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Direct simulations of the turbulent shear layer are performed for subsonic to super-
sonic Mach numbers. Fully developed turbulence is achieved with profiles of mean
velocity and turbulence intensities that agree well with laboratory experiments. The
thickness growth rate of the shear layer exhibits a large reduction with increasing
values of the convective Mach number, Mc. In agreement with previous investigations,
it is found that the normalized pressure–strain term decreases with increasing Mc,
which leads to inhibited energy transfer from the streamwise to cross-stream fluctu-
ations, to the reduced turbulence production observed in DNS, and, finally, to reduced
turbulence levels as well as reduced growth rate of the shear layer. An analysis, based
on the wave equation for pressure, with supporting DNS is performed with the result
that the pressure–strain term decreases monotonically with increasing Mach number.
The gradient Mach number, which is the ratio of the acoustic time scale to the flow
distortion time scale, is shown explicitly by the analysis to be the key quantity that
determines the reduction of the pressure–strain term in compressible shear flows. The
physical explanation is that the finite speed of sound in compressible flow introduces
a finite time delay in the transmission of pressure signals from one point to an
adjacent point and the resultant increase in decorrelation leads to a reduction in the
pressure–strain correlation.

The dependence of turbulence intensities on the convective Mach number is inves-
tigated. It is found that all components decrease with increasing Mc and so does the
shear stress.

DNS is also used to study the effect of different free-stream densities parameterized
by the density ratio, s = ρ2/ρ1, in the high-speed case. It is found that changes in the
temporal growth rate of the vorticity thickness are smaller than the changes observed
in momentum thickness growth rate. The momentum thickness growth rate decreases
substantially with increasing departure from the reference case, s = 1. The peak value
of the shear stress, uv, shows only small changes as a function of s. The dividing
streamline of the shear layer is observed to move into the low-density stream. An
analysis is performed to explain this shift and the consequent reduction in momentum
thickness growth rate.

1. Introduction
At high Mach number, the growth of the turbulent shear layer is substantially

reduced. This stabilizing effect is one of the most remarkable features distinguish-
ing compressible turbulence from its incompressible counterpart. Moreover, it has
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important implications for applications such as scramjet engines and abatement of
supersonic jet noise. Observations of the reduced growth rate at high speeds are
numerous. Early experimental evidence is discussed by Bradshaw (1977), and Kline,
Cantwell & Lilley (1982) while later experimental and numerical investigations are
reviewed by Lele (1994) and Smits & Dussauge (1996).

The convective Mach number, Mc, introduced by Bogdanoff (1983) has become
popular as the parameter that determines compressibility effects. Denoting the velocity,
density and speed of sound in the high-speed stream by U1, ρ1, c1 and corresponding
quantities in the low-speed stream by U2, ρ2, c2 and, assuming equal specific heats,
gives Mc = (U1−U2)/(c1 + c2). From experimental data, see figure 7 for example, it is
clear that there is a general trend of decreasing thickness growth rate with increasing
values of Mc. In the case of high-speed propulsion, there is an additional effect,
namely, density changes due to changes in composition and heat release. Therefore,
the related question of how the density ratio, s = ρ2/ρ1, affects the growth rate is
of interest. In the low-speed case, Brown & Roshko (1974) found that the shear
layer growth rate shows an increase with increasing density ratio, s, with a change of
approximately 25% from the equal-density case when s = 7 or s = 1/7. Functional
forms for the dependence on s were proposed by Brown (1974) and Dimotakis (1984)
to match the experimental data. Hall, Dimotakis & Rosemann (1993) observed that
when the visual thickness growth rate was normalized by the correlation of Dimotakis
(1984) applicable to the variable-density low-speed shear layer, quasi-incompressible
cases with Mc < 0.3 but with low values of density ratio, s = 0.2, 0.1, 0.058, have an
anomalous reduction with respect to the expected trend. Lu & Lele (1994) performed
a spatial stability analysis of the cases considered experimentally by Hall et al. (1993)
and found that if the ratio of the maximal growth rate, normalized by that of the
corresponding variable-density zero-Mach number case, is plotted, the three cases
with anomalous behaviour collapse onto the plot determined by the other cases.
Evidently, the issue of whether the density ratio has an effect over and above that of
the convective Mach number in compressible shear flow requires further study.

Apart from the convective Mach number, there are other relevant Mach numbers:
the turbulent Mach number, Mt = u/c based on r.m.s. velocity, u, and the gradient
Mach number, Mg = Sl/c, based on the mean velocity gradient, S , and the length
scale, l, in the direction of the gradient. The parameter Mg is a ratio of the acoustic
time scale, l/c, to the mean flow distortion time scale, 1/S , and has been used in
compressible rapid distortion theory, for example, Cambon, Coleman & Mansour
(1993). The gradient Mach number was shown by Sarkar (1995) to be much larger
in the shear layer than in the boundary layer at the same mean Mach number, and,
therefore, useful in differentiating between the strong compressibility effects in the
shear layer and their lack in the boundary layer.

Identification of the mechanisms responsible for the inhibited shear layer growth
at high Mach number is of interest both to gain a fundamental understanding of the
problem and to derive insights into possible mixing enhancement strategies. Thus,
a number of alternative scenarios have been proposed. Linear instability theory
predicts a reduction of growth rate with increased convective Mach number, Mc,
and an analogy with linear instability theory has been proposed, for example, by
Sandham & Reynolds (1991). The analysis of Balsa & Goldstein (1990) using high-
Mach-number asymptotics leads to a simple hypersonic similarity law that explains
how spatial and temporal phase speeds and growth rates scale with Mach number.

However, the applicability of linear instability theory to a turbulent, nonlinearly
evolving flow is uncertain. The effect of compressibility on large-scale coherent struc-
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tures has been studied by Papamoschou & Roshko (1988), Samimy, Reeder & Elliott
(1992), Hall et al. (1993), and Clemens & Mungal (1995) as a potential mechanism;
however definitive and quantitative links to the compressibility effect have not been
established.

There are additional terms, compressible dissipation and pressure–dilatation, in the
turbulent kinetic energy equation which have been modelled by Zeman (1990), Sarkar
et al. (1991), Taulbee & VanOsdol (1991), Sarkar (1992) and Ristorcelli (1997). It was
proposed that these dilatational terms act as sinks and, for sufficiently large turbulent
Mach number, could lead to reduction of the turbulence levels and thereby shear
layer thickness. Reduction in turbulence levels was observed by Blaisdell, Mansour
& Reynolds (1993) and Sarkar (1995) in simulations of uniformly sheared flow.
However, Sarkar (1995) showed that reduced turbulent production is responsible
for decreased turbulent kinetic energy and not the dilatational terms. In the shear
layer, a direct relationship between the momentum thickness growth rate and the
integrated turbulent production was established by Vreman, Sandham & Luo (1996)
that showed that a reduction in momentum thickness growth rate is equivalent to that
in the integrated production. In two-dimensional simulations of an isolated vortex in
a shear layer by Papamoschou & Lele (1993), the Reynolds shear stress associated
with the fluctuating disturbance field was found to be significantly reduced. Simone,
Coleman & Cambon (1997) also observed reduced production and Reynolds stress
in their DNS of uniformly sheared flow. In addition, they performed an instructive
analysis based on rapid distortion theory (RDT) that shows reduced production. RDT
was found useful for explaining the structural change of pressure and velocity terms
under compressibility. The implications of linearized theory for turbulent fluctuations
in compressible flow have been further explored by Friedrich & Bertolloti (1997).

Thus, evidence from available studies indicates that the reduction of turbulent
kinetic energy in the uniform shear layer as well as the reduced thickness of the shear
layer is related to decreased turbulent production. Investigation of why compressibility
reduces turbulent production is the next step. In the case of the shear layer, Vreman
et al. (1996) showed that the reduction in turbulent production is due to reduced
pressure fluctuations via the reduction in the pressure–strain term. A pressure–strain
model based on deterministic vortex structures and associated pressure extrema was
also proposed. In the case of uniform shear flow, Sarkar (1996) noted reduced pressure
fluctuations in cases with high gradient Mach number and stated that a change in
the pressure gradient term in the momentum equations (and the pressure–strain term
in the Reynolds stress equations) leads to reduced levels of turbulence. Freund, Lele
& Moin (2000) confirmed the reduction in the pressure–strain term in the annular
mixing layer. The transverse correlation length scale was found to decrease with
increased Mach number. It was further found that the reduction in pressure variance
could be parameterized with either a transverse turbulence Mach number or the
gradient Mach number.

In high-speed flows, disturbances have a limited region of upstream and cross-
stream influence due to the finite speed of sound. It has been conjectured, for exam-
ple Morkovin (1987), that this phenomenon of reduced communication is responsible
for the reduced growth rates of instability modes in compressible shear flows. The
idea of reduced cross-stream communication is relevant to the sonic-eddy model of
Breidenthal (1990) as well as the reduced pressure extrema in the coherent-vortex
model of Vreman et al. (1996). Papamoschou & Lele (1993), in a two-dimensional,
inviscid, temporal simulation, obtained the evolution of fluctuations associated with
an Oseen vortex embedded in a hyperbolic-tangent velocity profile. At high Mach
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number, the pressure disturbance field was found to have reduced streamwise extent;
however, unlike the assumption of the models, its extent in the cross-stream direction
relative to the width of the shear layer was not noticeably affected. Evidently, the
idea of reduced communication requires further investigation as does a mathematical
framework for its link to the observed compressibility effects in turbulent shear flows.

Controversy exists on the effect of compressibility on the components of the
Reynolds stress tensor, Rij , and associated anisotropy. Laboratory data of Samimy &
Elliot(1990), Barre, Quine & Dussuage (1994), and more recently, Chambres, Barre &
Bonnet (1998) show that all measured turbulence intensities and the Reynolds shear
stress decrease with increasing Mc leaving the Reynolds stress anisotropy relatively
unchanged. However, Goebel & Dutton (1991) find experimentally that the streamwise
component, R11, changes little compared to the decrease in R22 and R12, leading to
large changes in the Reynolds stress anisotropy. It should be noted that experimental
measurements of the spanwise turbulence intensity are available in only the studies of
Chambres et al. (1998) and Gruber, Messersmith & Dutton (1993). The DNS study
of the plane shear layer by Vreman et al. (1996) concludes that, although the normal
stress anisotropies increase with Mc, the shear stress anisotropy remains relatively
unaffected. Freund et al. (2000) in their DNS of the annular jet find that the normal
stress anisotropies increase while the shear stress anisotropy decreases. DNS studies
of uniformly sheared flow by Sarkar (1995) and Simone et al. (1997) show increased
normal stress anisotropies as well as reduced shear stress anisotropy.

From the preceding discussion, it is clear that DNS studies have proved valuable
in complementing experimental observations in attempts to understand the com-
pressibility effect in turbulent shear flows. Conclusions from DNS databases are
strengthened if the data are validated against available experimental results with fully
developed turbulence. Direct validation of our DNS results with experimental profiles
of turbulence intensity is an important objective of the present work.

In summary, although significant progress has been made in our understanding
of the compressible shear layer, there remain unresolved questions. The present
work addresses the following open questions. Why does the pressure–strain term
decrease with increasing Mach number? What is the effect of density ratio on shear
layer growth in the high-speed regime? What is the effect of compressibility on the
turbulence anisotropy?

2. Problem formulation
2.1. Governing equations

The unsteady, three-dimensional, compressible Navier–Stokes equations are solved
for the temporally evolving shear layer. The energy equation is written as a pressure
equation where viscosity, diffusion, thermal conductivity and the specific heat ratio are
constants. The equation of state corresponding to an ideal gas is assumed. Introducing
the scales Lo, %o, po and Uo, new non-dimensional variables are obtained where all
dimensional variables are represented with script fonts

t =
tUo

Lo

, xi =
xi

Lo

, ui =
ui

Uo

, ρ =
%

%o
, p =

p

po

giving the following non-dimensional conservation equations:

∂ρ

∂t
+
∂(ρuk)

∂xk
= 0, (2.1)
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∂(ρui)

∂t
+
∂(ρukui)

∂xk
= − 1

γM2

∂p

∂xi
+
∂σik

∂xk
, (2.2)

∂p

∂t
+ uk

∂p

∂xk
= −γp∂uk

∂xk
+ γ

∂

∂xk

(
1

RePr

∂

∂xk

(
p

ρ

))
+ (γ − 1)γM2φ, (2.3)

with

σij =
1

Re

{
∂ui

∂xj
+
∂uj

∂xi
− 2

3

∂uk

∂xk
δij

}
, (2.4)

φ = σij
∂ui

∂xj
, (2.5)

where the dimensionless numbers are defined in the usual way,

Re =
%oUoLo

µ
, P r =

µcp

κ
, M =

Uo√
γpo/%o

.

Furthermore, the reference quantities are chosen such that γM2 = 1 leading to
po = %oU

2
0.

2.2. Numerical scheme

The transport equations are integrated using a sixth order of accuracy compact Padé
scheme in space as described by Lele (1992). The time advancement is performed
with a fourth order of accuracy low-storage Runge–Kutta scheme as described by
Williamson (1980). Periodic boundary conditions in the x1- and x3-directions are used
and ‘non-reflective’ boundary conditions as studied by Thompson (1987) are imposed
in the x2-direction. A uniform grid is used. In order to avoid spurious numerical
instabilities generated by aliasing errors in the nonlinear convective terms, the flow
variables are filtered using a compact filter described by equation C.2.4 of Lele (1992).
Sufficient resolution is used and the filter coefficient chosen as discussed by Lele (1992)
to significantly affect only the highest wavenumbers. The choice of the frequency at
which the filter is applied as well as the validation of the simulations is discussed in
Appendix A.

2.3. Initial conditions

The flow is initialized to a hyperbolic tangent profile for the mean streamwise velocity,
ū1(x2), while all other mean velocity components are set to zero. Thus,

ū1(x2) =
∆u

2
tanh

(
− x2

2δθ(0)

)
, ū2 = 0, ū3 = 0. (2.6)

The upper stream has a velocity, −∆u/2, and the lower stream has a velocity, ∆u/2,
as shown in figure 1. The mean pressure is set to a uniform value po. The density in
the upper stream ρ1, and that in the lower stream ρ2, are specified. The convective
Mach number introduced by Bogdanoff (1993) and further studied by Papamoschou
& Roshko (1988) is defined in the case of two streams with the same specific heat
ratio γ, by

Mc =
∆u

c1 + c2

, (2.7)

where c1 and c2 are the speeds of sound of each stream. In addition to these mean
values, broadband fluctuations are used to accelerate the transition to turbulence. This



334 C. Pantano and S. Sarkar

y

z

x
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2Du, q2, po

Figure 1. Schematic of the temporally evolving shear layer.

is achieved by generating a random field on which is imposed an isotropic turbulence
spectrum of the form

E(k) = (k/ko)
4 exp(−2(k/ko)

2), (2.8)

where k is the wavenumber and ko is the peak wavenumber. In the present simulations
ko is imposed so as to have 48 peak wavelengths within the streamwise direction for
simulations A3 and A11 and half that value in the remaining cases. The initial
turbulence intensity is set to 10%. The extent of the turbulence is limited in the
cross-stream direction by an exponential decay over a thickness equal to the initial
shear layer thickness. Solenoidality is imposed on this random turbulent field. Such
quasi-incompressible fluctuations minimize compressibility transients as shown by
Erlebacher et al. (1990). The pressure fluctuations are obtained from the Poisson
equation for incompressible flow and the density from the isentropic equation of
state.

2.4. Simulation parameters

Two series of simulations are conducted. The parameters of series A are chosen to
analyse the effects of Mc (compressibility) and those of series B to analyse the effect
of variable density for a fixed Mc = 0.7 case. The density ratio is defined as

s =
ρ2

ρ1

. (2.9)

The average density, ρo = (ρ1 + ρ2)/2 = 1.0, is fixed in all the simulations. In series
A, the mean density is uniform, while, in series B, the mean density profile is given by

ρ̄(x2) = ρo

(
1 + λ(s) tanh

(
− x2

2δθ(0)

))
(2.10)

where

λ(s) =
s− 1

s+ 1
. (2.11)

The non-dimensional parameters in the governing equations are Re = 800 and
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Case Mc s Lx × Ly × Lz Nx ×Ny ×Nz

A3 0.3 1.0 345× 172× 86 512× 256× 128
A7 0.7 1.0 172× 129× 86 256× 192× 128
A11 1.1 1.0 345× 172× 86 512× 256× 128
B2 0.7 2.0 172× 129× 86 256× 192× 128
B4 0.7 4.0 172× 129× 86 256× 192× 128
B8 0.7 8.0 172× 129× 86 256× 192× 128

Table 1. Simulation parameters. Lx, Ly , and Lz denote computational domain lengths measured
in terms of initial momentum thickness while Nx, Ny and Nz denote the corresponding number of
grid points.

Case Reω Reλ Lη/∆x lx/Lx lz/Lz

A3 10026 134 0.34 0.049 0.065
A7 7790 114 0.33 0.095 0.041
A11 13640 120 0.38 0.030 0.028
B2 8590 115 0.33 0.099 0.025
B4 8330 126 0.30 0.178 0.051
B8 7404 128 0.26 0.126 0.036

Table 2. Final values of some non-dimensional parameters. Lη denotes the Kolmogorov scale, while
lx and lz are the integral lengths in the streamwise and spanwise directions, respectively, associated
with the the streamwise velocity.

Pr = 0.7 while γ = 1.4. The computational domain is given in table 1, where the
physical domain is measured in terms of the initial shear layer momentum thickness
δθ(0). Such large domains are required to allow evolution to the self-similar state.
The initial momentum thickness Reynolds number is Reθ = 160 while the Reynolds
number based on vorticity thickness has an initial value of Reω = 640.

Table 2 gives final values of key non-dimensional parameters. The Reynolds num-
bers are large enough for turbulent flow. The integral length scales, lx and lz , are
sufficiently small compared to the dimensions of the computational box to have good
large-scale resolution and the grid size is sufficiently small to resolve the small scales.
In our case the integral scales are given by

lx =
1

u2
1

∫ Lx/2

0

u1(x)u1(x+ e1r) dr, (2.12)

lz =
1

u2
1

∫ Lz/2

0

u1(x)u1(x+ e3r) dr, (2.13)

where ei is the unitary vector in the i-direction. The microscale Reynolds number
evaluated at the centreline is defined as

Reλ = q2

√
5

νε
, (2.14)

where q2 is twice the turbulent kinetic energy.
It is important to validate the numerics. Sections A.1–A.3 of the Appendix describe

the following validation issues with respect to our DNS: accuracy of large-scale
representation in a finite domain, accuracy of small-scale representation by the
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chosen grid cell size, and the impact of the numerical filter on the results. The overall
conclusion is that the simulations are well-resolved.

3. Characteristics of the shear layer
The approach of the turbulent shear layer towards a state where the mean and

r.m.s. velocity profiles evolve self-similarly, after an initial transient, has been observed
in many studies. Experimental studies of the evolution to self-similarity of the incom-
pressible case include those by Bell & Mehta (1990) and Spencer & Jones (1971),
which are used to validate the current DNS. Among the previous DNS studies of
the incompressible shear layer, that by Rogers & Moser (1994) contains a detailed
analysis of the turbulent kinetic energy budget in the self-similar shear layer and
was therefore also chosen to validate our low-Mach-number case (their simulation
labelled TBL was used for comparison). Experimental results on the compressible
shear layer have been obtained by Papamoschou & Roshko (1988), Elliot & Samimy
(1990), Barre et al. (1994), Chamberes et al. (1998) and DNS results obtained by
Vreman et al. (1996), Freund et al. (2000) among others. These results are compared
with the high-Mach-number simulations performed here.

Exact self-similarity is more difficult to achieve in DNS than in experiments
because of the finite domain size achievable with current computational resources.
Nevertheless, it is instructive to plot profiles using self-similar coordinates so as to
quantify the approach to self-similarity, and compare with experimental data.

3.1. Favre-averaged equations

It is customary to use Favre averaging to express the mean mass and momentum
conservation equations for compressible flows. By definition, the Favre average of a
variable φ is

φ̃ =
ρφ

ρ̄
(3.1)

where φ̄ denotes the Reynolds average that, in our case, is obtained by plane averaging
along the periodic x1, x3-directions. Note that φ′ denotes Reynolds fluctuations and
φ′′ denotes Favre fluctuations. The turbulent stress tensor Rij is defined by

Rij =
ρu′′i u′′j
ρ̄

. (3.2)

Using these definitions, the following system of equations is obtained:

∂ρ̄

∂t
+
∂(ρ̄ũk)

∂xk
= 0, (3.3)

∂(ρ̄ũi)

∂t
+
∂(ρ̄ũkũi)

∂xk
= − ∂p̄

∂xi
+

∂

∂xk
(σ̄ik − ρ̄Rik), (3.4)

∂p̄

∂t
+ ūk

∂p̄

∂xk
= −(γ − 1)(Π − φ̄)− γp̄ ∂ūk

∂xk
− ∂

∂xk

(
p′u′k − γκ∗

RePr

∂T

∂xk

)
. (3.5)

In the mean energy equation (3.5), Π = p′d′ represents the pressure–dilatation corre-
lation with d′ denoting the fluctuating component of dilatation, ∇ · u. The Reynolds



Compressibility effects in the turbulent shear layer 337

stress transport equation is given by

∂(ρ̄Rij)

∂t
+
∂(ρ̄ũkRij)

∂xk
= ρ̄(Pij − εij)− ∂Tijk

∂xk
+Πij + Σij , (3.6)

where the turbulent production, dissipation, transport, pressure–strain and mass flux
coupling terms are, respectively

Pij = −
(
Rik

∂ũj

∂xk
+ Rjk

∂ũi

∂xk

)
,

εij =
1

ρ̄

(
τ′jk
∂u′′i
∂xk

+ τ′ik
∂u′′j
∂xk

)
,

Tijk = ρu′′i u′′j u′′k + p′u′iδjk + p′u′jδik − (τ′jku′′i + τ′iku′′j ),

Πij = p′
(
∂u′′i
∂xj

+
∂u′′j
∂xi

)
,

Σij = u′′i

(
∂τ̄jk

∂xk
− ∂p̄

∂xj

)
+ u′′j

(
∂τ̄ik

∂xk
− ∂p̄

∂xi

)
.

The following transport equation for the turbulent kinetic energy, K = Rkk/2, is
obtained from (3.6) by contracting the indices:

∂(ρ̄K)

∂t
+
∂(ρ̄ũkK)

∂xk
= ρ̄(P − ε)− ∂Tk

∂xk
+ p′

∂u′k
∂xk

+ Σkk/2. (3.7)

All averaged quantities are functions of time t and the transverse coordinate x2 only,
allowing some simplifications to be introduced later.

3.2. Self-similar equations

In order to obtain a set of equations representing the self-similar state, a measure of
the shear layer thickness is introduced. The momentum thickness, δθ , is defined by

δθ(t) =
1

ρo∆u2

∫ ∞
−∞
ρ̄
(

1
2
∆u− ũ1

) (
1
2
∆u+ ũ1

)
dx2. (3.8)

After differentiating (3.8) with respect to time and using the averaged momentum
equation, the following expression for the non-dimensional growth rate of the mo-
mentum thickness is obtained, as shown by Vreman et al. (1996):

δ̇θ =
1

∆u

dδθ
dt

=
2

ρo∆u3

∫ ∞
−∞

(σ̄12 − ρ̄R12)
∂ũ1

∂x2

dx2. (3.9)

The mean viscous effects can be neglected for developed shear layers, see (3.18), and
consequently, the shear layer growth rate can be expressed as

δ̇θ = − 2

ρo∆u3

∫ ∞
−∞
ρ̄R12

∂ũ1

∂x2

dx2. (3.10)

At this point the self-similar coordinate η, defined by η = x2/δθ(t), can be introduced
and derivatives with respect to x2 and t can be calculated. Introduction of new
self-similar functions along with the self-similar coordinate requires paying special
attention to the order of magnitude of the different terms in the respective conservation
equations. A specified dependence on velocity difference, mean density and growth
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rate is chosen for the assumed functions; this dependence will be validated against
DNS results in the analysis. All functions depend on the convective Mach number
Mc and s, the density ratio; for example, ρ̂(η) in (3.11) below denotes ρ̂(η;Mc, s).
However, for simplicity, this dependence is not shown explicitly. Thus,

ρ̄ = ρoρ̂(η), (3.11)

ũ1 = ∆uû1(η), (3.12)

ũ2 = ∆u(δ̇θ)
nû2(η), (3.13)

R12 = ∆u2(δ̇θ)
mR̂12(η). (3.14)

It has been assumed that ũ2 and R12 depend on the non-dimensional temporal
growth rate of the momentum thickness δ̇θ . The governing equations suggest such
a dependence, as will become clear shortly. Introducing the functions defined in
(3.11)–(3.13) into the mass conservation equation, (3.3), gives

−ηdρ̂(η)

dη
+

d

dη

(
ρ̂(η)û2(η)(δ̇θ)

n−1
)

= 0. (3.15)

The choice n = 1, makes (3.15) independent of the growth rate, giving the self-similar
equation

−ηdρ̂(η)

dη
+

d

dη
(ρ̂(η)û2(η)) = 0. (3.16)

Similarly, the streamwise momentum equation is transformed to

−η d

dη
(ρ̂(η)û1(η)) +

d

dη
(ρ̂(η)û2(η)û1(η)) = − d

dη
(ρ̂(η)R̂12(η)(δ̇θ)

m−1)

+
d

dη

(
1

Reρo∆uδθδ̇θ

d

dη
(ū1/∆u)

)
. (3.17)

For a turbulent shear layer, it is clear that the Reynolds stress R12 must be of the
same order as the convective terms, giving m = 1. The Reynolds number based on
the momentum thickness can be defined as Reθ = ρoRe∆uδθ .

An order of magnitude estimate of the mean viscous terms can be now obtained.
The mean velocity derivative in the last term of (3.17) can be estimated using
dū1/dx2 ' ∆u/δω , where the vorticity thickness is δω = ∆u/(∂ū1/∂x2)max. The vorticity
thickness can be related to the momentum thickness by δω = Dωδθ . The value of Dω
for the turbulent mixing layer is dependent on Mc and s, and can be calculated from
the DNS database, giving a nominal value of Dω ≈ 5.0 in the low-speed case. From
the DNS results it is observed that Dω increases with Mc. Since the self-similar region
of the turbulent shear layer requires that the viscous term, which has a dependence on
δθ , be negligible in comparison with the Reynolds stress term, the following condition
is required:

DωReθδ̇θ � 1, (3.18)

giving the simplified self-similar momentum equation

(û2(η)− η)ρ̂(η)
dû1(η)

dη
= − d

dη
(ρ̂(η)R̂12(η)). (3.19)

In summary, (3.16) and (3.19) are the self-similar forms of the mean mass and
momentum conservation equations, respectively.
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Figure 2. Momentum thickness evolution with time for different Mc.

3.3. The baseline incompressible shear layer

The purpose of this section is to validate our computational model by comparing our
results with experimental and DNS data obtained by other researchers. Unfortunately,
experimental data are limited in most cases to mean and r.m.s. velocity measurements.
It would be of great interest to compare experimental values of all the terms in the
turbulent kinetic energy budget. Accurate measurements of all these terms are rare
in the literature, mainly due to intrinsic difficulties in measurements of turbulent
dissipation at high Reynolds numbers. Instead, the DNS results of Rogers & Moser
(1994) are used for validating the balance of turbulent kinetic energy. Case A3 was
chosen as reference for the incompressible comparisons since Mc = 0.3 is sufficiently
small for compressibility effects to be considered negligible. It will be seen in the next
section that this case is, for all purposes, quasi-incompressible.

It is generally accepted that, after an initial transient, the shear layer grows linearly.
Figure 2 shows the momentum thickness evolution for simulations A3, A7 and
A11. For comparison, a linear regression is also plotted. It can be observed that
approximate linear growth is achieved. The normalized time is defined as

τ =
t∆u

δθ(0)
.

The growth rate for the quasi-incompressible case is calculated from the DNS to be
δ̇θ = 0.0184. The growth rate of a spatially evolving shear layer is often expressed as

dδω
dx

= Cδ
U1 −U2

U1 +U2

, (3.20)

where the constant Cδ ' 0.16. The corresponding growth rate of a temporally evolving
shear layer, assuming a convective velocity (U1 +U2)/2, is

δ̇θ =
1

∆u

dδθ
dt

=
1

Dω∆u

dδω
dt

=
Cδ

2Dω
' 0.016, (3.21)

with which the DNS result is in good agreement. The condition in (3.18) is also
calculated in order to evaluate the importance of the mean viscous term, and it is
found that DωReθδ̇θ > 80 during the late-time evolution, τ > 261. Figures 3(a) and
3(b) show the evolution of the streamwise turbulent intensity and the normalized
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Figure 3. Time evolution of (a) streamwise velocity fluctuation r.m.s., and (b) normalized
turbulent dissipation rate Mc = 0.3.
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dissipation as a function of time. Both quantities increase from a low initial value
during a transient period, reach a maximum, and eventually decay to their self-similar
values. Beyond τ = 261, the variation in the profiles is smaller, showing an approach
towards self-similarity.

The DNS results are compared with experimental results obtained by Bell &
Mehta (1990) and Spencer & Jones (1971) for incompressible shear layers. In order
to perform the comparisons, an ensemble average is extracted from the profiles
plotted in self-similar coordinates. This average is obtained from profiles in the time
interval, 261 < τ < 518. Figure 4 compares different experimental measurements
with the ensemble average of the DNS profiles of the streamwise velocity. Good
agreement is obtained. Cross-stream profiles of velocity intensities are compared
against experiments in figures 5(a), 5(b) and 5(c). The peak turbulence intensities
in the DNS are: streamwise,

√
R11/∆u = 0.17, transverse,

√
R22/∆u = 0.134, and

spanwise,
√
R33/∆u = 0.145. The peak intensities and the self-similar shape agree well

with both experiments and the previous DNS by Rogers & Moser (1994). It can be
seen that the fluctuations are strongly three-dimensional with streamwise > spanwise
> transverse intensity. Present results on the turbulence profiles differ little from
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stress. DNS at Mc = 0.3.

those reported by Rogers & Moser (1994), where a different type of broadband initial
fluctuations was used. Those simulations were initialized with imposed fluctuations
from boundary layer turbulence obtained from previous DNS, while the current DNS
has quasi-random initial fluctuations. It should be noted that self-similar turbulence
profiles were achieved by τ = 100 in the simulations of Rogers & Moser (1994).
Figure 5(d ) shows the normalized square root of the Reynolds shear stress. Its
maximum value is 0.103, which gives

R12

∆u2δ̇θ
' 0.58, (3.22)

suggesting that the initial assumption of ∆u2δ̇θ for normalizing the Reynolds stress
to obtain O(1) quantities is correct. Comparisons of production, dissipation and
transport in the temporal kinetic energy budget are shown compared to the results
of Rogers & Moser (1994) in figure 6. Note that the production, dissipation and
transport correspond to the first, second and third terms respectively, on the right-
hand side of (3.7); the fourth and fifth terms are always negligible in the cases studied
(Mc 6 1.1). In our present simulations the level of production and transport are
somewhat larger (approximately 10%) than the values observed by Rogers & Moser
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Figure 6. Turbulent kinetic energy budget: production, transport and dissipation. The budget terms
are normalized by ∆U3/δθ . Symbols: DNS results of Rogers & Moser (1994), lines: current DNS
at Mc = 0.3.

(1994). On the other hand, the turbulent dissipation profile agrees very well, showing
that the simulation is correctly resolved.

In summary, the baseline, quasi-incompressible case with Mc = 0.3 has been
successfully validated against previous studies of the incompressible shear layer.
Profiles of turbulence intensities which agree well with both experiments and DNS
are obtained in our simulations. The balance of turbulent kinetic energy in the self-
similar state obtained from the current DNS shows remarkably good agreement with
the previous DNS of Rogers & Moser (1994) even though the initial broadband
fluctuations in the two simulations have very different characteristics.

3.4. The compressible shear layer

The shear layer momentum thickness evolution with time is plotted in figure 2 for the
cases A3, A7 and A11. As can be seen, linear growth rates are achieved in all cases after
an initial transient. The time required to reach this linear growth state is dependent
on the convective Mach number, since all other parameters in the simulations were
kept constant. Shear layer thickness growth rate from different experiments is plotted
along with current DNS results in figure 7. The large reduction in growth rate that is
seen in experiments is also seen in the current DNS. These DNS results closely match
the so-called ‘Langley Experimental Curve’, obtained from a compilation of results
corresponding to experiments with air–air shear layers. Differences with the results
of Papamoschou & Roshko (1988) could be due to density ratio effects.

One of the differences observed in the DNS regarding the evolution of the com-
pressible shear layer with respect to its incompressible counterpart is that the time
required to achieve approximate self-similarity increases with compressibility. A pos-
sible explanation can partially be found in (3.18). The large reduction in the shear
layer growth rate with compressibility is accepted and recognized as a fundamental
feature of this kind of flow. Since the left-hand side of the self-similarity condition,
(3.18), decreases when the shear layer thickness and thickness growth rate decrease,
it is reasonable to deduce that it will require a longer time to achieve self-similarity
with increasing Mc. A similar effect was observed by Elliot & Samimy (1990) in
their experiments, who reported that a longer distance from the splitter plate tip was
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Figure 7. Dependence of shear layer growth rate on Mc.

needed to achieve self-similarity for larger convective Mach numbers. Comparison
with the result for Mc = 0.3 shows that the Mc = 1.1 case becomes approximately
self-similar at τ ≈ 500 compared to τ ≈ 300 required for the Mc = 0.3 case.

Figure 8(a) shows production, dissipation and transport for the A series. It can be
clearly seen that production is much more affected by compressibility than dissipation.
The current DNS agrees with the previous DNS of the mixing layer by Vreman et
al. (1996) and Freund et al. (2000) that show decreased turbulence production with
increasing Mc. Figure 8(b) shows the split of the transport term into its components.
The turbulent transport is generally larger in magnitude than the pressure transport.
The viscous transport is not shown since it is negligible relative to the other two
components. Appendix C shows the budgets for various components of the Reynolds
stress tensor, Rij . The overall conclusion is that production, pressure–strain and
transport terms are significantly reduced at high Mc while the dissipation changes
relatively little.

The dependence of the peak velocity intensities on Mc is shown in figures 9(a)
and 9(b). All components including that in the spanwise direction (

√
R33/∆U =

0.14, 0.12, 0.11 for Mc = 0.3, 0.7 and 1.1, respectively) decrease with increasing Mach
number in the current DNS. The dependence of Reynolds stresses on Mc will be
discussed further in § 5. Comparison of the turbulence profiles with experimental
measurements by Elliot & Samimy (1990) at Mc = 0.64 and present DNS results
at Mc = 0.7 are shown in figures 10(a), 10(b) and 10(c). The agreement with the
experiments is excellent.

4. Analysis of the compressibility effect of reduced growth rate
In the previous section, it was shown that the normalized turbulent production

term, P , decreases with increasing convective Mach number in the simulations.
The decreased level of production is responsible for the reduction of the vorticity
thickness growth rate and turbulent kinetic energy of the shear layer, in agreement
with the conclusion drawn by Sarkar (1995) from DNS of uniformly sheared flow.
In the case of the momentum thickness of the mixing layer, the compressibility effect
of decreased growth rate must be associated with a reduced level of normalized,
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integrated turbulent production according to (3.10) as first shown by Vreman et al.
(1996).

Section 4.1 confirms the earlier DNS observations of Vreman et al. (1996), Sarkar
(1996) and Freund et al. (2000) regarding the change of pressure–strain with compress-
ibility and, following the development of Vreman et al. (1996), links the pressure–strain
term to the growth rate reduction. Section 4.2 is a new analysis that explains why the
pressure–strain term decreases with increasing Mach number in turbulent shear flows.
Furthermore, the analysis is used to develop a statistical model for the pressure–strain
term.

4.1. The Reynolds stress balance at high speeds

The transport equation for R11 is obtained from (3.6) and is

∂(ρ̄R11)

∂t
+
∂(ρ̄ũ2R11)

∂x2

= ρ̄(P11 − ε11)− ∂T112

∂x2

+Π11. (4.1)
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Mc δ̇θ ε̄11 − Π̄11 R̄11 z Q(z) Error ε̄11

0.3 0.0184 1.568× 10−2 8.080 1.267× 10−1 1.168 −1.7× 10−5 3.8× 10−3

0.7 0.0108 9.711× 10−3 9.619 9.341× 10−2 1.114 −3.3× 10−5 3.17× 10−3

1.1 0.0078 7.125× 10−3 11.226 7.999× 10−2 1.095 −8.8× 10−6 3.03× 10−3

Table 3. Variation of terms in (4.3) and (4.5) with Mc.

Here, the mass flux coupling term Σ11 has been neglected since, even in the large-
Mc case, its magnitude is negligible. Non-dimensionalizing the dissipation term by
∆u3/δθ , the pressure–strain and transport terms by ρo∆u

3/δθ on the right-hand side
of the Reynolds stress transport equation and the Reynolds stress by ∆u2δ̇θ , and
denoting the non-dimensional functions by a caret, gives the self-similar equivalent
of (4.1). The only minor difference with the earlier work of Vreman et al. (1996)
is the absorption of a δ̇θ term in the definition of R̂11. After integrating across the
self-similar coordinate, the following equation is obtained:

(δ̇θ)
2

∫ ∞
−∞
ρ̂(η)R̂11(η) dη = δ̇θ −

∫ ∞
−∞
ρ̂(η)ε̂11(η) dη +

∫ ∞
−∞
Π̂11(η) dη. (4.2)

Introducing the overbar to denote the density-weighted integrals in the above equation,
the following equation for the growth rate, δ̇θ , is obtained:

δ̇θ − (δ̇θ)
2R̄11 = ε̄11 − Π̄11 (4.3)

whose solution is

δ̇θ =
1−√1− 4R̄11(ε̄11 − Π̄11)

2R̄11

. (4.4)

Equation (4.4) for δ̇θ has only minor differences with respect to expressions obtained
from the transport equation for R11 by Vreman et al. (1996) and Freund et al. (2000).
Defining z = R̄11(ε̄11 − Π̄11), (4.4) can be approximated (since z � 1) by

δ̇θ = (ε̄11 − Π̄11)Q(z), (4.5)

where

Q(z) = 1 + z + 2z2 + 5z3 + O(z4). (4.6)

Equations directly relating the thickness growth rate and the pressure–strain term
were derived by Vreman et al. (1996) and Freund et al. (2000); (4.5) is similar to these
previous relationships.

Table 3 shows measured values of δ̇θ , ε̄11 − Π̄11 and R̄11 from which z and Q(z)
can be calculated. The last column reports the calculated error when the measured
values of δ̇θ , ε̄11−Π̄11 and R̄11 are used in the self-similar equation, (4.3). We associate
this small error to the approximate self-similar state of the flow. From the values
shown in table 3, it can be seen that the term ε̄11− Π̄11 varies strongly with Mc, while
Q(z) is only weakly affected. The convective Mach number, Mc, affects ε̄11 − Π̄11 by
reducing its magnitude (notice that Π̄11 is negative) and, subsequently, the momentum
thickness growth rate is reduced as a consequence of (4.5). From the DNS database
it is seen that only Π̄11 is strongly affected by Mc, suggesting that the effect of Mc

on the pressure–strain term is responsible for the reduction of the shear layer growth
rate. The pressure strain term can only be reduced if the intensities of p′ or ∂u′′1/∂x1

are reduced. From the DNS it is clear that the dominant reduction is in the r.m.s.
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pressure. Figure 11 shows that Π̄11 and prms, normalized by their incompressible
values, decrease similarly.

After confirming the results of previous investigations that the compressibility
effects of reduced thickness growth rate and turbulence intensities are related to
decreased pressure fluctuations, we now perform an analysis to explain the observed
Mach number effects on the pressure–strain.

4.2. The pressure–strain term at high speeds

In strictly incompressible flow, the instantaneous pressure has ‘infinite’ signal speed
and satisfies a Poisson equation whose source is related to the velocity gradients. In
the case of compressible flow, pressure fluctuations travel with the speed of sound, c0.
The consequence of a ‘finite’ signal speed on the pressure–strain term is now studied
analytically.

The evolution equation for p′,

1

c2
o

D2p′

Dt2
− ∂2p′

∂xi∂xi
=

∂2

∂xi∂xj
(ρuiuj)

′, (4.7)

can be derived by taking the divergence of the momentum equation, and assuming
that the isentropic relationship, Dp/Dt = c2

oDρ/Dt, applies and viscous terms are
negligible. Such assumptions are reasonable for high-Reynolds-number flows away
from shocks and solid boundaries.

Equation (4.7) is now specialized to the centre of the shear layer where the
mean velocity is zero and ∂ũ1/∂x2 = S ' constant. An analysis, assuming locally
homogeneous turbulence in the physical domain located around the centre of the
shear layer, is performed. The right-hand side of (4.7) that includes the mean shear
as well as nonlinear terms is denoted by f′. In Fourier space, the following equation
results:

∂2p̂

∂t2
+ c2

ok
2p̂ = c2

of̂, (4.8)

where p̂ and f̂ are the Fourier transform of p′ and f′, respectively, and k2 = k2
x+k2

y+k2
z

is the spatial wavenumber, squared. The solution of (4.8) can be obtained using the
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corresponding Green’s function,

G(t, t′) =
1

cok
sin cok(t− t′). (4.9)

Then,

p̂(t) =
co

k

∫ t

0

f̂(t′) sin cok(t− t′) dt′

=
co

k

∫ t

0

f̂(t− τ) sin (cokτ) dτ. (4.10)

In order to express the effect of co, and consequently Mc, on the pressure–strain, the
spectral density of the pressure–strain, Ψij(k), is introduced. The term Ψij(k) and the
two-point pressure–strain correlation, Πij(r), constitute a Fourier transform pair as
follows:

Πij(r) = p′(x+ r)(u′′i,j(x) + u′′j,i(x))

=

∫ ∞
−∞
Ψij(k) eik · r dk. (4.11)

Note that Πij(r = 0) is the pressure–strain correlation in the Reynolds stress transport
equations and, from (4.11), is given by

Πij = p′(u′′i,j + u′′j,i) =

∫ ∞
−∞
Ψij(k) dk. (4.12)

The pressure–strain spectral density, Ψij(k), can be related to the Fourier transforms
of the pressure fluctuations and the velocity fluctuations by

Ψij(k) =
(2π)3

2V
(p̂(û∗i,j + û∗j,i) + p̂∗(ûi,j + ûj,i)), (4.13)

where V is the volume of the turbulent region being considered. Substituting (4.10)
for p̂(t) into (4.13) gives

Ψij(k) =
co(2π)3

2Vk

∫ t

0

(f̂(t− τ)(û∗i,j + û∗j,i) + f̂∗(t− τ)(ûi,j + ûj,i)) sin (cokτ) dτ. (4.14)

For statistically stationary turbulence (t → ∞), the term between large parentheses
can be defined as a function, F̂ij(τ, k), and in the asymptotic limit, t→∞, we have

Ψij(k) =
co(2π)3

2Vk

∫ ∞
0

F̂ij(τ, k) sin (cokτ) dτ. (4.15)

In order to obtain an estimate for the effect of compressibility on the pressure–strain,
we account for the temporal decorrelation typical of turbulence by

F̂ij(τ, k) = F̂ij(k)e−τ/τI , (4.16)

where τI is a characteristic decorrelation time. It follows that

Ψij(k) =
co(2π)3F̂ij(k)

2Vk

∫ ∞
0

e−τ/τI sin (cokτ) dτ =
(2π)3F̂ij(k)

2Vk2

1

1 + 1/(cokτI )2
.

(4.17)

The first term in (4.8) drops out in the incompressible limit, c0 →∞, giving p̂ = f̂/k2.
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Figure 12. Two-time correlation, θ11(0, τ), at the centreplane as a function of Mach number.

Therefore, it is possible to express the incompressible form of the spectral pressure–
strain density as

ΨI
ij(k) =

(2π)3F̂ij(k)

2Vk2
(4.18)

so that (4.17) becomes

Ψij(k) =
ΨI
ij(k)

1 + 1/(cokτI )2
. (4.19)

In the incompressible limit, co →∞, (4.19) predicts that Ψij(k)→ ΨI
ij(k), as expected.

For finite speed of sound, Ψij(k) always decreases with respect to ΨI
ij(k). Integrating

over all wavenumber vectors, k, the following expression for the pressure–strain is
obtained:

Πij

ΠI
ij

= 1− 1

ΠI
ij

∫ ∞
−∞

ΨI
ij(k)

1 + (coτIk)2
dk. (4.20)

Thus, (4.20) is the major result of this analysis, namely, all components of the
pressure–strain tensor show monotone decrease with increasing speed of sound in
compressible shear flow. The assumptions of the analysis are: first, the turbulence
field at the centreplane is quasi-homogeneous and, second, the two-time correlation
of f′ and s′ij exhibits decorrelation which, of course, is a typical feature of turbulent
flow. The specific form of the pressure–strain decrease with increasing Mc that is
given by (4.20) follows from our choice of the simple model, e−τ/τI , to represent
temporal decorrelation. The consequence of other possible choices for the temporal
decorrelation function is explored in Appendix B. Figure 12 shows representative
plots of the two-time correlation θ11(0, τ), where

θij(r, τ) = f′(x+ r, t− τ)(u′i,j + u′j,i)(x, t). (4.21)

Notice that θij(r, τ), as defined above, and F̂ij(k, τ) constitute a Fourier transform
pair in the same way as Πij(r) and Ψij(k). It is clear that DNS supports our
assumption of temporal decorrelation. Figure 11 shows DNS results regarding the
integrated pressure–strain, normalized with the corresponding incompressible value,
as a function of Mc. The Π̄33 component shows the same behaviour since the pressure–
dilatation is much smaller in these simulations, requiring as a first approximation that
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Π̄11 +Π̄22 +Π̄33 ' 0. As can be seen, all three components, Π̄11, Π̄22 and Π̄12, decrease
as a function of Mc as shown by the preceding analysis. Further insight can be
obtained by studying asymptotic limits of (4.20) for both low and high sound speeds,
respectively. First, consider flow speeds low with respect to that of sound, that is
(coτIk)

2 � 1, giving

Πij

ΠI
ij

= 1− 1

(coτI )2

∫ ∞
−∞
ΨI
ij(k)/k2 dk∫ ∞

−∞
ΨI
ij(k) dk

. (4.22)

Here, the ratio of the two integrals has dimensions of length squared and, to a
first approximation, can be taken to be l2 where l is a single characteristic length
scale assumed to be associated with all components of the two-point, pressure–strain
correlation tensor. Thus,

Πij

ΠI
ij

= 1− l2

(coτI )2
. (4.23)

There are two important inverse time scales of the flow: S = |∂ũ1/∂x2| imposed by
the mean flow and l/u associated with the velocity fluctuation. The model for τI ,

1

τ2
I

= α2
1S

2 + α2
2u

2/l2 + α3Su/l, (4.24)

is the simplest model for the time scale that satisfies the following constraints. First, in
the absence of mean shear, τI is proportional to the turbulence time scale, l/u. Second,
in the case of very large mean shear, τI approaches the distortion time scale, 1/S .
Third, in the case of flow with a given shear, the time scale can increase (decrease)
with increasing turbulence fluctuations corresponding to negative (positive) α3. Note
that although α3 can be negative, it is constrained so that the overall sum on the
right-hand side of (4.24) is positive.

After substituting (4.24) into (4.23), the pressure–strain term in the low-Mach-
number limit becomes

Πij

ΠI
ij

= 1− (β2
1M

2
g + β2

2M
2
t + β3MgMt), (4.25)

where Mg = Sl/c0 is the gradient Mach number and Mt = u/c0 is the turbulent
Mach number. Note that the term in brackets on the right-hand side must be positive
since it is a model for the the positive quantity, l2/(c2

0τ
2
I ). In the case of uniformly

sheared flow, the gradient Mach number was used by Sarkar (1995) as the primary
determinant of reduced turbulent production and thereby reduced turbulent kinetic
energy. The present analysis shows that the pressure–strain correlation must depend
on Mg . The specific functional form, (4.25), is a consequence of the simplest possible
model, (4.24), for the characteristic decorrelation time.

The implications of (4.23) are even simpler for the mixing layer in self-similar
conditions when, by definition, l/(τI∆U) is constant at the centreline. The constant
could depend on the Mach number; however, for small values of Mach number,
we assume that l/(τI∆U) is independent of Mach number leading to the following
expression:

Πij

ΠI
ij

= 1−K0M
2
c (4.26)

that describes the leading-order influence of compressibility at low Mach number.
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Figure 13. Correlation between pressure fluctuations and density fluctuations at different
convective Mach numbers as a function of x2/δθ .

A similar analysis can be carried out to obtain the other limit where flow speeds
large with respect to that of sound are considered, that is (coτIk)

2 � 1. The asymptotic
solution is

Πij

ΠI
ij

=
1

K∞M2
c

, (4.27)

where the constants K0 and K∞ must be calculated from data.
The wave equation, (4.7), for the pressure is a useful approximation for analysis

of cases with moderate Mach number and is consistent with the energy equation,
(2.3), if the heat conduction and viscous dissipation terms are assumed negligible and
the isentropic relation is assumed. A consequence of the isentropic relationship used
to derive the wave equation is that the cross-correlation coefficient between density
and pressure is unity. Figure 13 shows the pressure–density fluctuation correlation
across the shear layer as a function of Mc. It can be observed that pressure and
density fluctuations are well correlated up to the largest convective Mach number
investigated in this study. The agreement is best for the low convective Mach number
case and in general at the centre of the shear layer. The largest departure from unity
at the centre of the shear layer is approximately 3%. Thus, the assumption of linear
dependence of pressure fluctuations on density fluctuations is well supported for the
range of Mc studied here.

At high Mach numbers, Mc � 1, the general thermodynamic relation must be
used,

Dp

Dt
=

(
dp

dρ

)
s

Dρ

Dt
+

(
dp

ds

)
ρ

Ds

Dt
, (4.28)

where the first term on the right-hand side is the ‘acoustic’ contribution and the
second term is the ‘entropy’ contribution. Indeed, by taking the time derivative of
(4.28) and using the divergence of the momentum equation, a modified wave equation
for the pressure fluctuation results which involves entropy fluctuations and is valid
for all Mach numbers. For our purpose, it is enough to estimate the contribution
of the ‘entropy’ mode when it dominates the ‘acoustic’ mode. This can be done by
considering the limit Mc � 1, when the second term on the right-hand side of (4.28)
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dominates and, consequently, (2.3) for the pressure becomes

∂p

∂t
+ uk

∂p

∂xk
= γ

∂

∂xk

(
1

RePr

∂

∂xk

(
p

ρ

))
+ (γ − 1)φ. (4.29)

Thus, fluctuations in the pressure field are related to those in the dissipation rate,
φ = τijui,j , and when Mc � 1 the pressure and pressure–strain terms do not vanish,
which is a physically consistent result.

An order of magnitude analysis of (4.29) in the shear layer (characteristic velocity,
∆u, and characteristic length, δθ) gives

p′
∆u

δθ
= O(ρoε) = α1ρo

∆u3

δθ
, (4.30)

which suggests that the pressure fluctuations can be estimated by

p′ = α1ρo∆u
2 (4.31)

and the asymptotic value of the pressure–strain, Π∞ij , by

Π∞ij = α2ρo
∆u3

δθ
. (4.32)

Finally, the pressure–strain normalized by its incompressible value approaches a
constant when Mc � 1, that is,

Π∞ij
ΠI
ij

= α3, (4.33)

where α3 is a constant.
It is remarkable that the main effect of compressibility on the pressure–strain

correlation in shear flows can be obtained without knowledge of the exact shape of
ΨI
ij (which is quite complicated). This result is applicable to Π11 and not to ε11, the

other term that contributes to (4.5) for the growth rate. DNS results have shown
that ε11 does not change strongly with Mc. Since Πij progressively decreases with Mc,
approaching a constant value for sufficiently large Mc, the term ε11 −Π∞11 dominates
in (4.5) resulting in an asymptotic, non-zero growth rate for Mc � 1.

So far, qualitative insights into the effect of Mc on the pressure–strain term have
been obtained using analysis. Now we turn to modelling the pressure–strain so as to
quantitatively capture the experimentally observed influence of Mc on the growth rate.
The following pressure–strain model has the asymptotic behaviour of (4.26)–(4.27)
that has been derived by analysis of the wave equation, and follows (4.33) at large
Mc when entropy fluctuations dominate:

Πij

ΠI
ij

= (1− c)1 + aM2
c exp(−(2Mc − 1/2)2)

1 + bM2
c

+ c. (4.34)

Since the experimental data report the normalized growth rate, the pressure–strain
correlation needs to be inferred by using (4.5). The data from the ‘Langley Exper-
imental Curve’ are used to fit (4.34) together with a constant value for Q(z) = 1.1
and ε̄11/(ε̄

I
11 − Π̄I

11) = 0.25. The parameters of the model are a = 4.0, b = 4.1 and
c = 0.091. As can be seen, this expression has the correct behaviour at low and high
Mach numbers. From (4.34), the constants appearing in (4.26)–(4.27) are calculated
to be K0 = 0.89 and K∞ = 4.5. Figure 14 shows that (4.34) is a good fit to the
‘experimental’ pressure–strain ratio.
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Figure 14. Pressure–strain ratio. Symbols: data deduced from the ‘Langley Experimental Curve’
and line: equation (4.34).

5. Anisotropy of the Reynolds stress
The Reynolds stress anisotropy defined by

bij =
Rij − 2

3
Kδij

2K
(5.1)

is an important characteristic of the velocity fluctuations that is used in advanced
modelling of turbulent flows. As discussed in the introduction, some studies observe
only small changes in the diagonal components of bij while other studies find increased
magnitude of b11, b22, and b33 because R22 and R33 decrease more than R11 as a function
of Mc. Similarly, there is disagreement with respect to the effect of compressibility
on b12.

Figures 15(a), 15(b) and 15(c) show the temporal evolution of the anisotropy
tensor, obtained by integrating Rij and K along the shear layer and then using (5.1),
for different Mc. Two important conclusions are drawn from these figures. First,
during its initial evolution, the anisotropy tensor is strongly affected by Mc, whereby
larger magnitudes of the diagonal components of bij are measured for increasing
Mc. Table 4 illustrates this trend using the peak anisotropies during the early-
time transient. Second, after sufficiently long time, the anisotropy tensor approaches
asymptotic values that are weakly dependent on Mc. Table 4 also shows values from
the self-similar region, where a weak increase of the normal stress anisotropies with Mc

is observed while the off-diagonal component b12 remains constant. The peak values
of turbulence intensities and shear stress at the centre of the shear layer can also be
considered and are preferable in comparing with experimental data. Table 5, which
shows the normalized turbulence intensities, compares cases A3, A7 and A11 with
experimental studies by Bell & Mehta (1990), Samimy & Elliot (1990) and Chambres
et al. (1998). The ratios

√
R22/R11 and

√
R12/R11 are measures of anisotropy, and

as can be seen they do not change considerably between cases. The conclusion from
these experiments and DNS is that the effect of compressibility on bij is weak.

Previous DNS studies by Vreman et al. (1996) and Freund et al. (2000) observed
increased values of normal stress anisotropy with Mc. The Mc = 1.2 case of Vreman
et al. (1996) was conducted up to τ ' 1000 but started with a single pair of oblique
modes while that of Freund et al. (2000) used broadband initial fluctuations but
followed the evolution only up to τ ' 350. It is possible that the turbulence was not
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Peak Long-time

Mc b11 b22 b12 b11 b22 b12

0.3 0.26 −0.16 0.19 0.14 −0.06 0.18
0.7 0.29 −0.19 0.19 0.15 −0.10 0.15
1.1 0.36 −0.22 0.18 0.14 −0.10 0.16

Table 4. Reynolds stress anisotropy: peak values during its early-time evolution
and long-time values.
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Figure 15. Anisotropy tensor evolution for (a) Mc = 0.3, (b) Mc = 0.7 and (c) Mc = 1.1.

in a fully developed, self-similar state in these studies and the finding of increased
normal stress anisotropy with Mc in these studies is analogous to the increased levels
seen at early time in our DNS. We also note that transitional shear flows or developing
shear flows (P/ε larger than equilibrium values) can be expected to have values of
R11, relative to R22 and R33, which are higher than in equilibrium shear flow with
self-similar turbulence statistics due to a higher relative importance of linear effects.
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Mc

√
R11/∆u

√
R22/∆u

√
R12/∆u

√
R22/R11

√
R12/R11

Bell & Mehta (1990) 0.0 0.18 0.14 0.10 0.777 0.555
Present DNS 0.3 0.17 0.134 0.103 0.788 0.606
Samimy & Elliot (1990) 0.64 0.15 0.10 0.088 0.666 0.586
Present DNS 0.7 0.153 0.103 0.087 0.673 0.568
Chambres et al. (1998) 1.0 0.14 0.085 0.083 0.607 0.592
Present DNS 1.1 0.141 0.095 0.083 0.674 0.588

Table 5. Comparison of peak turbulent intensities in experiments and DNS.

6. Density effect on the growth rate
The aim of series B is the study of the effect of density ratio on the growth rate.

In this series, two parameters have been kept constant, the convective Mach number,
Mc, and the average density, ρo = (ρ1 +ρ2)/2. Results corresponding to s = ρ2/ρ1 = 2,
4 and 8 are shown. Note that s > 1 implies that the upper stream has the lower
density. It can be shown that the average equations and boundary conditions are
invariant under the change x2 → −x2, u1 → −u1 and u2 → −u2 from where the
invariance of the results to the change s→ 1/s is immediately clear. The influence of
the density ratio on temporal growth rates of the vorticity thickness, related to the
mean streamwise velocity profile, as well as the momentum thickness, related to the
profiles of turbulent Reynolds stress R12 and the mean density ρ̄, is investigated.

From similarity arguments, Brown (1974) derived an expression for the vorticity
thickness growth rate dependence on the velocity and density ratios. The growth rate
in a frame moving with the convection velocity, Uc, is defined by

1

∆u

dδω
dt

= δ̇ω =
Cδ

2
. (6.1)

Brown (1974) states that, although Cδ can be assumed independent of s, based on
limited data available for low-speed flow, the convection velocity, Uc, shifts to the
velocity of the high-density stream. Therefore, the spatial growth rate is modified by
unequal free-stream densities, although the temporal growth rate, Cδ , is not. Brown
(1974) found that the expression

dδω
dx

= Cδ
(1− r)(1 + s1/2)

2(1 + rs1/2)
(6.2)

matched experimental data with r = u2/u1 the velocity ratio, s = ρ2/ρ1 the density
ratio, and subscript 1 denoting the high-speed stream. Equation (6.2) was further im-
proved by Dimotakis (1984) by accounting for the feature of asymmetric entrainment
associated with a spatially developing shear layer that cannot be captured by the
temporal model. Since the current DNS corresponds to a temporally evolving flow in
a reference frame mandated to move with the mean velocity (U1 +U2)/2, conclusions
can be drawn with respect to the effect of s on solely Cδ and not Uc. Table 6 gives the
values of Cδ for various density ratios and Mc = 0.7. A decrease of Cδ with increasing
s is observed.

The penultimate column of table 6 shows the momentum thickness growth rate
normalized by its constant-density value. A large decrease of δ̇θ with increasing Mc

is seen. The dependence of momentum thickness growth rate on s is much stronger
than that of vorticity thickness growth rate.

To calculate the effect of the density ratio on the momentum thickness growth rate,
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s Cδ a(s) δ̇θ/δ̇θ,1 1− λ(s)a(s)
1 0.117 0.00 1.00 1.00
2 0.084 0.52 0.67 0.82
4 0.093 0.70 0.57 0.58
8 0.071 0.88 0.37 0.32

Table 6. Dependence on s of Cδ , a(s) and growth rate ratio for Mc = 0.7.

the definition of δ̇θ is studied, where (3.10) is now written in terms of ũ1,

δ̇θ = − 2

ρo∆u3

∫ −∆u/2

∆u/2

ρ̄R12 dũ1. (6.3)

The mean density as well as the Reynolds stress can be expressed in terms of the
mean streamwise velocity. This transformation is very convenient since the shear layer
centre, defined in the customary form by the dividing streamline position, is recovered
directly at the point ũ1 = 0. The self-similar coordinate of the shear layer centre can
equivalently be obtained by setting the right-hand side of (3.19) to zero. Denoting the
centre of the shear layer by ηc, the condition to be satisfied by û2 is

û2(ηc)− ηc = 0. (6.4)

Equation (6.4) implies that the dividing centreline is not at necessarily η = 0. To obtain
the direction of the shift, (3.16) is integrated from −∞ to ηc, imposing û2(−∞) = 0,

ηc =
1

ρ̂(ηc)

∫ ηc

−∞
η

dρ̂

dη
dη. (6.5)

It can be seen that since s > 1 for the cases discussed here, dρ̂/dη < 0 for all η,
implying that ηc must be positive. This simple argument explains why the shear layer
shifts in one direction, and also explains that the shift is a result of the variable
density. Figure 16 shows the mean density and velocity profiles for s = 2, 4 and 8.
The shear layer centre, ( û1 = 0 ), shifts upward to positive η. When the density ratio
is changed from s to 1/s, the shear layer centre shifts downward by an equal amount
to negative η according to (6.5). In summary, the shear layer centre shifts to the lower
density side.

In order to quantify the density effect on the momentum thickness growth rate, the
functional form ρ̄(ũ1) is now obtained. At t = 0, the density and velocity profiles have
the same hyperbolic tangent variation between their free-stream values. Therefore, at
t = 0,

ρ̄ = ρo(1 + 2λû1), (6.6)

where û1 = ũ1/∆u and λ(s) is defined by (2.11). It can be verified that λ is such that
ρ̄ = ρ1 at ū1 = −∆u/2 and ρ̄ = ρ2 at ū1 = ∆u/2. At later time, the dividing centreline,
û1 = 0, shifts with respect to the position of average density ρo = (ρ1 +ρ2)/2 and this
shift depends on the value of s. Therefore, (6.6) is modified as follows:

ρ̄ = ρo[1 + λ(2û1 − a(s)f(û1))]. (6.7)

The specified density at the free streams require that f(−1/2) = f(1/2) = 0. Fur-
thermore, f(û1) is defined as a positive quantity with a maximum value of 1. The
unknown function a(s) accounts for the magnitude of the shift between the velocity
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Figure 16. (a) Mean density and (b) streamwise velocity profiles.

and density profiles, and is calculated from the DNS database, giving a quantity of
order one. Note that the preceding analysis and DNS observations show that the
dividing streamline moves to the low-density side, that is, ρ̄(s, û1 = 0) < ρ0, which
implies that

λ(s)a(s) > 0 (6.8)

for all values of density ratio, s 6= 1. Due to the symmetry of the equations mentioned
at the beginning of the section, λ(s)a(s) = λ(1/s)a(1/s), giving a(s) = −a(1/s). The
calculation of a(s) is done simply by using (6.7), where

a(s) = 2û1,max − ρ̂(û1,max)− 1

λ
. (6.9)

Here, û1,max is the value at which f(û1) is maximized, i.e. f′(û1,max) = 0 or, equivalently,
using (6.7),

dρ̂

dû1

(û1,max) = 2λ. (6.10)

Figure 17 shows the function f(û1), obtained by calculating a(s) from the DNS
database and table 6 shows the measured values of a(s).

The functional dependence of R12 on the velocity profile is now obtained. Figure
18 shows self-similar profiles of R12 at different values of s for constant convective
Mach number. As can be seen, there is little change in the peak magnitude of the
Reynolds stress but there is a shift to the low-density side, associated with the shift
of the dividing streamline. This suggests the following functional form for R12:

R12 = ∆u2δ̇θ,1g(û1), (6.11)

where δ̇θ,1 is the momentum thickness growth rate corresponding to the same Mach
number and density ratio, s = 1. The function g(û1) is shown in figure 19 for cases
B2, B4 and B8. Finally (6.3) can be written in terms of the new functions, giving

δ̇θ

δ̇θ,1
= 2

∫ 1/2

−1/2

[ 1 + λ(s)(2û1 − a(s)f(û1)) ]g(û1) dû1. (6.12)
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Figure 18. Reynolds stress R12 at Mc = 0.7 for different density ratios.

The integral is decomposed into three parts:

δ̇θ

δ̇θ,1
= 2

∫ 1/2

−1/2

g(û1) dû1 + 4λ(s)

∫ 1/2

−1/2

û1g(û1) dû1 − 2λ(s)a(s)

∫ 1/2

−1/2

f(û1)g(û1) dû1

(6.13)

Since λ(s = 1) = 0 and, by definition, δ̇θ(s = 1) = δ̇θ,1, the first integral on the
right-hand side of (6.13) must be unity. The second integral can be neglected since
it is a product of an antisymmetric function by an almost symmetric function and
its value is numerically found to be negligible. From our DNS database the error
induced by neglecting this second integral is bounded to approximately 0.08λ(s) for
all cases. Since λ(s) is limited for 0 < s < ∞ to

0 6 |λ(s)| < 1,

the error introduced by neglecting the second integral is approximately 8%. Finally,
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Figure 19. Reynolds stress function g(û1).

the last integral is obtained numerically to be approximately 0.5, resulting in the final
expression

δ̇θ

δ̇θ,1
= 1− λ(s)a(s). (6.14)

Table 6 shows that (6.14) is a good approximation to the observed effect of density
ratio on the momentum thickness growth rate.

The following conclusions can be drawn from (6.14). First, since λ(s)a(s) > 0
according to (6.8), the momentum thickness growth rate for the temporally evolving
shear layer is always reduced in the case of unequal free-stream densities. In other
words, the shift of the dividing streamline to the low-density side is responsible for the
decreased growth rate of the momentum thickness. Second, since λ(s)a(s) is invariant
under the change s → 1/s, the momentum thickness asymptotic value is unchanged
if the densities of the upper and lower streams are interchanged.

7. Conclusions
The shear layer between two streams with velocity and density contrasts is studied

using DNS. In one series of simulations, the density ratio, s = ρ2/ρ1, is held constant
while the convective Mach number, Mc, is varied between subsonic and supersonic
values. In another set of simulations, Mc is held constant at a high value and s varied.
Large computational domains, large computational grids, and broadband initial
conditions ensure that the application of a high-order numerical scheme results in a
simulated flow that corresponds to full-blown turbulence. The Reynolds number based
on vorticity thickness is as large as 13 600. A detailed validation against experimental
data is performed and profiles of turbulence intensities are found to agree well
with both low and high Mach number datasets. Furthermore, a more stringent test
comparing the turbulent kinetic energy budget in the quasi-incompressible Mc = 0.3
case with another independent DNS study of the incompressible shear layer by Rogers
& Moser (1994) is performed and good agreement is again obtained.

The compressibility effect of dramatically reduced turbulence levels and growth rate
is a well-known phenomenon and is observed in the current DNS. Reduced turbulence
production, rather than increased dilatational terms, appears to be directly responsible



360 C. Pantano and S. Sarkar

for decreased turbulent kinetic energy as first observed by Sarkar (1995) in uniformly
sheared flow. Consistent with the relation between momentum thickness growth rate
and integrated production established by Vreman et al. (1996) for the mixing layer
and their finding using DNS, we also find that the reduced turbulence production is
directly linked to the reduced growth rate of the momentum thickness. With increasing
Mc, the normalized pressure fluctuations and pressure–strain term are reduced as first
shown by Vreman et al. (1996) in the mixing layer, thus decreasing the cross-stream
intensity v2, thereby the Reynolds shear stress uv, and finally the turbulent production
term.

Reduction of normalized pressure fluctuations, concomitant reduction of inter-
component energy transfer, and suppression of turbulence levels has been observed
in other flows with mean shear, for example uniform shear flow by Sarkar (1996) and
the annular mixing layer by Freund et al. (2000). In non-sheared flows such as irrota-
tional compression studied by Cambon et al. (1993), there is a reduction of pressure
fluctuations. However, in contrast to compressible shear flows, the turbulent kinetic
energy increases in compressed flows due to an increase in dilatational fluctuations.

An analysis of the wave equation that governs pressure fluctuations in compressible
flow is performed in order to explain the behaviour of the pressure–strain term. A
monotone decrease of the pressure–strain correlation with increasing compressibility
is predicted by the analysis. Furthermore, the asymptotic behaviour at small and large
Mach numbers is obtained. The gradient Mach number, Mg = Sl/c, and the turbulent
Mach number, Mt = u/c appear as the principal determinants of compressibility and,
in the case of the self-similar shear layer, both can be related to the convective Mach
number Mc. DNS also shows that the pressure–strain correlation exhibits monotone
decrease when Mc increases. The parameter Mg was identified by Sarkar (1995) to
be useful in discriminating between different flows with the same Mach number, for
example between strong compressibility effects when ∆U/c = 1.0 in the shear layer
and their lack in the M∞ = 1.0 boundary layer.

Based on our analysis and DNS, the following physical reason for the reduction in
the pressure–strain term can be identified. The finite speed of sound in compressible
flow causes a time delay, l/c, in the passage of pressure signals across a characteristic
eddy length l and, thus, causes decorrelation between adjacent points in an ‘eddy’.
The ratio of acoustic time delay, l/c, to a characteristic flow time (1/S or l/∆U)
increases with Mach number (Mg = Sl/c or Mc = ∆U/2c) and, as clearly shown by
the analysis, the resultant increase in decorrelation inhibits the pressure–strain term.
As discussed in the introduction, reduced communication between disturbances in
high-speed flows has been advanced as a possible physical reason for the stabilizing
effect of compressibility. The analysis of the wave equation performed here may be
viewed as a mathematical corroboration of how, with increasing speed of sound,
the acoustic time delay is effective in reducing the inter-component energy transfer
necessary to maintain turbulence in a shear flow.

When the density ratio is varied in the high-speed regime, Mc = 0.7, it is found
that the momentum thickness growth rate decreases substantially as a function of s.
The change of vorticity thickness growth rate with s is smaller. With increasing values
of s, the maximum shear stress uv decreases somewhat; however, the main effect of
variable density is that the location of peak shear stress shifts to the low-density
side causing a substantial reduction in the momentum transport, ρuv. The shift of
the location of maximum shear stress or, equivalently, the dividing streamline is a
consequence of mean momentum conservation. An analytical expression relating the
shift to the momentum thickness growth rate is also derived.
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Case Mc s Lx × Ly × Lz Nx ×Ny ×Nz

AS3 0.3 1.0 172× 129× 86 256× 192× 128
AS11 1.1 1.0 172× 129× 86 256× 192× 128
AA3 0.3 1.0 172× 129× 86 384× 288× 192

Table 7. Parameters for the validation simulations (symbols are as in table 1.)

The variation of turbulence intensities and shear stress with Mc is examined. Our
finding that, in the self-similar state, all components of the turbulence decrease with
Mach number with only a weak effect on the anisotropy is in agreement with the
experiments of Samimmy & Elliot (1990) and the more recent data of Chambres et
al. (1998). It should be noted that some experimental and DNS investigations report
a substantially larger reduction in the cross-stream component v2 compared to u2. We
find a similar situation during the early developing stage of the shear layer but not,
later in the DNS, when the flow field is close to its final self-similar state.

This work was supported by AFOSR through grant F49620-96-1-0106. Compu-
tational time was provided by the CEWES and NAVO Major Shared Resource
Centers. The authors wish to thank Dr Scott Stanley and Dr Frank Jacobitz for
helpful discussions on the numerical method.

Appendix A. Validation of the simulations
In order to check the accuracy of the results, two-point correlations, spectra and

the turbulent kinetic energy balance were investigated. Several additional simulations
were also performed to explicitly investigate the effects of domain size, resolution
and filter characteristics. All simulations were performed at the same Reynolds
number, Re = 800. Table 7 shows the grid sizes and computational domain lengths
corresponding to the additional simulations.

The additional simulations labelled AS3 and AS11 were performed on a domain of
streamwise length half that of cases A3 and A11 presented in the paper. The results
show that even with this smaller domain size the results are acceptable. Simulation
AA3 was performed to study the effect of finer resolution (50% better resolution in
each direction).

A.1. Domain size effect

The evolution of momentum thickness with time is shown in figure 20 for different
cases. As can be seen, there are only minor differences between the results of the
smaller domain simulations and the larger domain simulations. Even for the large-Mc

case the differences are small. Figure 21(a–e) shows the correlations for simulations
A3, AS3, A11, AS11 and A7, respectively. In order to eliminate contamination of the
results by finite domain size, the correlation should be small for large r/δθ . It can be
verified that this condition is met for all cases and especially for A3 and A11 which
have twice the streamwise domain length relative to the other cases.

We conclude from these results that simulation A7 that was performed in a smaller
domain than A3 and A11 is of acceptable quality since little effect on growth evolution
is observed between simulations with smaller and larger streamwise domain sizes even
though the two-point correlations do not exhibit complete decay to zero decorrelation
within the computational domain.
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Figure 20. Momentum thickness evolution with time for different simulations. Cases AS3 and
AS11 have half the streamwise domain length with respect to cases A3 and A11.

A.2. Resolution

Comparison of the results of Rogers & Moser (1994) and ours in figure 6 is very
good for the turbulent production and dissipation terms. Only some differences are
observed, away from the centre of the shear layer, for the transport term. Figure 22
shows all the terms in the turbulent kinetic energy budget for simulation A3. The
normalized budget of turbulent kinetic energy can be written as

P̂ − ε̂− 1

ρ̂

dT̂2

dη
− (û2 − η)δ̇θ

dK̂

dη
= e→ 0, (A 1)

where K = ∆u2K̂ . All the terms are shown including the remainder, e, in (A 1). In
general the physical origin of a non-zero e can be related to a lack of resolution, a lack
of measurement points to obtain converged statistics, and deviations from a perfectly
self-similar state. It is clear from figure 22 that the remainder, e is small. Figure 25(b)
shows that the dissipation spectrum is well-captured by the grid resolution.

From the above results, it could be concluded that resolution is acceptable. Never-
theless, simulation AA3 was performed with a grid that is 1.5 times finer in each
direction to directly ascertain the effect of increased grid resolution. The turbulent
field was initialized from the flow field of simulation AS3 at a non-dimensional time
of 250, roughly 65% of the total time of simulation AS3, and allowed to evolve from
that point up to approximately the same final time. Figure 23 shows the evolution of
turbulent kinetic energy with time at the centreplane for simulations AS3 and AA3.
As can be seen, the agreement is very good, supporting the fact that the resolution is
appropriate.

A.3. Numerical filter

In order to improve stability of the numerical algorithm for large times the flow
variables are filtered using a compact filter. The filtering is performed every n time
steps. The filter parameters are chosen to alter only the high wavenumber part of the
spectrum as discussed by Lele (1992). In the present study a fourth-order compact
filter is used (C.2.4 of Lele 1992) with coefficient α = 0.49. The numerical filter
step, n, is such that the dissipation introduced by the filter is minimal. In order to
give a quantitative measurement of the filter effect on the flow field, we propose
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Figure 21. Correlations at (a) Mc = 0.3 for simulation A3, normalized time, τ = 500; (b) Mc = 0.3
for AS3, τ = 390; (c) Mc = 1.1 for A11, τ = 850; (d ) Mc = 1.1 for AS11, τ = 810; (e) Mc = 0.7 for
A7, τ = 550.

the following analogy: the use of the filter can be considered to be equivalent to
additional numerical dissipation. The difference between the turbulent kinetic energy,
k, before filtering and after filtering, k∗, at the instant the filter is applied, represents
the dissipation due to the filter. The energy removed by filtering is k − k∗, while the
energy removed by viscous dissipation is approximately n∆tε, where n∆t is the time
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Figure 22. Turbulent kinetic energy budget for simulation A3 (Mc = 0.3). Production, P̂ , transport,

(1/ρ̂) dT̂2/dη, dissipation, ε̂, convection, (ũ2/∆u− ηδ̇θ) dK̂/dη, and reminder e from equation (A 1).
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Figure 23. Evolution of turbulent kinetic energy at the centreplane for simulations AS3 and AA3
(50% increased resolution).

between successive filter applications. The relative importance of filtering with respect
to the physical viscous dissipation is measured by the ratio

k − k∗
nε∆t

. (A 2)

Thus, an equivalent filter dissipation can be defined by

εf =
k − k∗
n∆t

(A 3)

and, to preserve the fidelity of the simulations, it is required that εf/ε be small.
Figure 24 shows different measurements of the ratio (εf/ε)max as a function of n

for simulations AS3 and AA3. No further improvement was observed for n > 50 and
this value was used in the present study for all simulations. Notice that in cases A3,
A7 and A11 the ratio εf/ε ' 6% while εf/ε ' 1% in the higher-resolution case AA3.
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Figure 24. Dependence of normalized filter dissipation on n, the number of
time steps between filtering.

There is additional support that the current filter is acceptable. The kinetic energy
balance in figure 22 shows that the right- and left-hand sides of the kinetic energy
equation are in balance. Furthermore, figure 6 shows that our level of turbulent
dissipation is in excellent agreement with the result of Rogers & Moser (1994) even
though a completely different numerical scheme was used. For these reasons, it was
considered that the value of n = 50 was sufficient for the purpose of the present
study.

The effect of the filter on the one-dimensional turbulent kinetic energy spectrum is
shown in figure 25(a). As can be seen from the filter transfer function, the filter affects
only the larger wavenumbers. Figure 25(b) shows the dissipation spectrum, D(κ). It
can be seen that the filter only affects wavenumbers that are larger than those at
which D(κ) peaks.

Appendix B. Two-time-scale correlation model

Consider the integral to be evaluated in (4.15). Let F̂ij(τ, k) = F̂ij(k)R(τ) so that
(4.15) becomes

Ψij(k) =
(2π)3

2Vk2
F̂ij(k)ω

∫ ∞
0

R(τ) sin (ωτ) dτ, (B 1)

where ω = cok. To simplify the notation we introduce an intermediate function H(ω)
such that

H(ω) = ω

∫ ∞
0

R(τ) sin (ωτ) dτ. (B 2)

It is possible to obtain the asymptotic expansions of H(ω) for an arbitrary function
R(τ) in the limits of small and large ω. The only restriction imposed is that the
function R(τ) must approach zero for τ → ∞. In the first case, we expand in Taylor
series sin(ωτ) for small values of ω and in the second we perform the change of
variable ζ = ωτ and performing integration by parts. The results of the expansions
for small ω is

H(ω) = ω2

∫ ∞
0

τR(τ) dτ− ω4

3!

∫ ∞
0

τ3R(τ) dτ+ O(ω6) (B 3)
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Figure 25. One-dimensional spectrum of (a) turbulent kinetic energy and (b) turbulent dissipation
at different Mach numbers.

and for large ω

H(ω) = R(0)− 1

ω2
R′′(0) +

1

ω4
R
′′′′

(0) + O(ω−6). (B 4)

As can be seen, the asymptotic expansions obtained in § 4.2 are indeed general for
both small and large Mach numbers. Now instead of assuming R(τ) = e−τ/τI we
consider the more general case where a viscous time scale, τν , applies for small τ. We
will assume high-Reynolds-number turbulence such that, with Kolmogorov scaling,

τν is determined by ε and ν, giving τν/τI = Re
−1/2
t . Thus (τν/τI ) is a small parameter.
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There is no reason, a priori, to exclude quadratic or linear dependence of R(τ) for
small τ and we will consider both cases.

B.1. Quadratic viscous dependence

A two-time-scale model for R(τ) is considered in which

R(τ) =

{
e−τ2/τ2

ν , 0 < τ < a1τν
Ae−τ/τI , a1τν < τ < ∞, (B 5)

where τν and τI are characteristic time scales of the decorrelation function R(τ) such
that δ = τν/τI � 1. The constant a1 is positive of order unity and the constant A is
obtained from the matching condition

A = e−a
2
1ea1δ

Notice that (B 2) consists of two parts, H = Hν +HI , where

Hν = ω

∫ a1τν

0

e−τ
2/τ2

ν sin (ωτ) dτ,

HI = ωA

∫ ∞
a1τν

e−τ/τI sin (ωτ) dτ.

Since δ � 1 we proceed to expand these integral in powers of δ. The algebra of the
asymptotic expansions is omitted here for brevity, but shows that for small values of
(ωτIδ)2

HI =
(ωτI )

2

1 + (ωτI )2
e−a

2
1 (1 + a1δ + O(δ2)), (B 6)

Hν =
(ωτI )

2

2
(1− e−a

2
1 )δ2 + O(δ4). (B 7)

From (B 4) the asymptotic expansion for large values of ω is

H = 1 +
2

ω2τ2
ν

+ O(ω−4). (B 8)

This shows that one would not expect a decorrelation function that has a quadratic
viscous time dependence since this would imply a pressure strain that, for small but
non-zero Mach number, is larger than the incompressible value, in contradiction
with observations. Furthermore, figure 12 does not support a quadratic viscous
dependence.

B.2. Linear viscous dependence

Now a two-time-scale model for R(τ) is considered in which

R(τ) =

{
e−τ/τλ , 0 < τ < a2τλ
Be−τ/τI , a2τλ < τ < ∞, (B 9)

where τλ and τI are characteristic time scales of the decorrelation function R(τ)
such that ε = τλ/τI � 1. Here τλ represents viscous effects. As in the previous case
the constant a2 is positive of order unity and the constant B is obtained from the
matching condition

B = e−a2ea2ε.
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Figure 26. Reynolds stress budgets: R11 for (a) Mc = 0.3 and (b) Mc = 1.1; R22 for (c) Mc = 0.3
and (d ) Mc = 1.1; R12 for (e) Mc = 0.3 and ( f ) Mc = 1.1. Terms are normalized by ∆U3/δθ .
Production, P , dissipation, ε, pressure–strain, Π , transport, T and time derivative + convection, C .

As in the previous case, H = Hλ +HI , where

Hλ = ω

∫ a2τλ

0

e−τ/τλ sin (ωτ) dτ,

HI = ωB

∫ ∞
a2τλ

e−τ/τI sin (ωτ) dτ,
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with corresponding expansions for small values of (ωτIε)
2

HI =
(ωτI )

2

1 + (ωτI )2
e−a2 (1 + a2ε+ O(ε2)), (B 10)

Hλ = (ωτI )
2ε2 + O(ε4), (B 11)

and for large values of ω

H = 1− 1

ω2τ2
λ

+ O(ω−4). (B 12)

This expression has the expected behaviour; as we increase the speed of sound
(ω → ∞) we approach the incompressible value. Equations (B 6)–(B 7) and (B 10)–
(B 11) show that the leading-order dependence of the integral is unchanged up to
a multiplicative constant for both linear and quadratic choices for the small-time
behaviour of the temporal decorrelation function. To conclude, the use of a more
complete model that includes viscous effects leads to insignificant changes with respect
to the dependence on Mach number given by (4.20).

Appendix C. Reynolds stress budgets
For completeness, the Reynolds stresses budgets for components R11, R22 and R12

are shown at Mc = 0.3 and 1.1 in figure 26. The velocity difference, ∆U, is used. All
terms in the budget are normalized with (∆U3)/δθ .

The balance for the streamwise component in figure 26(a, b) shows that, in the core
of the shear layer, the dominant source is P11 while the dominant sink is Π11 which
redistributes energy to the other velocity components. Turbulent dissipation, ε11, and
transport, T11, also contribute to the balance. Both P11 and Π11 are substantially
reduced at high Mach number. On the other hand, the dissipation, ε11, changes less
with Mach number.

The balance for the cross-stream component is shown in figure 26(c, d ). The
pressure–strain term, Π22, is the dominant source. Its value decreases substantially
at high Mach number. In the Mc = 0.3 case, both dissipation and transport are
important sinks near the centreline. At the higher Mach number, Mc = 1.1, the
dissipation, ε22, has a slight reduction while there is a more substantial reduction in
the transport, T22.

Figure 26(e, f ) shows the budget for the Reynolds shear stress, R12. The dominant
source is the production while the dominant sink is the pressure–strain correlation.
At Mc = 1.1, both of these terms are reduced with respect to the low-Mach-number
case. The dissipation term is negligible, which is consistent with the implication of
local isotropy of the turbulent dissipation rate at sufficiently high Reynolds number.
The transport term has a small contribution at Mc = 0.3 while it is negligible at
Mc = 1.1.

Overall, the Reynolds stress budgets show that theMc = 1.1 case exhibits substantial
reduction in the production and pressure–strain terms with respect to the baseline
case with Mc = 0.3. The transport terms are also reduced. However, the turbulent
dissipation terms are not significantly affected by Mach number.
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