3D-DNS to study turbulence
mixing in a periodic box with constant vertical shear S in a linearly stratified ambient
where stratification is measured by squared buoyancy frequency N2 = (−g/ρ0)d〈ρ〉/dz.
The turbulence evolution is found to strongly depend on the gradient Richardson number
Rig = N2/S2, the Reynolds numbers defined using the Taylor microscale, and the shear
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2 H.T. Pham and S. Sarkar

number SK/ε, where K is the Turbulent Kinetic Energy (TKE) and ε is the dissipation
rate. Riley and deBruynKops [5] investigate the properties of turbulent mixing driven by
Taylor–Green vortices. The mixing efficiency is large initially and settles down to the value
of approximately 0.4 during the turbulence decay period. Shih et al. [6] investigate the
parameterization of eddy viscosity and eddy diffusivity using simulations of homogenous
shear flow with stratification. The evolution of the eddy diffusivity is found to consist of
three regimes: energetic, intermediate, and diffusive mixing. There is a strong dependence
of eddy diffusivity on the turbulence activity ε/(νN2), also known as buoyancy Reynolds
number Reb. Other parameterizations using the parameters ReFr2

k and Re/Rig are also
shown to describe the evolution of eddy diffusivity. Here Re = q�/ν, where q = √

(2K),
� is the integral lengthscale, and Frk = ε/(NK) is the local Froude number.

Turbulent mixing, in a two-layer shear flow with hyperbolic tangent density and velocity
profiles has received significant attention. Caulfield and Peltier [7] use stability analysis and
3D-DNS to identify, in addition to the primary Kelvin–Helmhotlz (K–H) shear instability,
a secondary instability wherein streamwise vortices are formed at the braids, interact with
each other, and thus drive the mixing. The secondary instability is also observed in the
3D-DNS of Werne et al. [8]. Staquet [9] from 3D-DNS studies describes three stages of
mixing: the first stage of primarily 2D K–H instability with high mixing efficiency, the
second stage of small-scale 3D instability as in the work of Caulfield and Peltier [7], and
the final stage of turbulence generation and decay in which the flux Richarson number
approaches the value of approximately 0.25. In the final stage, the eddy diffusivity exhibits
an inverse dependence on the gradient Richardson number Rig , which is defined using the
sorted background density profile as introduced by Winters et al. [10]. Smyth et al. [11–13]
investigate the effect of Re and Prandtl number Pr upon the evolution of the mixing event
and further contrast their 3D-DNS results to the observed mixing data in the equatorial
undercurrents. Upon comparison, they conclude that the DNS results agree well with the
data from field observations. They further state that the age of a turbulent mixing event can
be described by the ratio ROT = LO/(L3/4

E L
1/4
T ), where L0, LE , and LT are the Ozmidov,

Ellison, and Thorpe scales, respectively. The mixing efficiency is found to be in the range
of 0.2–0.6.

Turbulent mixing with a background shear and a density profile different from the two-
layer problem has been studied. Strang and Fernando [14] perform a laboratory experiment
to investigate the turbulent entrainment at a sheared density interface. The background
condition is a stratified shear layer situated between a well-mixed turbulent upper layer and
a quiescent linearly stratified lower layer. The flow evolution includes K–H instability and a
secondary Hölmböe wave instability whose interactions with each other can cause breaking
and intense mixing. Internal waves are observed to propagate into the lower region. The
proportion of the wave energy flux to the rate of change of potential energy due to mixed-
layer deepening is approximately 48%. Tse et al. [15] uses 3D-DNS to study the evolution
of stratified turbulence in a forced jet, a model for the atmospheric tropopause. The jet
is maintained at quasi-equilibrium state with strong turbulence in the core, and patchy
turbulence and nonlinear internal waves at the edges. It is found that spatial variation in
turbulence activity across the jet can be characterized through length scales and budget
equations for the velocity and density variances.

Internal waves excited by an unstable shear layer have been observed to carry significant
momemtum flux. Sutherland and Linden [16] perform a laboratory experiment in which a
thin vertical barrier is put inside a water channel and partially obstructs the incoming flow.
The fluid is lightly stratified in the upper region while the lower region is strongly stratified.
Vortices, shed in the wake of the barrier, excite internal waves. The waves propagating into
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Journal of Turbulence 3

the lower region are found to carry approximately 7% of the average momentum across
the shear depth. Pham et al. [17] investigate the properties of the internal waves through
3D-DNS of a stratified shear layer at Re = 1280. The internal waves are excited by an
unstable shear layer located between a weakly stratified region and a region with stronger
stratification. The internal waves are found to carry up to 10% of the initial momentum in
the shear layer. Integration of the TKE budget over the shear layer and time shows that the
wave energy flux can be up to 17% of the turbulent production, 33% of the dissipation rate,
and 75% of the buoyancy flux. The mixing efficiency is approximately 0.4.

Different from the work of Pham et al. [17], whose focus is on the properties of the
large-scale internal waves radiated by the shear layer, the current investigation focuses on
turbulent mixing inside the shear layer. The Reynolds number, Re = 5000 is nearly four
times larger relative to [17]. Furthermore, in the current work, the largest turbulent activity
ε/(νN2) is as large as 200 so that the turbulent mixing spans the entire three regimes
according to Shih et al. [6]. Specifically, we aim to answer the following questions: (1)
How does the presence of the external stratification and the excitation of internal gravity
waves affect transport and mixing inside the shear layer? (2) How well can parameterization
schemes in homogeneous stratified flows be applied toward parameterizing inhomogeneous
stratified turbulence?

2. Methods

3D-DNS are employed to describe the evolution of inhomogeneous stratified turbulence
that originates from shear instability. The flow is a temporally evolving shear layer with the
initial velocity having the following profile at t = 0:

〈u∗〉(z, t = 0) = −�U ∗

2
tanh

(
z∗

0.5δ∗
ω,0

)
,

where �U ∗ is the velocity difference across the shear layer and δ∗
ω,0 = �U ∗/

(d〈u∗〉/dz∗)max is the initial vorticity thickness. Subscript 0 indicates quantities at initial
state, superscript ∗ denotes dimensional quantities, and the bracket 〈·〉 indicates horizontal
x–y average. Two types of initial density profiles are targeted. The first, namely the two-
layer (2L) case, corresponds to the classical Thorpe experiments with the following profile
at t = 0,

〈ρ∗〉 = 〈ρ∗
0 〉 − �ρ∗

2
tanh

(
z∗

0.5δ∗
ω,0

)
,

where �ρ∗ is the density difference across twice the initial vorticity thickness δ∗
ω,0. The

second, namely the Jd case, is continuously stratified with the following stratification profile
at t = 0:

J (z) = Js + Jd

2
+ Js − Jd

2
tanh

(
z∗ + 2.5δ∗

ω,0

δ∗
ω,0

)
.

Here, J (z) = N (z)∗2 δ∗2
ω,0/�U ∗2 is the non-dimensional Richardson number with the buoy-

ancy frequency N∗2 = −(g∗/ρ∗
0 )d〈ρ∗〉/dz∗. Js is chosen such that the density difference,
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4 H.T. Pham and S. Sarkar

(b)(a)
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Figure 1. (a) Schematics of initial mean velocity and density profiles, (b) initial gradient Richardson
number Rig . The dashed line indicates the marginal value, Rig=0.25, for shear instability.

�ρ∗
0 , across 2δω,0 is the same for both cases and Jd is equal to 5Js . The initial velocity and

density profiles are shown in Figure 1(a). The two-layer profile has been studied previously
[7, 9, 11, 12] and the corresponding mixing efficiency has been discussed at length [13]
and will be used as a base case for comparison in the current study. The Jd profile is typical
to numerous observations in the ocean pycnocline as well as in the atmospheric inversion
in which the background density stratification varies with depth/height.

The governing equations are the incompressible Navier–Stokes equation with Boussi-
nesq approximation with dependent variables: velocity u, v,w, pressure p and density ρ in
a nonrotating Cartesian coordinates with independent variables: x, y, and z. The variable p

denotes deviations from the mean hydrostatic pressure. The density is decomposed into a ref-
erence density ρ0 and a departure, which is composed of a mean and fluctuation as follows:

ρ = ρ0 + 〈ρ〉 (z) + ρ ′ (x, y, z, t) .

The apostrophe indicates the fluctuation from the planar mean value. In the current study,
fluctuations can represent both waves and turbulence. The Boussinesq approximation sup-
poses that the variations in density are ignored in the inertial terms in the momentum equa-
tions but they contribute to the gravitational force. Using δ∗

ω,0, �U ∗, ρ∗
0 , and �ρ∗

0 as the
characteristic scales for length, velocity, density, and density difference in the momentum
equation, respectively, the non-dimensional governing equations take the following form:

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇) u = −∇p + 1

Re0
∇2u − Rib,0ρ

′δi3, (2)

∂ρ

∂t
+ (u · ∇) ρ = 1

Re0Pr
∇2ρ, (3)

where

Re0 = �U ∗δ∗
ω,0

ν∗ , Rib,0 = g∗�ρ∗
0δ∗

ω,0

ρ∗
0�U ∗2

, P r = ν∗

κ∗ . (4)
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Journal of Turbulence 5

Here, ν∗ and κ∗ are the kinematic viscosity and molecular diffusivity, respectively.
Both datasets are generated with Re = 5000, Pr = 1 and Rib,0 = 0.1. It is noted that
although the bulk Richardson number Rib,0 are the same, the gradient Richardson number
Rig (z) = N2 (z) / (d〈u〉/dz)2 at the centerline in the two-layer case is twice larger than that
in the Jd case as shown in Figure 1(b).

The initial value of Re is sufficiently large such that the initial instability is nearly invis-
cid and the separation between the largest and the smallest length scales is approximately
three orders of magnitude assuming the separation scales as Re−3/4. The initial Rib is cho-
sen to be less than the critical value of 0.25 for shear instability [18]. The parameters used
in this study are relatively low for environmental applications. Nonetheless, Smyth et al.
[13] has simulated a 3D-DNS of a mixing layer with the two-layer profile with Re = 4978,
Pr = 1, and Rib = 0.08, and compared the computed mixing efficiency to the values from
measurements in turbulent patches observed off the California coast and at the equator.
They concluded that the parameters in their DNS is high enough to approximate a high Re
limit and further increase in Re would not significantly alter their DNS results.

The numerical method is similar to that in our previous work [19, 20]. Briefly, a second-
order finite difference method on a staggered grid is used for spatial discretization and
the simulation is marched in time with third-order low-storage Runge–Kutta schemes. The
current DNS utilizes parallel computing with message-passing interface (MPI) to handle the
computational needs of simulating high Re flows. The domain size is 30.75 × 15.39 × 93.6
and the grid has 1024 × 512 × 768 points in the x, y, and z directions, respectively, for a total
of 402 million gridpoints. The domain length Lx is chosen to accomodate approximately
four wavelengths of the primary K–H instability. The grid is uniform in the streamwise
(x) and spanwise (y) directions with a spacing of 0.03. In the vertical direction, the grid is
uniform in the region −4.5 < z < 3 with a spacing of 0.03, while the grid is stretched at
the rate of 1% outside. Low-amplitude velocity perturbations with a broadband spectrum,

E(k) α

(
k

k0

)4

exp

[
−2

(
k

k0

)2
]

,

are added to initialize the flow. Here, k0 is set such that the spectrum peaks at 1.7. Fluctua-
tions are introduced only in the shear layer with the shape function,

A (z) = exp(−z2).

and with a maximum amplitude of 1% �U .
Periodic boundary conditions are used in the streamwise and spanwise directions. In

the Jd case, the top and bottom faces of the domain have the following conditions:

u (zmin) = 1

2
, u (zmax) = −1

2
,

v (zmin) = v (zmax) = 0,

p (zmin) = p (zmax) = 0,

∂w

∂z
(zmin) = ∂w

∂z
(zmax) = 0,
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6 H.T. Pham and S. Sarkar

∂ρ

∂z
(zmax) = −Js

Rib,0
,

∂ρ

∂z
(zmin) = −Jd

Rib,0
.

In the two-layer case, the velocity boundary conditions are the same but the density ρ has a
no-flux condition. As internal waves can propagate far away from the shear layer, a sponge
region is added at the top (z > 15) and the bottom (z < −50) boundaries to control spurious
reflections of internal waves. More details about the numerical methods can be found in
[17, 19, 20].

3. Evolution of the shear layers

The evolution of the shear layer, which consists of shear instability, formation of K–H
rollers, their breakdown into 3D turbulence, and finally the decay of turbulence can be
described with the growth of the momemtum thickness δθ defined as

δθ =
∫ zu

zl

(
1

4
− 〈u〉2

�U 2

)
dz,

where the depths zu and zl are taken to be 5 and −5, respectively. The depths are locations
at which the background shear d〈u〉/dz is approximately zero over time, although the
momentum flux 〈u′w′〉 due to internal waves can be large. The growth of δθ shown in
Figure 2(a) indicates three evolutionary regimes for both cases. During the early stage
approximately 0 < t < 25, the shear layer adjusts to the initial conditions and the growth is
similar between both cases. The second regime is the shear instability regime in which the
instability develops into the K–H rollers and the shear layers thicken at strong linear rate.
The linear growth rate is similar between the two cases, although it starts and ends earlier
in the Jd case. As a result, δθ in the Jd case is significantly smaller at end of the second
regime when the K–H rollers can no longer grow and small-scale turbulence dominates the
shear layer. The transition from the second regime to the third regime in which the shear

0 50 100 150 200 250
1

2

3

4

5
2L
J

d

(a)

t

δθ
δθ↪0

0 50 100 150 200 250
0.00

0.25

0.50

0.75
2L
J

d

(b)

t

Rig

Figure 2. Evolution of (a) the momentum thickness δθ , and (b) the gradient Richardson number Rig
at the centerline of the shear layer z=0. The dash line indicates the critical value of Rig=0.25 for shear
instability.
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Journal of Turbulence 7

layer is dominated by decay of turbulence is sharper in the Jd case. In the two-layer case,
during the transition the turbulent shear layer thickens although at significantly smaller rate
compared to the growth observed in the second regime. In the third regime as the turbulence
decays, the growth of δθ becomes asymptotic at a value which is more than 25% larger in
the two-layer case.

The evolution of Rig computed at the center of the shear layer z = 0 is shown in
Figure 2(b). In both cases, Rig grows at similar rate during the formation of the K–H
rollers and exhibits strong fluctuations during the transition to turbulence. After that Rig
asymptotes to a constant value. Although the initial value of Rig is half of that in the
two-layer case, the value during the turbulence decaying stage is larger in the Jd case. The
asymptotic value is approximately 0.45 in the two-layer case and 0.5 in the Jd case.

4. Turbulence evolution

In the previous section we have described the evolution of the mean flow. In this section
we focus on the evolution of turbulence in the shear zone which consists of two stages:
the generation of turbulence through shear instability and the decay of turbulence through
molecular mixing and spatial transport to the ambient. Although the stages are the same
between the two cases, there are differences which affect the turbulent mixing rate. We elab-
orate on the differences with the visualization of the shear layer, the TKE budget, the budget
of density variance, and the evolution of relevant length scales, as well as some non-
dimensional turbulence parameters.

4.1. Visualization of the turbulent fields

Cross sections of the density fields in the simulated flows are shown in Figure 3.
Figures 3(a–c) correspond to the two-layer case, while Figures 3(d–f) correspond to the Jd

Figure 3. Density field on a vertical xz plane at y = 3.9.
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8 H.T. Pham and S. Sarkar

case. In both cases, the primary shear instability is the same as shown in Figures 3(a and d)
with the horizontal domain consisting of four K–H rollers. The vertical extent of the largest
rollers, located at the far left, is also similar. The pairing of K–H rollers is absent in both
cases. The presence/absence of pairing influences the evolution of the vertical length scales,
which consequently affects the amount of potential energy available for mixing. In the
two-layer case, the two rollers to the right are breaking in Figure 3(a). Four isolated patches
of small-scale turbulence in Figure 3(b) corresponding to the four rollers in Figure 3(a)
indicate evidence of breaking without pairing. The braid between the first roller and the
second roller, as well as one between the third roller and the fourth roller in Figure 3(b)
are still coherent even though the cores of the rollers show significant disintegration. In
the Jd case, all four rollers in Figure 3(d) exhibit high-frequency fluctuations in the roller
cores. Figure 3(e) shows the shear layer at t = 80, which already consists of small-scale
turbulence. Pham et al. [17] observed pairing in the two-layer case but not in the Jd case.
Their physical explanation is that, in the Jd case, strong internal waves carry a significant
amount of energy outside the shear layer and thus the rollers in the shear layer become too
weak to pair. In the current study in which the Re is approximately four times larger, low
viscosity allows for small-scale growth; therefore, the K–H rollers, even in the two-layer
case, tend to break down before they can pair. At approximately t = 102, the turbulence
in the shear layer in the two-layer case shown in Figure 3(c) becomes more homogenous
in the horizontal extent compared to that in Figure 3(b). The braids between the turbulent
patches in Figure 3(b) can no longer be identified in Figure 3(c). In the Jd case, at t = 100,
the turbulence in the shear layer in Figure 3(f) is already decaying. Comparison of the shear
layer in Figure 3(e) to that in Figure 3(f) shows that the former has stronger fluctuations
and larger vertical extent. Between the two cases, the turbulence in the two-layer case in
Figure 3(c) spreads to a greater vertical extent than that in the Jd case in Figure 3(e).

Figure 4 illustrates the TKE dissipation field, ε = (2/Re0)〈s ′
ij s

′
ij 〉, where s ′

ij is the fluctu-
ating strain rate, corresponding to the density fields shown in Figure 3. Here the fluctuations
from the planar mean can represent both internal waves and turbulence, although the latter
has broader energy spectra and larger dissipation rate [17]. During the generation period of
the K–H rollers, intense dissipation occurs in the braid regions, where the strain is large. As
the flows transition into turbulence, small-scale fluctuations raise the dissipation rate inside
the roller cores as in Figure 4(b and d). The breaking rollers transform into localized patches
of dissipation. In Figures 4(c and e) the shear layers are fully turbulent. The dissipation
patches observed at earlier time merge with each other. The fluctuations at the center of the
shear layers become homogeneous in the horizontal extent in Figures 4 (c,e, and f).

Figure 5 shows the dissipation rate, χρ = 2/(Re0Pr)〈(∂ρ ′/∂xi)
2〉, of the density vari-

ance. This quantity is related to the rate at which the turbulent potential energy is lost.
An inverse correlation between the spatial distribution of the χρ and ε fields of the K–H
rollers is observed when comparing Figures 5(a and d) to Figures 4(a and d). The K–H
roller at the far left in Figure 5(a) has χρ small in the core and large in the envelope. In
constrast, Figure 4(a) shows ε large in the core and small in the envelope. The observation
is consistent with the fact that the envelope has larger instantaneous density gradient and
thus larger χρ . Similar behavior is observed when the shear layer becomes turbulent. While
ε is usually not large at the edges, Figures 4 (e and f), χρ is large at the edges of the shear
layer as in Figures 5(e and f). Evidence of internal waves is seen in Figures 5(d,e, and f).
The wave phase lines have mild χρ , only a magnitude of order larger than the backgound
value.

In addition to the primary K–H instability in the spanwise direction, we also observe
the secondary instability in the streamwise direction that has been discussed previously by
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Journal of Turbulence 9

Figure 4. TKE dissipation rate ε on a vertical xz plane at y = 3.9.

Figure 5. Density variance dissipation rate χρ on a vertical xz plane at y = 3.9.
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10 H.T. Pham and S. Sarkar

Figure 6. Streamwise vorticity ω1 on a vertical tranverse plane at x = 15.4.

[7]. Figures 6(a and b) show the field of streamwise vorticity ω1 on the yz cross section
at x = 15.4. The cross section is a cut through the braid region shown in Figure 3. In the
two-layer case, shown in Figure 6(a), the braid consists of vortex streaks. The secondary
instability is observed at four different y locations on the braid. A pair of counter-rotating
vortices pinches off the braid at y ≈ 2.5, while at y ≈ 5 a group of smaller vortices are
observed. At y ≈ 10, a larger pair of counter-rotating vortices floats upward, while a smaller
pair cleaves off in the opposite direction. Another vortex pair is at y ≈ 12.

In the Jd case, shown in Figure 6(b), the instability is observed at y ≈ 8, 9 and 10. The
pair at y ≈ 8 floats upward, the pair at y ≈ 9 sinks downwards, and the pair at y ≈ 10 is
the largest. A group of incoherent vortices are observed in the region 11 < y < 14. The
instability in the current study is not as coherent as shown in the study of Werne et al.
[8] because the initial fluctuations employed here have broandband spectrum in contrast
to the flow initialization with primary K–H instability [8], which subsequently triggers the
secondary instability. Caulfield and Peltier [7] suggest that the secondary instability triggers
3D perturbations which transition the flow from a 2D quasi-laminar state to 3D turbulence.
In other words, turbulence is initiated from the braids of the K–H rollers, spreads toward
the core, and causes the breakdown of the rollers in the earlier low-Re DNS. In the current
study, due to the high Re and broadband nature of the initial low-amplitude fluctuations,
we observe that the generation of turbulence at the braid and at the core of the rollers is
independent. Figure 4(b) shows the braid at x ≈ 7 is still coherent, while the cores of the
rollers to the left and right of the braid already contain 3D fluctuations.

The properties of the internal wave field generated by an unstable shear layer has been
discussed at length by Pham et al. [17]. Here, we provide a short discussion of the internal
wave field for completeness and also because Re is approximately four times larger in the
current simulations. Figure 7(a) shows the anatomy of the wave field with the cross section
of the fluctuating vertical velocity w′ field, while Figure 7(b) shows the internal wave flux to
be discussed later. The narrow-band waves are linear with the horizontal wavelength equal
to the wavelength of the K–H rollers in the shear layer. The wave phase lines tilt downward
and upstream at any angle between 32◦ and 38◦ to the vertical. The direction of propagation
can be explained using linear wave theory based on the Doppler-shifted frequency of the
K–H mode [17]. With an increase in Re, we do not observe a change in the mechanism of
wave excitation.

4.2. Turbulence Budgets

The TKE budget for the simulated flows is described by the following equation:

dK

dt
= P − ε + B − dT3

dz
, (5)
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Figure 7. Jd cases: (a) Internal wave field shown in the xz cross section at y = 3.9 of the fluctuating
vertical velocity w′ field at t = 80, (b) wave energy flux 〈p′w′〉 across the horizontal plane z = −5.

where, K = 1/2〈u′
iu

′
i〉 is the TKE. P is the production rate, defined as

P = −〈u′w′〉d〈u〉
dz

,

ε is the previously defined dissipation rate, and B is the buoyancy flux, defined as

B = −Rib,0〈ρ ′w′〉.

The transport term dT3/dz is defined as

T3 = 1

2

[〈w′u′u′〉 + 〈w′v′v′〉 + 〈w′w′w′〉] + 〈p′w′〉
ρ0

− 2

Re0

[〈u′s ′
31〉 + 〈v′s ′

32〉 + 〈w′s ′
33〉

]
.

Figures 8(a and b) show the budgets for the two-layer case at t = 102 and Jd case at t = 100,
respectively. At this time, the shear layers are fully turbulent. In both cases, the budgets in
the shear layer show the dominant balance between the dissipation ε and production P . In
the two-layer case, the buoyancy flux is positive in the upper half of the shear layer and
negative in the lower half, indicating B can be both a source and a sink of energy. In the Jd

case, B is the source of energy across the shear layer and the profiles of the buoyancy flux
B, the transport −dT3/dz and the transient term dK/dt extend far into the region below
the shear layer where internal waves are present. For the wave field, the production and
dissipation are insignificant. Total energy transported by the wave fields is balanced by the
rate of change of TKE in time and the rate at which TKE is converted to potential energy,
i.e. buoyancy flux B.
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Figure 8. TKE budgets in the vertical direction z: (a) in the two-layer case at t = 102, and (b) in the
Jd case at t = 100.

The wave field in the current study is compared to one reported in Pham et al. [17] in
term of energetics. The wave energy flux 〈p′w′〉 across the horizontal plane z = −5 was
shown earlier in Figure 7(b). The peak energy flux at t ≈ 75 is half of the value reported
in the previous study. Integrating the energy budget, i.e. equation 5, from z = −5 to the
upper bound of the domain excluding the sponge region and also in time yields the bulk
energy partitions in the balance of integrated TKE. The total wave energy flux is found
to be approximately 9% of the integrated production, 17% of the integrated dissipation,
and 38% of the integrated buoyancy flux. Pham et al. [17] report values of 17%, 33%, and
75%, respectively. The wave field in the current study is weaker owing to the effects of
high Re upon the source region of the waves. At high Re, the energy balance in the TKE
budget is in favor of the dissipation over the transport. The energy at the large-scale (K–H
mode) cascades into the smaller scales at a faster rate. The K–H rollers at high Re lose
more energy to small-scale motion and, therefore, the amount of energy available to excite
internal waves is reduced.

Figures 9(a,b) show the time evolution of the production, the dissipation and the buoy-
ancy fluxes at the center of the shear layer z = 0 in the two-layer case and the Jd case,
respectively. Overall, the evolution starts earlier and ends earlier in the Jd case, while the
evolution has a longer duration in the two-layer case. The production rate peaks earlier in
the Jd case, although the peak values are comparable between the two cases. Integrated
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Figure 9. Evolution of TKE production, dissipation, and buoyancy flux measured at center of the
shear layer z = 0 in time: (a) in the two-layer case, (b) in the Jd case.
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over time, the net TKE production is larger in the two-layer case despite the initial gradient
Richardson Rig being twice as large. Thus, the production and Rig do not have direct cor-
relation; rather, the spatial transport of the Reynolds stress 〈u′w′〉 plays an important role
in quantifying the rate at which TKE is generated. The peak buoyancy flux B has a larger
value so that more TKE is transfered to potential energy in the two-layer case. At t = 100,
B changes signs in Figure 9(a) indicating that available potential energy is converted back
to TKE. Different from B, the peak dissipation rate ε is larger in the Jd case. In both cases,
B is larger than ε during the rise of P but smaller during the decay of P . After approxi-
mately t = 100 in the two-layer case and t = 80 in the Jd case, the TKE budget shows a
balance mainly between P and ε. The effect of the buoyancy flux is small suggesting that
the decaying turbulence at the center of the shear layer is in a homogenous state.

The equation for the budget of the density variance 〈ρ ′2〉 is

d

dt
〈ρ ′2〉 = Pρ − χρ − dTρ

dz
, (6)

where the scalar production Pρ is defined as

Pρ = −2〈ρ ′w′〉d〈ρ〉/dz ,

and the scalar dissipation χρ is defined as

χρ = (2/P rRe0) 〈(∂ρ ′/∂xi

)2〉 .

The transport term is

dTρ

dz
= ∂〈ρ ′2w′〉

∂z
− 1

PrRe0

∂2〈ρ ′2〉
∂z2

.

Figures 10(a,b) show the vertical profiles of the terms in the density variance budgets
corresponding to the TKE budgets shown in Figure 8. In both cases, the dissipation inside
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Figure 10. Density variance budgets in the vertical direction z: (a) in the two-layer case at t = 102,
and (b) in the Jd case at t = 100.
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Figure 11. Evolution of production and dissipation of density variance measured at center of the
shear layer z = 0 in time: (a) in the two-layer case, (b) in the Jd case.

the shear layer is mainly balanced by the transient term indicating the shear layers are
in a state of decaying stratified turbulence. In the two-layer case, all terms in the region
z < −3δω,0 are zero. In contrast, there is significant buoyancy flux up to z = −15δω,0 in
the Jd case, albeit without mixing (χρ 	 0). The sign of the production Pρ and the sign
of B shown in Figure 8(a) are opposite; recall that Pρ = 2B/Rib,0d〈ρ〉/dz and the stable
density gradient has a negative sign. Therefore, B and Pρ represent energy transfer between
the TKE budget and the density variance budget. In the Jd case the production is balanced
by the transient term in the region below the shear layer where internal waves propagate.
The time evolution of Pρ and χρ at z = 0 for the two-layer and Jd cases are shown in
figures 11(a,b), respectively. The peak value of Pρ is significantly larger in the two-layer
case, while the peak value for χρ is the same for the two cases.

4.3. Length scales

The growth of the following length scales are now discussed: energy-containing scale LEN ,
Ellison scale LE , Ozmidov scale LO , and Kolmogorov scale LK . Their definitions [11–13]
are given as follows,

LEN =
(

2
3k

)3/2

ε
,

LE = ρrms

d〈ρ〉/dz
,

L0 =
(

ε

N3

)1/2

,

LK =
(

ν3

ε

)1/4

.

The evolution of these length scales is shown in Figures 12(a and b) for the two-layer case
and Jd case, respectively.

The energy-containing scale LEN is calculated using the TKE and the dissipation rate.
In both cases, LEN peaks early corresponding to the moment when the K–H rollers reach
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Figure 12. Evolution of length scales: (a) in the two-layer case, and (b) in the Jd case.

their largest size. At this time, the TKE reaches its peak while the dissipation has not yet
evolved. The two-layer case has larger peak value of LEN because the K–H rollers are
larger. As rollers break and the shear layer turns turbulent, LEN decreases corresponding
to an increase in dissipation as shown in Figure 9. At later time when turbulence decays
LEN is approximately equal to 1.

In both cases, the evolution of the Ellison scale LE and Ozmidov scale LO are similar
despite a difference in the magnitude. These two length scales grow and decay similarly
and also peak at the same time. The decay is exponential in time. The decay rate in the
Jd case is larger than that in the two-layer case. The minimum value for the Kolmogorov
scale LK is nearly equal between the two cases. The value is approximately 0.01, which
is a third of the grid spacing. The time at which LO decreases to the value of 10η marks
the buoyant-inertial-viscous (BIV) transition, after which the inertial and buoyancy effects
are damped out so that the fluctuations decay mainly due to viscosity. The transition occurs
early in the Jd case at t = 120 and later in the two-layer case at t = 180. The time period
of active turbulence indicated by LO > 10LK is shorter in the Jd case, 35 < t < 120, than
that in the two-layer case, 55 < t < 180.

4.4. Non-dimensional turbulent parameters

The evolution of the buoyancy Reynolds number Reb = ε/(νN2), an indicator of turbulent
activity, at the center of the shear layer is shown in Figure 13(a) for the two simulated
cases. During the period of the formation of the K–H rollers, Reb is larger in the Jd case
although the growth rate of Reb is the same between the two cases. The peak value of
Reb in the Jd case is approximately twice that in the two-layer case. The larger Reb is
due to smaller value of the squared buoyancy frequency N2, recalling that the initial Rig
at the center of the shear layer is twice smaller in the Jd case as shown in Figure 1(b).
According to the criterion by which Shih et al. [6] differentiate the mixing regimes, both
of our simulations span all three regimes. The time period during which energetic mixing
occurs, Reb > 100, is longer in the two-layer case. Note that, as Reb = (LO/LK )∧ (4/3),
the condition Reb > 100 is equivalent to L0/LK > 31. The decay rate is the same for the
intermediate mixing regime and the diffusive regime in both cases.

An alternative measure of turbulent activity is ReT = qLE/ν, where q = √
2k [6].

Different from Reb where information at the small scale, i.e. dissipation rate ε, is required,
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Figure 13. Evolution of (a) buoyancy Reynolds number, Reb = ε/(νN 2), and (b) local turbulent
Reynolds number ReT = qLE/ν. Both are at the shear center.

ReT can be estimated using only information at the large scale, thus ReT is more convenient
to modellers. LE is prefered to LO despite their similar evolution because L0 involves the
dissipation rate in its definition. Figure 13(b) shows the evolution of ReT , qualitatively
captures the shape of the evolution of Reb in Figure 13(a) in both cases. The magnitude
and the decay rate show some differences. The peak value of ReT is an order of magnitude
larger than the peak value of Reb. Also, the peak value of ReT is larger in the two-layer
case; the opposite is observed in Reb. The decay rate of ReT is smaller than that of Reb.
During the intermediate mixing regime, the exponential decay rate for Reb is −0.027 in the
two-layer case and −0.039 in the Jd case. For ReT , the values in the two cases are −0.02
and −0.03, respectively.

5. Eddy diffusivity and its parameterization

The eddy diffusivity is defined as

Kρ = −〈ρ ′w′〉
d〈ρ〉/dz

= −B

N2
. (7)

Kρ is a ‘reversible’ estimate since B can be both positive and negative in the evolution of
the TKE budget. The evolution of Kρ is shown in Figure 14(a). Overall, Kρ is significantly
larger during the period of K–H roller formation compared to later time when there is
broadband turbulence. The increase of Kρ in the Jd case begins earlier but Kρ has larger
peak values in the two-layer case. Kρ has negative value at t = 100 in the two-layer case.

The buoyancy Reynolds number, Reb = ε/(νN2), has been used for parameterization
in ocean turbulence, where ε is obtained from microstructure profilers and the momentum
diffusivity Kρ is inferred from ε. In particular, a mixing efficiency defined as � = −B/ε

is introduced into the last equality of Equation (7) to give

Kρ = �
ε

N2
, (8)

which can be be alternatively written as

Kρ

κ
= �Pr

ε

νN2
= �PrReb. (9)
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Figure 14. Evolution of (a) eddy diffusivity Kρ , and (b) mixing efficiency � at the center of the
shear layer.

Choice of a value for �, often taken to be � = 0.2, completes the parameterization of Kρ .
Note that Equation 9 implies a physically consistent behavior that the eddy diffusivity in
stratified turbulence increases with both decreasing stratification and increasing turbulent
dissipation rate. Figure 14 shows the evolution of �. In both cases, � is much larger than
0.2 when the rollers are forming but it reduces to become approximately constant during
the turbulence decay.

We now examine how Kρ varies with respect to Reb. The variation is shown in
Figure 15(a), and the mixing regimes shown in the figure are determined by the crite-
ria of Shih et al. [6]. The arrows indicate the time progression in which the simulations
proceed. The direct one-to-one relationship that was seen previously in decaying stratified
homogenous turbulence [6] is not seen here; rather, the evolution of Kρ exhibits four distinct
stages. The first is the generation stage, 1 < Reb < 50 for both cases, during which Kρ

grows with approximately linear dependence on Reb corresponding to the formation of the
K–H rollers. Kρ is twice that in the two-layer case at the end of this stage. The second stage
is the transition to turbulence, 50 < Reb < 90 in the two-layer case and 50 < Reb < 200
in the Jd case, during which Kρ is approximately constant. The third is the collapse stage
during which Reb (equivalently turbulence dissipation rate) cannot grow further and Kρ
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Figure 15. (a) KρvsReb; (b) same as in (a) zoomed on to the intermediate mixing regime during the
decay of the flow. Arrows indicate progress in time. Note the abscissa is given in logarithmic scale in
(a) and linear scale in (b).
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18 H.T. Pham and S. Sarkar

exhibits a sharp drop. The collapse is smoother in the Jd case in which Kρ drops at constant
Reb. In the two-layer case Kρ rises and falls many times within a small range of Reb. Fi-
nally, the fourth stage corresponds to turbulence decay during which Reb and Kρ decreases
simultaneously. The evolution of Kρ in the two cases is similar only during the fourth stage
suggesting that turbulence eventually becomes independent of the initial and background
flow conditions. It is in this fourth stage that the eddy diffusivity can be directly related to
Reb as was done for uniform shear flow turbulence by [6]. Figure 15(b) shows a zoom on
to the intermediate mixing regime. Even though Kρ shows fluctuations, the best-fit lines
are similar between the two cases. Recall that the slope of Kρ/(κReb) with Pr = 1 is the
mixing efficiency �. The slopes of the best-fit lines indicate � ≈ 0.35, which is higher than
0.2, the value typically used by the oceanic community.

It is difficult to measure fluctuating gradient statistics accurately and, therefore, there
is interest in a more easily measurable alternative to Reb that can be used to infer Kρ .
The turbulent Reynolds number, ReT , introduced in the previous section is a measure
of turbulence activity. The gradient Richardson number, Ri = N2/S2, and the turbulent
Froude number, FrT = q/(NL) are measures of stratification. The Reynolds and Froude
numbers can be related to Reb as follows:

Reb = ε

νN2
= αq3/LE

νN2
= α

qLE

ν

q2

L2
EN2

= αReT F r2
T , (10)

where α is a proportionality coefficient. The Reynolds and gradient Richardson numbers
can be related to Reb from the third equality in Equation (10) as follows:

Reb = α
qLE

ν

q2

L2
EN2

= α
qLE

ν

S2

β2N2
= α

β2

ReT

Rig
, (11)

where SLE/q is another proportionality coefficient. The use of ReT Fr2
T has been explored

by [21] using DNS of Taylor–Green vortices, while [6] have explored the use of ReT /Rig
using DNS of uniform shear flow.

The evolution of Kρ with respect to ReT is shown in Figure 16(a). The evolution of
Kρ depicted by ReT also consists of four stages similar to when Reb is used. The general

10
1

10
2

10
3

10
4

0

50

100

150

200

250

300
2L
J

d

(a)

ReT

Kρ

κ

0 100 200 300 400 500 600
0

10

20

30

40

50
2L
J

d

Slope = 0.099

Slope = 0.077

(b)

ReT

Kρ

κ

Figure 16. (a) Kρvs. ReT , and (b) same as (a) zoomed on to the intermediate mixing regime during
the decay of the flow. Arrows indicate progress in time. Note the abscissa is given in logarithmic scale
in (a) and linear scale in (b).
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Figure 17. (a) Kρvs. ReT /Rig , and (b) same as (a) zoomed on to the intermediate mixing regime
during the decay of the flow. Arrows indicate progress in time. Note the abscissa is given in logarithmic
scale in (a) and linear scale in (b).

shapes of the evolution in Figures 15(a) and 16(a) in both cases are considerably similar.
Both Reb and ReT span two-order-of-magnitude range but ReT is approximately an order
of larger magnitude. Compared to Figure 15, Figure 16 shows a smaller difference during
the generation stage between the two cases. The collapse stage in the Jd case occurs at
larger Reb but at smaller ReT relative to the two-layer case. Figure 16(b), a surrogate to
Figure 15(b), indicates that the slope during the intermediate mixing regime is 0.077 in the
two-layer case and 0.099 in the Jd case when ReT is used in place of Reb. The normalized
difference in the slopes between the two cases is larger than that computed using Reb.
Overall, ReT can be used as a qualitative surrogate to Reb only in terms of depicting the
evolutionary processes but parameterizing Kρ using ReT is not promising because the
dependence of Kρ on ReT is not universal, i.e. case-dependent, even during the turbulence
decay.

Different from ReT , the evolution of Kρ with respect to the ratio ReT /Rig shown in
Figure 17(a) is not the same as the one with respect to Reb in Figure 15(a). ReT /Rig fails
to depict the evolution of Kρ during the generation, transition, and collapse stage, although
it does well during the final turbulence decay stage. The expansion of the decay stage
in Figure 17(a) is shown in Figure 17(b). The best-fit lines show a slope of 0.038 in the
two-layer case and a slope of 0.039 in the Jd case. The difference between the two values
is significantly smaller than those computed based on ReT alone. Consider ReT /Rig is an
order of magnitude larger than Reb, the mixing efficiency computed using 10ReT /Rig in
place of Reb is approximately 0.38 − 0.39 which provides a close agreement with the value
of 0.35 shown in Figure 15(b).

6. Eddy diffusivity estimated using irreversible mixing

When the transient and the transport terms in Equation (6) are negligible, the estimated
eddy diffusivity can be defined in terms of χρ , the dissipation rate of the density variance,
as follows:

K̃ρ = χρ

2 (d〈ρ〉/dz)2
.

The evolution of K̃ρ shown in Figure 18(a) is similar between the two cases. K̃ρ grows
exponentially during the K–H roller formation and decays exponentially after the shear
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Figure 18. Evolution of (a) estimated eddy diffusivity K̃ρ , and (b) irreversible mixing efficiency
�d . Arrows indicate progress in time. Note the abscissa is given in logarithmic scale in (a) and linear
scale in (b).

layer becomes turbulent. Different from Kρ whose peak value is larger in the two-layer
case, the peak values of K̃ρ are comparable between the two cases. In the two-layer case,
K̃ρ increases to its peak value, momentarily decreases at t = 70, then increases again before
the exponential decay. The secondary growth is absent in the Jd case resulting in smaller K̃ρ

during the decay. When K̃ρ is used in place of Kρ in the definition of the mixing efficiency
� = Kρε/N

2, the corresponding mixing efficiency is �d = 0.5N2/ (d〈ρ〉/dz)2 (χρ/ε) and
its evolution is plotted in Figure 18(b). Overall, �d is larger than 0.2, the value used in
the oceanic community. During the time 80 < t < 160, �d is approximately 0.4, which
agrees with the results from the DNS of the two-layer case of Smyth et al. [13] and also
with the results of decaying turbulence generated by Taylor–Green vortices of Riley and
deBruynKops [5].

Different from the evolution of Kρ with respect to Reb, where four distinct stages are
observed, the evolution of K̃ρ with respect to Reb shown in Figure 19(a) consists of only
two stages: generation and decay. In the Jd case, the two stages lay on top of each other.
In the two-layer case, there is an offset in Reb between the two stages. The decay stage of
the two-layer case also coincides with that of the Jd case. The difference in the generation
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Figure 19. (a) K̃ρvs.Reb, and (b) same as (a) zoomed on to the intermediate mixing regime during
the decay of the flow. Arrows indicate progress in time. Note the abscissa is given in logarithmic scale
in (a) and linear scale in (b).
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Figure 20. (a) K̃ρ vs. ReT , and (b) same as (a) zoomed on to the intermediate mixing regime during
the decay of the flow. Arrows indicate progress in time. Note the abscissa is given in logarithmic scale
in (a) and linear scale in (b).

stage between the two cases is due to the difference in the background N2 value during this
period. During the decay stage, with N2 approximately equal between the two cases, the
TKE dissipation ε and the scalar dissipation ερ are directly related by the constant mixing
efficiency �d . Figure 19(b) shows the expansion of the intermediate regime in Figure 19(a).
The slopes of the best-fit lines indicate the mixing efficiency of �d = 0.4 for both cases,
slightly larger than the values of � shown in Figure 15(b). Also, the standard deviations of
the fits are considerably smaller for K̃ρ when compared to that for Kρ .

The evolution of K̃ρ with respect to ReT is shown in the Figure 20(a). Figure 20(a)
shows the generation and decay stages of K̃ρ similar to that in Figure 19(a). In the Jd case,
the generation and collapse stages do not fall on top of each other as when Reb is used.
Also, in Figure 16(a), at a fixed value on the abscissa, Kρ in both cases is larger during
the generation stage, but in Figure 20(b), K̃ρ in both cases is larger during the decay stage.
Figure 20(b) shows a zoom of Figure 20(a) on to the decay stage of the flow. The collapse
between the two cases shown in Figure 19(b) is not observed here. The slopes of the
best-fit lines in Figure 20(b) are 0.088 in the two-layer case and 0.11 in the Jd case. When
ReT /Rig is used to depict the evolution of K̃ρ , as shown in Figure 21(a), the difference
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Figure 21. (a) K̃ρ vs. ReT /Rig , and (b) same as (a) zoomed on to the intermediate mixing regime
during the decay of the flow. Arrows indicate progress in time. Note the abscissa is given in logarithmic
scale in (a) and linear scale in (b).
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in the abscissa between the generation stage and the decay stage is larger relative to that
shown in Figure 20(a). Shown in Figure 21(b), the mixing efficiency �d calculated using
10ReT /Rig in place of Reb is equal to 0.43 in the two-layer case and 0.44 in the Jd case,
which are slightly larger than 0.4 calculated using Reb.

7. Conclusions

We have used 3D-DNS to investigate the evolution of turbulent mixing in a stratified shear
layer with a relatively high Re, initially Re = 5, 000. Two cases with different background
stratification are considered: (i) two layers of fluid with different density (two-layer case),
and (ii) a continuously stratified background (Jd case). The latter has internal waves that
propagate away from the mixing layer.

The evolution of the shear layer consists of shear instability, formation of K–H rollers,
transition to turbulence, establishment of fully-developed turbulence and, finally, decay
toward a laminar state. In previous DNS, transition to turbulence occurs via secondary
instability of the braids between the rollers [2]. At the higher Re of the present simulations,
not only is there an instability at the braid but also at the vortex core.

Parameterization of the eddy diffusivity, Kρ , has been explored. The mixing efficiency
defined by � = −B/ε is often taken to be constant so that the relationship, Kρ/κ =
�PrReb with Reb = ε/νN2 can be used to infer Kρ . During the late stage of decaying
turbulence in the present flow, � is found to be approximately 0.35 while the dissipation-
based mixing efficiency defined using the scalar dissipation χρ , is approximately 0.4. An
alternate parameterization of Kρ with respect to the the ratio ReT /Rig instead of Reb is also
explored. When plotted against Reb and the ratio ReT /Rig, the value of the eddy diffusivity
is different between growing and decaying stages of stratified shear flow. Furthermore, it is
only in the decaying stage, that the two-layer case and Jd case exhibit similar evolution of
eddy diffusivity allowing a simple parameterization of Kρ common to both cases. During
this stage, the mixing efficiency defined by the ratio of −B/ε, is approximately 0.35,
while the dissipation-based mixing efficiency defined using the scalar dissipation χρ is
approximately 0.4.

Comparison of the current DNS at Re = 5000 with the results of Pham et al. [17]
who performed the simulations at Re = 1280 indicates that an increase in Re does not
alter the mechanism by which internal waves are excited. The direction at which the waves
propagate agrees well with the previous study, although the wave energy flux is reduced
by approximately 50%. The weaker wave field observed in the current study is due to the
earlier breakdown of the K–H rollers to turbulence in the shear layer owing to a high Re

effect.
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