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Large-eddy simulation of combustion problems involves highly nonlinear terms that, when filtered,
result in a contribution from subgrid fluctuations of scal&@so the dynamics of the filtered value.

This subgrid contribution requires modeling. Reconstruction models try to recover as much
information as possible from the resolved fi@dbased on a deconvolution procedure to obtain an
intermediate fieldZy, . The approximate reconstruction using momg#RM) method combines
approximate reconstruction, a purely mathematical procedure, with additional physics-based
information required to match specific scalar moments, in the simplest case, the Reynolds-averaged
value of the subgrid variance. Here, results from the analysis of the ARM model in the case of a
spatially evolving turbulent plane jet are present&qbriori anda posteriorievaluations using data

from direct numerical simulation are carried out. The nonlinearities considered are representative of
reacting flows: power functions, the dependence of the density on the mixture fraelievant for
conserved scalar approacheand the Arrhenius nonlinearitfvery localized inZ space.
Comparisons are made against the more popular beta probability density fufiEiBnapproach

in the a priori analysis, trying to define ranges of validity for each approach. The results show that
the ARM model is able to capture the subgrid part of the variance accurately over a wide range of
filter sizes and performs well for the different nonlinearities, giving uniformly better predictions
than the beta PDF for the polynomial case. In the case of the density and Arrhenius nonlinearities,
the relative performance of the ARM and traditional PDF approaches depends on the size of the
subgrid variance with respect to a characteristic scale of each function. Furthermore, the sources of
error associated with the ARM method are considered and analytical bounds on that error are
obtained. ©2003 American Institute of Physic§DOI: 10.1063/1.1608008

I. INTRODUCTION A popular formulation in nonpremixed turbulent com-
Turbulent combustion involves a wide range of Spatio_bustion tries to take advantage of the conserved scalars that

temporal scales and requires a large number of dependemight appear in the problem. If it is possible to derive state
variables(e.g., species mass fractionswo facts that make 'elations of the formy;=y;(Z), where y; represents the
direct numerical simulatiofDNS) of realistic cases impos- 'éactive scalars anda conserved scalar, then the knowledge
sible with current computational resources. Models are re@f information abou provides information aboug; .***°
quired and considerable effort has been devoted to th&he relationsy;(Z) are derived using the fact that chemical
subject:™® times,t;, are very often small compared to flow times,
Classical moment-based methods pose many difficultiegnd hence the Damkéer number, Dat;/t., is large. Two
due to the strong nonlinear character of the reaction termdinal simplifying assumptions can then be made: either to
Besides, the turbulent transport terms are not well repreconsider reversible infinitely fast chemistry, having the equi-
sented by the gradient transport models used with passivérium composition at each point in space and instant of
scalars' A different general approach consists of writing the time, or to consider irreversible infinitely fast chemistry with
problem in terms of the one-point probability density func-an overall single-step chemical reaction model, the so-called
tion (PDP®” and trying to solve the corresponding transportBurke—Schumann solution, which leads to a flame sheet rep-
equation. The reaction terms are now closed, but closure iesentation.
required for the pressure and molecular mixing terms. Active  The flame sheet approach suggested the view of nonpre-
research is being done in this framework, working with re-mixed turbulent reacting flows as an ensemble of laminar
duced mechanisms and modeling the transport equation fahin  one-dimensional diffusive-reactive layers, called
the joint PDF of the corresponding scalfrs. flamelets, embedded in an otherwise nonreactive turbulent
flow.™ This concept leads to equations frin terms of the

dAuthor to whom correspondence should be addressed. Telept@5®: mixture fralczti?? Z, Wi'th the S(?alar diSSipatiO'_" rate as a
534 8243; fax/(858) 534 7599. Electronic mail: ssarkar@mae.ucsd.edu parametef:'21% Solution of this set of equations gives
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=i(Z;xs), and if the joint PDF ofZ and y., is assumed, Using direct numerical simulatioONS) data, for example,
statistical information about species mass fractions and teniSotropic turbulence with equilibrium chemistry and no heat
perature is known. releasé?’ isotropic turbulence with a flamelet model and no

Recently, the conditional moment closure approach habeat releasé and isotropic turbulence with a flamelet model
been proposed as an alternative to flamelet modefsin- and heat releasé.Furthera priori analysis has been carried
stead of taking the usudélinconditional average of the sca- Out for a shear layer with_infin.itely f_ast chemistry and no
lars, the expectation is taken conditional to the mixture fracheat releas&; and a round jet with finite-rate chemistry and
tion being a defined value, and transport equations arfeat releas&’ An overall con_clu3|on of tha priori stgd|es is
derived for these conditional moments, equations that requir1at the beta-PDF model gives good predictions if éxact
again closure for certain terms. Similarities and difference$Cintwise subfilter scalar variance is available. Sorae
with the flamelet model are currently a topic of resedrth, ~Posteriori studies have been performed, for example, a tur-

During the past decade, large-eddy simulaioES) has bulent roun_d jet of nonpremlx_ed met_hane—alr with a pitot.
increasingly been used for modeling nonpremixed turbulent APproximate reconstruction using momentarRM)
combustion, given its relative success in nonreacting turbuModef? is an alternative approach that avoids the intermedi-
lent flows. The present work falls into this category. In LES,at€ step of modeling the PDF of the subgrid-scale fluctua-
the problem is formulated in terms of the filtered variables,fion- Similar to other reconstruction models, it recovers in-
and filtering the governing equations brings into the problenformation from the filtered field,Z(x,t). However, in
subgrid-scaléSGS contributions to the dynamics of the re- addition, theaveragevalue of the subfilter scalar variance,
solved fields from the subgritsubfilter, unresolvedscales; — obtained for example from the “small scale” behavior of the
these contributions are unknown and have to be modele@calar spectrum, is provided. In its simplest version, it is
Each nonlinear term causes a subfilter counterpart, and theb@sed on the filter sizéy¢, and physical quantities, namely,
nonlinear terms appear either in the direct approgel., €xpected values of the turbulent kinetic enetigythe scalar
through the chemical production terms in the species conse¥ariance.Z;,; and the scalar dissipatiog=(2DVZ-VZ),
vation equationsor in the conserved scalar approdehg., ~ Which can be reasonably estimated from a LE®ughy is
the state relationsy;(Z)]. The resolved field,Z(x,t), is  often used for the instantaneous value in combustion litera-
given by the LES and therefore the resolved part of the nonture, here it is chosen to represent the expected value for
linear term,f(Z), is known. The question is what is the notational CO”Venlén¢EAS a SpECIQI case, the ARM moqel
subgrid contribution can be used to estimate the subgrid variance required in the

L PDF approach.
f(Z)syx,t)=1(2)—1(2), (1) In the present work, reconstruction models are discussed
— I . . for a single-scalar nonlinear function, with particular empha-

Fo the total tern¥ (Z) i The filtering operation of a variabié sis on the ARM model. After describing different aspects of
is denoted byp. Z will be thought of as a conserved scalar, hese approaches, priori and a posteriori analysis of the
like a mixture fraction, ranging from 0 to 1, but nothing ARMm model in a spatially evolving turbulent plane jet are
prevents th.e results to be. applied to a nonconserved quam'%esented. The sources of error in the ARM procedure are
like a species mass fraction. then analyzed. The discussion is concluded presenting com-

One possible approach to model scalar mixing in LES isparisons with the assumed PDF approach.
the linear-eddy modéf Applications to combustion prob-

lems have been reported in the literatd@ Another type of
approach is based on PDFs. In this method, the filtering OP)| RECONSTRUCTION SUBGRID-SCALE MODELS
eration is written in terms of the filtere¢subgrid-scale,
large-eddy PDF, which describes the stochastic behavior of  Let Z(x,t) be a scalar field defined ovél, the volume
the scalarZ, inside the grid cell. One solution is to model the occupied by the flow variables, at a certain timdhe fil-
transport equation for this P2 However, the most popu- tering operation is a linear transformation between two func-
lar procedure is to presume certain distribution, generally aion spaces, sag:L?(Q)—L?(Q), defined by
beta PDP3?* This latter procedure requires two inputs: the
filtered fieldZ, available directly from a LES, and the sub- Z(x,t)=QZ(x,t)=f G(x,r)Z(r,t)dr. 3)
grid variance, e

Zzg(x t)=?—22 @) Time, t, enters only as a parameter and will not be shown

sg ' explicitly in the following discussion. If the filter is homo-

not available directly and, therefore, in need of modefiog ~ geneous, i.eG(x,r)=G(x—r), then the filtering operation
notational convenience, the subgrid-scale variance will bds reduced to a convolution in physical space between the
generally denoted bzgg, instead of the more correct nota- field Z(x) and the filter kerneG(x).*?
tion, (ZZ)Sg; this latter representation will be used when con-  Reconstruction subgrid-scale_modety to recover as
fusion with (ng)2 might arisd. The scale similarity much information as possible froi(x) at each instant of
approach* with the coefficient calculated using an assumedtime. If the operato admits an inverse, then the complete
scalar spectrurft, and the gradient mod@lare two possibili-  original field Z(x) can be recovered. However, the filters
ties to estimate the subfilter variano®.priori tests of the used in LES are not invertible, and, at most, only part of the
beta PDF model have been performed in previous studiesriginal field is recovered. This reconstruction provides an
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intermediatescalarZy,(x), which is used to compute either
the subgrid-scale part or the total part of the nonlinearity 10°
f(Z) according to Eq(2).

The first reconstruction approach was geale similar-

-2
ity model(SSM),%* which improved considerably the corre- 4100 ¢
lation between model and exact subgrid-scale fields com- «N”
pared to the typical gradient-based approach. 3iegrid- Mo |

scale estimation mod&i*¢involves a deconvolution step on

the LES field (A; resolution followed by the introduction of

a finer mesh 4+/2 resolution to allow the representation of 10°
the nonlinear contributiony-Vu, from scales between

and A¢/2. More recently, theapproximate deconvolution
model(ADM)*"*®has been introduced to estimate the unfil-FIG. 1. One-dimensional spectrum Bf(upper solid curveandZ (lower
tered field by a truncated series expansion of the “inverseolid curve obtained from DNS. Dashed line indicat€ of the top-hat
filter operator.” Finally, theapproximate reconstruction us- filter plus the spectral cutoffvertical solid ling introduced by the LES grid,
ing momentsARM) modef? modifies this last approach to =212

bring certain physical information into the pure mathematical

procedure of deconvolution.

10” 10° 10' 10?
KL,

Z-Zoqy=2+7Zsq, =07 7
A. Deconvolution operation sou s9r= Q 0

and the latter needs modeling. Figure 1 shows an example of
the spectra(power spectral densitipof Z and Z using a
top-hat filter. The difference between these two spectra rep-
resents the energy in the subgrid scales. To the left of the
* vertical line, which denotes the position of the filter in wave
Q= E (Z—9)". (4) number space, the scales are recoverable by the LES grid and
n=0 to the right they are not. Hence, the deconvolution operation

Linear operator theory provides more general conditions fofS Useful for cases in which the filter is not a sharp spectral
the existence of the inverse operatdf? but this result is cutoff because it allows us to recover information of scales

sufficient for the following discussion. The problem is that €l0Se to the filter size\;. _ _ _
G~ L exists if and only if the null space &, N(G), contains The justification for the effort in recovering the subgrid
only the zero function, and that is not the case in LES. Using?¢@l€8Zsg, lies in how much of the whole subgrid field is

Fourier analysis and denoting the Fourier transform of any€Presented by them. To clarify this point we proceed to es-
variable ¢ by&s timate the expected value of the subfilter variance. The ex-

pected valuéReynolds-averaged valuef any variableg is
denoted by(¢). In an isotropic case, we can use Fourier

A sufficient (not necessajpycondition for a linear opera-
tor G to have a bounded inversg ! is |Z—g||<1, in which
caseG ! can be represented by thN\eumann series

~ 1 )
d(Kr)= 2m)? f ,P(x)e” " dx, (5 analysis and work in wave number space to offtain
g R
the null space of is given byGZ=0, which corresponds to (2°-72%)=(2"-7%)= fo (1-G?Edx, (8

the zeros of the filter transfer functid®(«) for Z#0. From
a theoretical standpoint, Gaussian filtercan be inverted WhereE;(«) is the three-dimensional scalar spectrum and
because its filter transfer function does not have any zerd3(«) is the filter transfer functiodmultiplied by (2m)3].
Similarly, the null space of theop-hat filteris a set of zero  Note that interchanging the Reynolds average and the filter
measure, with the only effect of eliminating particular fre- (both are linear operationgives(Z?)=(Z?) and, assuming
guencies but without repercussion on the final energy of the.omogeneity(zz> is constant, yieldin(_:@:(Zz). All the
field. For asharp spectral cutoff filterinformation beyond discussion will be presented for a top-hat filter, for which
the cutoff frequency is unrecoverable. The representation of .

Z(x) on a discrete grid in physical space implicitly imposes ~ G(x)=siné/¢, 9

a spectral cutoff, and therefore, in the discrete case, nothin\g,heregz vkl andy is defined by

can be recovered from wavelengths smaller thag 2where

A4 denotes the grid spacing. Thus, in LES applicatigis v=A42L. (10
does not formally exist.

This fact suggests to decompose the f&{d) as Other filters in physical space were considered and the cor-

responding results are shown in Appendix A, where it is
Z:z+ZS =Z+ZS A Zequs (6) observed that there are little differences among them. In
o ar e these expressions; is the filter size and ;= K222 /y is a
where the subgrid term has been split int@eoverable pait  large scale of the scalar fluctuations. The turbulent kinetic
Zsy, » and anunrecoverable partZgy,. The former one is energy is denoted bl and y represents the expected value
defined by of the scalar dissipation. If we assume that the nonzero re-
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gion of (1—é2) in Eq. (8) occurs for wave numbers well 0.4 - - ,
into the inertial range we can then adopt the Obukhov—
Corrsin spectruni?

Ez(k)=Cce Pyx 33, (11)

e being the turbulent kinetic energy dissipation, which yields

(Z2)N(Zon v = fom(l—(singlaz)g*f"“df

=1.4352. (12)

Equation(12) is important because it relates the filter sizeFiG. 2. Contribution to the total subgrid-scale variarselid line) by the

A;, embedded iny, with the level of subfilter fluctuations. different terms: ———, Leonard part; —-—, cross part; andReynolds part.

On the other hand, the filter size correspondsitor and The vertical solid line indicates filter positiogi= .

therefore the amount of subgrid-scale energy recoverable by

reconstruction is the above integral over the interval

£e[0,7], which yields 0.7433. These figures indicate that, if This allows us to decrease the cost of an approximate recon-
the assumptions made hitherto hold, the percentage @ftruction and, more importantly, to include a compensation
subgrid-scale energy reconstructible in the case of a top-h&@r the unresolved subgrid scales.

filter is about 50%jndependentf the filter size, as long as

the subgrid scales are well inside the inertial subrange. ThiB- Deconvolution and the scale-similarity model

simplified analysis helps to explain why deconvolution pro- i is interesting to compare the idea of reconstruction

cedures have proved to yield good resﬁﬁ? ~_ with the traditional scale-similarity model. Decomposing the
A second consideration is that, for practical applicationsgcajar field into a filtered value and a small-scale fluctuation
the series defining2 has to be truncated at a certain order, by 7=7+7. the subgrid variance becomes

having finally an operato@,, that provides the intermediate 5o’

field Zy(x), 5 = =2 = =— — —2
- (Z°)q=2Z"—Z +2(ZZy—-Z ng)+ng—ng , (15
ZM = QMZ (13) CO CO RO
Writing it explicitly, where the different termg®, ¢°, andR° are thegeneralized
o Leonard part, cross parandReynolds partrespectively. We
Zu =7+ (z_i) + (E_ 22=+?)+-~- _ (14) Use the symboIZZ)Sg for the subgrid-scale variantﬂnég for

clarity in notation, not to be confused witﬁ;g)z. In order to
The rate of convergence of the series, B, is of similar ~ determine the relative importance among these components,
importance to convergence itself, since each term in the exhe Obukhov—Corrsin spectrum is used to estimate their ex-
pansion involves an additional filtering operation and the depected value,
convolution procedure can become computationally too ex- © o
pensive. It turns out that the series in H34) converges (,CO)/(ZerSCCyZB):J (1- G?)G2?¢53d¢=0.3596,
slowly for turbulent scalar fieldZ(x). A priori analysis of 0
the deconvolution procedure using DNS of a temporal mix- w R .
ing layer? showed that five terms in the expansion were <C°>/(z$msccy2’3)=J 2(1-GH)G(1-G)¢ Bd¢
required to recover peaks of the expected va(m@, the 0

subgrid contribution to(Z?), to about 90%(depending on =0.1470, (16)
the filter sizg. A way to avoid this shortcoming is to redefine
a new inversion kernel, shorter than the series in &4), (R°>/(22 C ,y2/3):f (1—é2)(1—é)2§’5’3d§
such that certain information about the original field is me=e 0

7
recovered. _0.9286,

Thus, the deconvolution procedure has two drawbacks.
First, information about wavelengths smaller than the LESwvhere, as beforey=A:/2L,. The integrands of these ex-
grid cutoff is unrecoverable. Second, the series in #d) pressions, which show the contribution of each wave number
exhibits slow convergence to the recoverable part of théo the average of the three subgrid-scale terms, are plotted in
field. The deconvolution approach is only a mathematicaFig. 2. The value of the integrals given in EG6) show that
technique, and it does not account for the missing subfilte5% of the subgrid energy resides in the Leonard part, 10%
part of the spectrum. The fact that the fi&(k), at a certain in the cross part and 65% in the Reynolds gadte that the
time t, is a solution of the Navier—Stokes equations has noabscissas axis is in logarithmic scald’hat same graph
been used. The ARM mod&lis a modification of the recon- shows that the energy in the Leonard part and a large amount
struction that involves certain physics of these small scaleof the cross part can be reconstructed, along with a small
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quantity of the Reynolds term, so that 50% of the subgridtain criteria. The difficulty is to state clearly those criteria
scale energy is recoverable. Nevertheless, it has to be noteshd obtain accordingly an expression #y(x). This is the
that these percentages only concernehergycontent, and intent of the ARM model.
they say very little about the actual instantaneous represen-
tation of the subfilter variance field.

The scale similarity model approximates the subgrid-1- Subfilter variance Z Z

scale variance by The ARM model introduces the one-parameter family of
intermediate fieldZy,(x) given by

72~72-72, (17 — =
> Zu=Z+co(Z-2), (20)
that is, only with the Leonard term, which is equivalent t0 wherec, is the model coefficient. It is emphasized tdzf is
approximate reconstruction with not an approximation to the original field, but an interme-
_ diate field chosen so as to obtain subgrid contributions to the
Iy=L. (18)  filtered valuef(Z). Depending on the closure condition im-

posed to obtain it, we will get different particular members
Hence, the scale similarity model can be interpreted as thgf the family. Physically, ARM relies on the smallest re-
leading order term in the deconvolution expansion given bygyed scales,
Eqg. (14). This only represents about one-fourth of the total ~ _ _
subgrid energy according to the previous estimates, and Zg=Z2-Z2, (21
(rjn(;_dl_ftlcatl(t)r?st (::] Eq(lT) hz_ive_,\l b_eten usdedl FO c_ompebnsate thlsme known small-scale component of the filtered scalar field
eficit so that the scale similarity modet 1s given by Z(x), of size comparable td;, to describe the effect of the
~ whole range of subfilter scales. The model coefficient is the
Zi=c(2%-2%), (19  amplitude of this field.

In the procedure of approximate reconstruction using
where the second filter denoted by the tilde is often taken tgnoments, the coefficient is calculated so as to match specific
be larger than the first one ards a coefficient to be deter- sypgrid moments of the scalar field”—Zz". The first mo-
mined. From this point of view, reconstruction can bement is zero, and the second one leads to the closure condi-
thought of as a generalized scale similarity model, whergjon on the subgrid-scale variance,
higher order terms of the deconvolution expansion have been -
retained. Thus, it is logical to expect better correlation be-  (ZZ—Z2)=(Z?—27?). (22
tween exact and model-predicted values of the subgrid—scalﬁ
variance in the reconstruction procedure with respect to thg
scale similarity one, as it is confirmed later in thepriori
analysis.

it were just an approximate reconstruction, this equality of
ubgrid-scale energy between the two different fieddsnd

Zy\, should be up to the grid cutoff wavelength. ARM goes
further by including the energy of the whole subgrid-scale
Reynolds part in the intermediate fiefg, through the small-
est resolved scales.

From the previous discussions, it is clear that the original ~ Substituting Eq.(20) into Eq. (22) gives the following
field cannot be recovered because of the spectral cutoff imguadratic equation foc,:
posed by the LES grid akt=m/A,, whereAy is at most
A¢/2 in order to resolve all the scales down to the filter size.
This is the only effect of the numerical part of the LES where
problem that is retained in this work. The issue of the cor- — =
ruption of the small scales in a simulation due to aliasing and ~ @0=(Z*=Z?)—((Z%)s),
due to the truncation error of the particular numerical scheme e — —
chosen should not be forgotten, but the present analysis con- 81=2(Z Zsg—Z Zsy), (24)
centrates only on the analytical part of the problem. The == =
analysis produces certain models and equations, and these 8=(Zsg —Zsg)-
should then be solved as exactly as possible: using spectril Eq. (24), the only unknown is<(22)sg). The physical
methods with dealiasing, utilizing high-order compactmeaning of each coefficient can be seen by writing the gen-
schemes if inhomogeneous directions are present, and/or Wwralized decomposition of the subfilter variance, Etp),
timately working with a resolution higher thaky,=A/2. applied to the intermediate field,, ,

Since the recovery of the original fiel{x) at each in- — = _ = _
stant of time is impossible, reconstruction methods, though  (Zi)sg=Z2—Z2+2Co(Z Zsg~ZZsg) +C5(Zsg — Zsi).
originally motivated by deconvolution, should be understood (29
as trying to find arintermediatefield Zy,(x) with a different ~ ARM modifies the energy contained in the resolved cross
range of scalegnamely, only scales larger thaky), such  and Reynolds terms to account for the unresolved part. It is
that the fieldf (Z) (x), which is defined on that same range of observed as well that the conditicg>0 should be imposed
scales, is well approximated HyZ,,)(x) according to cer- to maintain the sign of the contribution from the cross term

C. Approximate reconstruction using moments

a,C3+a;co+ay=0, (23




Phys. Fluids, Vol. 15, No. 11, November 2003 Reconstruction subgrid models for nonpremixed combustion 3285

equal to that of the original field(x) (pointwise correlation f(Zy) — F(Z) ~ 2"(Zw) (24— Z2)), (33)
results between exact and modeled subfilter variance fields
confirm this choic#). because of the matching in the subfilter variance used by the

The input of the model is thexpecteWaIue((ZZ)sg), ARM model to close the subgrid-scale problem, E2R).
with which Eg.(23) can be solved foc,. Some additional Therefore,
hypothesis have to be done to estimate the expected value of
the subfilter variance, and the model coefficient will deviate
from the exact one, that given with the exé&z)sg) (e.g.,
from DNS ina priori analysig. Therefore, it is interesting to constant inside the filter cef)(x), but only that the expan-
know the sensitivity of the modeled subgrid-scale variance to

sion is done about the constant valiy&).

tehnia?cz(ljlelbcoefflment This sensitivity is expressed math- Finally, an estimate of the error of the ARM model in
y by predicting f(Z)s{(x) is given by the filtered value of the
1 5((2 )sg) remainder in Eq(29) by taking =0, which yields
: (26)
<(Z )Sg> aCO _ /H( )

such that the relative error in the prediction of the subgrid-
scale variance due to small errors in the model coefficient is

Zﬁ/l,sgngg:f(zM)sg%f(z)sg- (34)

Equation(29) does not assume that filtered variables are

EX)=—F%7—(Zu— ZM)3

justI’'Acy. From Eq.(20) we obtain f ( M) (z3, )~ 3Z(Z )sg)- (35)
2azco+ al
(27) In order to quantify the magnitude of the local subfilter
(Zisg field, we use the.? norm, ll¢l, defined with the filter kernel
G(x,r) as weighting function by EqA2). The motivation
2. General nonlinearity f(2) and consequences of this choice of norm are presented in

Appendix A, where the local analysis of the filter is de-

The correct prediction of the subfilter variance is the first” ™" . )
scribed, the main result being

part of the ARM model. The second proposition is to com-

pute the subgrid-scale paift(Z)s(x), of a general nonlin- 7. |l =(Z72)12 36

ey |Zisdl= (239> 30

e T T Hence, to estimate the accuracy of E28) as a model,

F(D)sg=1(2) = 1(2)~1(Zw) = 1(Zm).- (28 \we have to look at the ratio of the remaindes(r) to the

The intermediate field is used in the subgrid-scale part ofecond term in Eq(29),

f(Z), instead of the alternati¥®of obtaining the total term. 1

This approach satisfies certain consistency properties, for ex- IE,| - 12154l _ (Zsg) 37)

ample, that the invariance of the exact subgrid variance un- [|s;|  AZ AZ

der translation is maintained by E@8), which yields better

pointwise behaviot? where

Analysis of this model forf(Z)s(x) is now presented. f”(Z)
ConsiderZ(r) andf(Z)(r)=1f(Z(r)) defined inside the filter AZ=3 —— (38)
cell Q(x) around a fixed nod of the LES grid. The Taylor f"(2)

expansion off (Z) around the fixed valu&,=2(x), a con-

can be viewed as a characteristic scaleZispace of the
stant function in that cell, yields the following formula:

o B a _ o particular nonlinearityf (Z). We define
f(2)—f(2)=1"(Z0(Z—2Z)+ 3"(Z)(Z—Z)*+E,, (29

(Zzg)l/z
. L A= — (39
where the remaindeE,(r), is given by AZ
E,(r)=¢"(Z+6(Z2—2))(Z2-2)3, (B0 and, if \ is sufficiently small, then the error in the ARM

and é(r) has a value between 0 and 1. We are assuming th@PProach would be acceptable. Equati@) can be under-
function f(Z) to be €2 for Z<[0,1] and f”(Z) to exist in stood from a different standpoint: given a functib(Z), the

(0,1). After filtering the above expression we obtain value of AZ is known from Eq.(38) and, since the value of
. R (229" required for a chosen ratib is available from Eq.
f(2)—f(2)~3t"(2)(Z2?-Z?). (31) (39, Eq.(12) can then be used to estimate the required filter

size to utilize in the simulationy=A;/2L,. This approach
gives the scaling of the error in the ARM model with the
filter size A;. From Eq.(12) we know that(ZZ) varies as
Z1sd1) =2Z(r)~Z(%), (32) ¥ Therefore, sinc&Z does not depend on the filter size,

_ ) we obtain
is small enough so th&, can be neglected. In this case, the

same formula can be applied t6Z,), Ao ytB, (40)

Equation(31) is an accurate approximation if thecal sub-
filter fluctuation
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3. Model coefficient: Spectral variant 5
The simplest approach is to consider the situation where
the subfilter scales are in equilibrium and follow a given 4 Pe e _

field and its filtered values, the coefficiertsin Eq. (23) are

given by integrals in the frequency space involving the scalars® 3
spectrum and the filter transfer function, readily computable / / / /
10’ 10°/ 107 10% . .10’

spectrum. Working with the Fourier transforms of the scalar / / / /

once a particular spectrum is assuméd@he scalar spectrum 10/
provides physical information of the subgrid scales, whereas 2

the filter transfer function brings in mathematical informa- / / / /

tion of the filtering operation. The filter transfer function, 1 5 = - - Z
G(«) is known, but the scalar spectruy () is not. In this 10 10 10 10 10
case, the scalar spectrum is the input to the ARM model. Y

The aim of LES is high Reynolds number turbulence,r, 5 peiengence of the ARM model coefficieas, on y=A /2L, for
Wh?re Ez(x) in the mert'a'—CQnVethe subrarfeis de- various values of Re The asymptotic limit at high Renumbers isc,
scribed by the Obukhov—Corrsin spectrum, Ef). Several =4.1.
authoré®**have studied the behavior of the scalar spectrum
and general results for shear flows are that the 5/3-law
strictly appears only for Revalues beyond 1000, the

Obukhov—Corrsin constant tending asymptotically to th K ) litv of | b les d i
value 0.67(for the three-dimensional spectruriVe consider nown nonuniversaity of low-wave-number scales does no
present a problem. Figure 3 plots the behaviocgf given

in this paper only the case Sd. If Sc>1 a viscous— . .
convective subrange comes up with the Batchelor power Ia\k?y Eq..(43), for the tpp_— hat filter. We can see th? asymptotic
behavior ofc,y as Peis increased. This asymptotic value can

proportional tox ~1; then, the correct new spectrufa( ) is b ted similarly to th . timat fint |
needed in the model formulation. e computed similarly to the previous estimates of integrals
Sof the spectrum, obtaining

For high enough Reynolds number and if the filter size i
far enough from the large scales of order and the small
scales of orderp,, it is the inertial-subrange scaling of
E,(«) that matters. In this situation the flow-dependent large
scales are resolved and the shape of the spectrum in the =—1.0756,
inertial—diffusive or viscous—diffusive subrange, which is
unknown with_certainty, does not enter becausg the energy at  im al/(zrzmscc)’z’?’): J'OOZ(l— éz)éz(l— é)
those scales is already very small. However, in typical tur-  pgq .« 0
bulent flows, there are regions of the flow with high Rey-
nolds number and other regions with low Reynolds number,
and it is desired that the model works smoothly in all parts. o N L
Hence, we additionally adopt the shapes of the spectrum for ~ lim az/(zrzmsccv’m’):f (1-G?)(1-G)*G*¢*Rd¢
the energy-containing and the diffusive ranges as proposed P&~ 0
by Popé! for the velocity spectrum —0.0305

epart of the spectrum does not affect the valuecgf the

lim ao/(Z5Coy™) = f (1-GY)(GP-1)¢ e
Pg—® 0

X £53d¢=0.1383, (44)

fL(0)=62"53(6%+c ) ?T5P2  g=kL,, and the value obtained for the model coefficientjs=4.1,
41)  as observed in that figure. Equatidd4) shows that the
f () =exp—B((*+cHY4—c.)), (=«knys, ( d a
(&) =A¢ " y)s E=Kmz model coefficient for high Réet numbers depends on the
so thatE,(«) can be written as filter and the slope of the spectrum in the inertial subrange.
E,=72 1 .C.0 55 (0)f , 42 These numbers can be used to calculate the sensitivity of the
2= Zimd-7Cc L(O)1,(0) 42 ARM prediction of the subgrid-scale variance to the model
where 6/{=L,/n,=P&"*, the scaley, being defined as coefficient, given by E¢(27). The result id°=0.27. It allows
nz= (D3 €)**for the inertial—diffusive subrange. The turbu- us to define an interval faz, in order to get a desired accu-

lent Pelet number is defined as ek, /D. racy in the prediction of the subfilter variance; for instance, if
The final expression for the model coefficientis we want relative errors in the subgrid-scale variance of 10%
Co=Co(7,P8). (43) we need to predict the model coefficient in an interval 0.37

around the value 4.1. Tha posteriori results in Sec. IV
Thus, if the Reynolds number is not sufficiently large, theshow that this accuracy is attainable.

model coefficient depends on how the filter length compares  |n an actual LES, the model coefficieag can be pre-
with both the Iarge and the small scales of the thbU'enbomputed and stored in a two-dimensional t&&ﬂe»y, Pq)
motion, a fact that can be expected on physical groundpuring the simulatiorK, Z,,s and x are used to obtain the
Another desirable property is that the scalar spectrum entekgo parameters and Pe, a table lookup is performed, and
just with its unresolved part, i.eEz(k)(1—-G3(x)), and, c, is obtained. The values ¢ andZ,, are estimated from
since G(«)~1 for the large scales, the low-wave-numberthe resolved-scale kinetic energy and scalar varidaceor-
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FIG. 4. DNS of a passive scalar. Instantaneous plot of the safar a
plane of constant. Black corresponds td=1 and white toZ=0. Vertical
line indicates the plang&/h=11.0 and the square corresponds to the filter
volume of A¢/A,=16.

FIG. 5. Evolution of the half-width of the mean profiles. Streamwise veloc-
ity: O, (U)pns: @, (U)es. Scalar:d, (Z)pns; B, (Z) s

ness of scales are clear. Overall quantities are shown in Fig.

rection to account for the subgrid-scale f4ff could be 5, representing the growth of the jet thicknébased on the
used if requiretl and the value ofy is calculated from the half-width value$ of the streamwise averaged velocity),
scalar subgrid-scale dissipation, as presented later in Sec. 1end the mean scaldZ). The linear growth after an initial

The difference in this methodology with respect to theregion, predicted by the self-similar analysis of the jet in the
original oné? is only the adoption of the Obukhov—Corrsin boundary layer theory, is observed. The LES data in this
spectrum for the scalar field, rather than the Kolmogorowfigure area posterioriresults that will be discussed later.
spectrum. The consequences are that the physical parameters The subgrid-scale model was analyzed at a downstream
entering the model, namely, ReK*?_,/D andy=A¢/2L, locationx/h=11.0, where the flow is fully developed and
with L,=K¥?z2 /v, are given by the scalar time scale the small scales near the centerline present a more isotropic
Z2 Jx instead of the velocity time scal€/e, thus reducing behavior. Figure 6 shows the medi), and the root-mean-

the value of Peand increasingy by about a factor of 2. squareZ,ys, at this position. The value of the characteristic
parameters entering into the model akg=KY?z2 /y
. A PRIOR! ANALYSIS =0.82 and Pe= K1/2LZ/D=475. As explained in the pre-

. ceding section, the only input required for the spectral for-

A. Description of the DNS mulation of the ARM model is the actual scalar spectrum.

In this section we present results frarpriori tests us- More precisely, only its shape in the subfilter range is re-
ing the DNS results of a spatially evolving turbulent planequired, since the expression for the model coefficient, Eq.
jet® validated in detail against experimental data. The jet23), is invariant under the multiplication of the spectrum by
develops in the streamwise coordinatewith the nozzle, of ~a constant. Figure 7 shows the scalar spectrum at the center-
width h, being located at=0. The crosswise coordinateyis  line of the jet compared to the model spectrum, @Q). The
and the homogeneous spanwise coordizafEhe Reynolds one-dimensional spectrum is obtained from the time series
number at the inflow based on the jet width is,R8000, using Taylor’s hypothesis. Such a hypothesis is reasonable
increasing until an approximate value of 4800 near the outbecause, though the downstream coordinate is inhomoge-
flow, which corresponds to a Taylor microscale Reynoldsneous, its characteristic scale is large compared with the
number of 145, defined as Reg\/v with g°=2K and\?
=5v0?%/ €. The Schmidt number is 1.0. The size of the physi-
cal domain is 16X 16h X 4h, being discretized by a grid of
390x390%x130 points. In the fully developed region of the
jet, the grid spacing compared to the Kolmogorov scale is :\a

A4/7=3.2. The inflow conditions are as follows. The mean 0.4 \\

profiles of streamwise velocity and scalar are given by hy-
perbolic tangent profiles in each shear layer. In addition, a N
solenoidal fluctuation with broadband spectrum peaking at § i\

the most unstable frequency of the spatially evolving shear 02 peggrg g
layer is imposed. Averages are performed in the homoge- x
neous directiorz and time. The CPU time for the DNS was @
about 22000 Cray T3E hours. 0.0

Figure 4 shows an instantaneous snapshot of the scalat 0.0 0.5 1.0 15 20
field. We can see the potential core in the entrance region, the y/3;

merging of the tV_VO shear Ia_yer_s and_ the trar_]Sition to th_e IeE1G. 6. Profiles of mean(z), and root-mean-squarg, ., of the scalar at
zone. The engulfing of exterior irrotational fluid and the rich-x/h=11.0: O, (Z)pns: ®, (Z)1es; O, Zimsons: B, Zims Les:
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FIG. 7. Scalar 1D spectr&,(«,): —, DNS spectrum; ———, general model FIG. 8. Predictions of the ARM model coefficient. Hollow symbols corre-
spectrum; —-—, fit model spectrum. Location of the different filteygA ; : spond to exact values and solid symbols to ARM model predictiass
@, 4; W, 8; andA, 16. Solid vertical line indicates grid cutoff A . sumed spectrujm Circles and triangles denote filter sizes of 4 and 16, re-

T ’ spectively.

. L . ' 1. Prediction of the model coefficient and subgrid
crosswise one, which in turn is larger than the subfilter scaleg ;i ce

we are interested in. It is observed that the model scalar ) )

spectrum does not represent accurately the actual one, which The only input to the spectral formulation of the ARM
is expected given the low Blet number of the flow and the Model is the one-dimensional spectrufy(x,). Figure 7
proximity of the inflow boundary. Interestingly, the model Shows the actual one as obtained from the DNS. This is
energy spectrum is a better approximation to the DNS valugelated to the three-dimensional scalar spectiy(), en-

of E(«), the turbulent kinetic energy spectrum, than to thetering the expressions for the coefficieatsn Eq. (23), by*
corresponding scalar onEy(«). The filter sizesA; consid- dF (k)

ered are 44, 8A4, and 16\,, with A, denoting the grid Bz(k)=—x—4, (49
spacing, and the characteristic length ratios are shown in )

Table 1, along with the typical values of the subgrid-scaleif isotropy is assumed. However, for this low dket number

fluctuations. flow, the general expression &,(«) proportional tox >
is invalid, and a curve fit to the spectrum given by the DNS
B. Performance of the ARM model is used. This fit yields

The following results were obtained discretizing the fil-
tering operation by a Simpson rule and using a uniform grid ~ Fz* (0?0)12
with the same resolution as the DNS, instead of the coarser '
one used in a LES. The difference is the energy contained iwhich was used to calculat, with Eq. (45) and obtain the
the lobes of the top-hat filter transfer function, which can beresults shown in this section.
estimated to be less than 1% of the subfilter energy, as ex- The model coefficient for different filter sizes is shown
plained in Appendix C. Besides, the use of the DNS gridin Fig. 8. Only half of the profile is shown for clarity. It is
reduces the aliasing error due to the numerical calculation ofbserved that the agreement between the exgg) and the
the different nonlinearities; from this point of view, tlee  value obtained with an assumed spectrum is very good for
priori analysis gives an upper bound to the accuracy of dhe small filter sizeA;/A =4, but there is certain underpre-
LES, where this resolution power is unavailable. The threediction for the case ofA;/Ay=16. The reason is that the
dimensional filtering is done by applying a one-dimensionalassumption of isotropy for the range of subfilter scales is
filtering consecutively in each direction. invalid for large filter sizes. This underprediction will be re-

flected in the results to be presented in the following, and it
will be studied in Sec. V, where the different sources of error
in the ARM approach are reviewed.
TABLE |. Filter sizes.A; is the filter size and\ the grid spacingh is the Figure 9 shows the effect of the filter size on the subgrid-
nozzle width,8; indicates the half-width of the jet, denotes the Batchelor ~ scale variance. As the filter size increases, the assumed spec-
scale, _andy is defined byA/2L,. Subfilter variances correspond to the trym and isotropy condition are less accurate and precision
centerline. diminishes, consistently with the underprediction of the
AlAg  Ach SIA¢ Afly, ¥ (23 (22)172, model coefficient shown in Fig. 8. That_ same graph shows
the poorer result given by the scale similarity model, ex-

4 0.13 150 128 2.06 0.007 0.17 pected from the considerations seen in Sec. Il. The test filter

8 0.26 75 25.6 413  0.013 0.32 ; o . i )

16 0.53 38 51.2 826  0.020 0.50 used in the scale similarity model was twice the filter size
A¢/A4=16, using as coefficient the vaffeof 1.30%.

exp(—9719), (46)
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>1 happened less than 2%, both being very low values. The

behavior at the edges of the jet was less smooth, and the
AN frequency ofZy, being negative was an order of magnitude

0.02 \_/A/ c higher. The reason is the strong gradienZgk) at the vis-
' /
\

cous superlayer.

5 ﬁ}ﬂ;‘/‘/‘\‘\ \\\
N 0.01 %,\J:ka N 2. ARM performance for polynomial terms
L\\ The first type of nonlinearity analyzed is a power func-
ﬁ-’\.\', .’H-A.\k;\z \\\ t|0n,
~
\\ — n —
0.000.0 05 10 15 20 Y(Z)=2", n=23,.... (48
y/3, The motivation for these polynomial functions is twofold.

First, the algebraic dependence of the reaction rate on the

FIG. 9. Prediction of the SGS variance. Hollow symbols correspond tospecies mass fractions. The reaction rate of a particular el-
exact values and solid symbols to ARM model predictions. Circles, squares t fi tep i tina fl . VK .
and triangles denote filter sizes of 4, 8, and 16, respectively. Dashed Iingmen ary reaction step In a reacting tliow involviNgpecies

indicates the SSM model prediction far /A= 16. is generally described By

N
_ . w=kI] ¢, (49
In order to study the instantaneous local behavior, scatter j=1 )

plots of the pointwise prediction of the ARM model and the wherec; denotes the concentration of the spegieslated to
gxact values. derlved'from the DNS were con5|dgred. For &e species mass fractiory throughc,=pY, /W, with W,
fixed crosswise _Iocatlon, the Qata sequence obta_lned by tht?eing the molecular weight of the speciesandk, is the
model (M) f‘?r different spanwise positions and times Wasspecific reaction-rate constanihe exponentSVj’ are the
compared with the c_orrespoqd_lng exact DNS vall®s cal- stoichiometric coefficients of the reactants in that reaction
culating the correlation coefficient by step. This study considers a nonlinear functihas a first
(EM)—(E)X(M) step t.o see the ability of the.ARM modeI. to predict the
> > > = (47 subgrid-scale part of the reaction rate coming from the de-
VUED = (B)H((M?) = (M)?) pendence on the species mass fractions.
For the subfilter variance, the study was done at the center of The second motivation arises from the presumed PDF
the jet, where its value is maximum, and the results are gatt@pproach, to be discussed later, that requires the input of a
ered in Table Il. ARM provides higher correlation coeffi- certain number of subgrid-scale moment§Z"—2Z",n
cient, 0.89, than the scale similarity model, 0.71. The scale=2,3,..}, in order to define the PDF.
similarity coefficient can adjust the slope of the regression,  The functionY(Z)=Z2* is now considered. In terms of
but not the correlation coefficient. Similar conclusion can bethe reaction rate dependence on the species mass fractions,
drawn from Fig. 10, which shows the contour plot of the more typical of reacting systems are the cadesr 72, and
field Zig(x). It can be seen, first, that reconstruction works,the casez* can be thought of as a worst-case scenario. Fig-
and, second, that ARM achieves a significant improvementire 11 presents the expected value of the subgrid-scale con-
over SSM by including only one additional filtering opera- tribution, Y(Z)s,, for different filter sizes. Similarly to the
tion. variance, deviations of the model prediction with respect to
To conclude this part of the discussion, the realizabilitythe exact profile increase as the filter size increases, going
condition of 0<Z <1, satisfied by the original field, was  from 3% to about 20% for the largest filter size &f/A,
studied. This boundedness of the intermediate field is not 16. In principle, part of the error is due to the underesti-
strictly required since we are not looking fa@r but is defi- mation of the variance, observed in Fig. 9, and some part is
nitely desirable since some of the functioi{Z) only make intrinsic to the nonlinearity, i.e., due to the assumption un-
sense for values of its argument between 0 and 1. When thiderlying Eq.(28). Figure 11 also displays the prediction us-
condition was violatedZ,, was artificially clipped to that ing the exact model coefficient. By exact model coefficient
interval. At the center of the jet the conditiafy, <O oc- we mean the profiley(y) obtained directly from the DNS
curred less than 1% of the times, whereas the situdign data by Eq.(22) without assuming any model spectrum. In
this case the agreement is very good, showing that the dif-
ferences between the ARM prediction and the DNS result is,
TABLE II. Correlation coefficients obtained with the ARM model for poly- in these cases, mainly due to inaccuracyify).
nomial nonlinearitiesY(Z). Subfilter and total termssubfilter+resolved Correlation coefficients were calculated at the centerline,
are shown for different power degrees. . . . L.
where the subfilter part of these polynomial nonlinearities
Ag/Ag 72 zs, z8 7z 73 78 achieves its maximum value. The results are shown in Table
Il. It is seen that the values dEgy, for Z‘S‘g are similar to

Cem=

4 0.97 0.97 0.96 1.00 1.00 100 those of the variance, of the order of 0.90, indicating again
8 0.93 0.93 0.93 1.00 1.00 0.99 ) i o ;
16 0.89 0.89 0.88 1.00 0.99 0.95 thatthis type of nonlinearity is well predicted by the recon-

struction procedure due to the smoothnesZbf We have
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FIG. 10. Contour plots of the fielﬁﬁg(x) at the planex/h=11.0(jet is coming perpendicular through the pgpéa) Exact DNS,(b) ARM model, (c) SSM
model.

included in that same table the correlation coefficients of theyared t0<Z§g>=0.032 at the centerline of the jet, and the
total termZ*=Z*+ 22, which is the actual one entering in exactness of the first one contributes less to the total term
the governing equation§€gy, is increased with respect to the than in the cas&?.
subgrid-scale one since we add an exact term that is larger The conclusion from this analysis is that the ARM model
((z*=0.079 and(Z;‘g}:0.038 at the centerlineand the is a highly accurate procedure to recover the subgrid-scale
final values are abov€g,,=0.99. The realizability condi- part of polynomial termgat least until degrees of order
tion, 0<Z%<1, was always satisfied. eight. The reason is that the leading order term in the Tay-
To observe the effect of higher power degrees, the casler’s formula Eq. (29) involves the dominant part of the
Y(Z)=28 was considered, the resulting correlation coeffi-subgrid-scale contribution. Errors in predicting the expected
cients being shown in Table II. In the case of the subgridvalue,(Y(Z)sg, in the case of a polynomial nonlinearity are
scale field,Zgg, the values ofCgy, are very much like those primarily due to inaccuracies in estimating the model coeffi-
of Z‘S‘gLof the order of 0.90. However, the ones of the totalcientcg in the reconstruction procedure. In case of using the
term Z8+ 23, are reduced compared to the fourth-degreespectral variant of ARM, these errors are expected to de-
case, though they stay above 0.95. The reason for this dérease as the Elet number increases and the scalar spec-
crease ofCgy in the total term is that the resolved part is trum in the subgrid-scale range tends to a more isotropic
now smaller than the subgrid-scale pg#8)=0.0062 com-  form.

0.04 3. ARM performance for infinitely fast chemistry
= In the conserved scalar approach to turbulent combus-
0,03 tion, the density is the coupling between the chemical part of

the problem and the fluid dynamical pargnd p(Z) is of
\ major interestZ being the mixture fraction. Under the as-
% sumption that pressure and molecular weight of the mixture
are approximately constant, the density varies with the tem-
\\ perature as

0.02

0.01 T

sg)
1
/
/
/
/

e p(2)=1T(Z). (50)

0.00 : In a further step, the Burke—Schumann approximatieads
0.0 0.5 1.0 1.5 2.0 to a piecewise linear dependenceld®Z) with a peak value
y/3, of the adiabatic flame temperatufe at the stoichiometric

F1G. 11 Prediction of the SGS W Z)=2". Hol bol mixture fractionZg;. The two functionsT(Z) andp(Z2), are
. 11. Prediction of the part =2Z". Hollow symbols corre- . P - . .
spond to exact values and solid symbols to ARM model predictions. Circles?onSIdered' A third Interesting non“neamy comes from the

squares, and triangles denote filter sizes of 4, 8, and 16, respectively. Dash&gdiation phenomena, enhance_d by th_e high_ temperatures. A
line indicates prediction fon;/A,= 16 using the exaaty(y). case representative of the optically thin regime was treated
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1.0 T TABLE llI. Correlation coefficients obtained with the ARM model for tem-
I perature,T(Z), density,p(Z). Case(a) corresponds t@,=0.055 and case
>~ b) to Z,,=0.2.
08} /// \\\ //_ © o
‘| / T(2) AN / A¢/Ag T® p& ™ p®
~ -+
a 08 1/ RN 4 0.97 0.94 0.98 0.96
= \ // o 8 0.95 0.92 0.96 0.93
~
0.4 \Y/ NS 9 1 16 0.92 0.90 0.94 0.91
/N ol Ja
0.2 \\ ) == - 1
0.0 ) , , , in the results. Accordingly, the sign of the subgrid scale part
0.0 0.2 0.4 0.6 0.8 1.0 of T(Z) is negative.

z Figure 13 shows that predictions are not as good as the
earlier case of polynomial functions, which is to be expected
by the strongly nonlinear nature of the functipz). It is
seen in Fig. 12 that there is a characteristic sdefe~Z;,
=0.055 wherep changes rapidly from 1 to 0.1, whereas the
power functionY(Z) varies smoothly withZz. On the other
hand, a typical size of the subfilter fluctuation can be esti-
curve is very similar to the Arrhenius term(Z) for activa-  y5teq from<zgg>(y), plotted in Fig. 9, at the crosswise po-
tion temperature$, around 10, a nonlinearity that will be  gitjon where (p(Z)sy is maximum, which yields(Z§g)1’2
covered in the following section, and, therefore, results for_g o5 for the smallest filter size of 4. Since the level of
Q(2) are not shown explicitly. subfilter fluctuation is of the order akZ, the remainder

Ip a methane—air mixture, tr_\e. stoichiometric mi'xture_ E,(r) of the expansion in Eq29) is relatively large. More
fraction is 0.055 and a characteristic value of the adiabatigietajled analysis of the error will be presented in Sec. V. It

flame temperatu?ec_an be taken to be 2200 K, approximately s found as well that, in contrast with the polynomial non-
an order of magnitude above standard room temperatur§nearity, the error in the ARM model prediction for the den-

Hence, the functionil(Z) considered in the study corre- gy s entirely due to that remainder; the subfilter part was
sponds t0Zs=0.055 andT;=10, temperatures being Nor- cajcylated using the exact model coefficiegty) and the

malized by the cold stream value. This curve, along with thgegyit did not differ appreciably from the curves shown in
densityp(Z)=1/T(Z), is shown in Fig. 12. In addition, the Fig. 13.

temperature gradient across the flame is smootheq by means” The same reasoning applies to the results obtained for

of a hyperbolic tangent profifé over a lengthy=0.01 in the  {he temperaturd(Z), which behaves similarly to the density

mixture fraction space. Sometimes the fuel stream is dilutegyt with opposite sign. The only difference is that the error in

with inert gases, which increases the valueZgf, and thus  he prediction of the averaged profiles BZ), is smaller

the caseZy=0.2 and=0.1 was also analyzed. for the smallest filter sizeA¢/Ay=4, of the order of 10%,
Expected values of the density subgrid-scale partgng grows withA;, as occurred with the power function,

p(Z)sg, are plotted in Fig. 13 for the cas&;=0.055. As  ypjl approximately 20% fol(/A4=16. For the density, as
explained in Appendix A, EQ(AL1), the positive curvature seen jn Fig. 13, the expected value of the subfilter part de-

of p(Z) implies positive subfilter contribution, as observed harts from the exact value at small filter sizes more than it
does at large filter sizes, resudt priori unexpected. Little
differences were found between the caseZgf0.055 and

FIG. 12. Profiles of density(Z) and temperaturd@(Z) considered in the
study. Solid line corresponds #,,=0.055 and dashed line @,,=0.2.

by the functionQ(Z)=T(Z)*. However, the shape of this

0.32 Z,=0.2.
Correlation coefficientsCgy, were calculated at the
ﬁ\ crosswise locations of maximum averaged subfilter parts and
0.24 are gathered in Table Ill. They are of the order 0.90 and
/ above, and they decrease with the filter size. It is also shown
°F 0.16 \‘\ that the temperature is better predicted than the density by
'\\'5 &/ \ the ARM model. The difference between the cadg
=~ %{\ =0.055 andzZ,;=0.2 is not very significantCg), increasing
0.08 - - slightly from the first case to the second one due to the
/ %> smoother profiles oT (Z) andp(Z) observed in Fig. 12.
0.00
0.0 0.5 1/50 15 2.0 4. ARM performance for the Arrhenius term
y/o;

FIG. 13. Prediction of the SGS part pfZ). Hollow symbols correspond to

The dependence of the specific reaction-rate congtant
on the temperaturel is often given empirically by the

exact values and solid symbols to ARM model predictions. Circles, squaresArrhenius |av€
and triangles denote filter sizes of 4, 8, and 16, respectively. Vertical solid

line indicates position of the stoichiometric surfa¢g)=0.055.

k/(T)=Ae Ta/T, (51)
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FIG. 14. Arrhenius nonlinearityw(Z) considered in the study: —Z;
=0.2, T,/T;=10; ———, Z,=0.055, T,/T;=10; and---, Z4=0.055,
T,/T;=50. A characteristic scal&Z is indicated for the first case.

whereT, is anactivation temperatur@andA is thefrequency
factor for the reaction step. The activation temperature is
constant buiA can have a weak dependenceTgrgenerally
proportional toT“, a<1. In thisa priori analysis, we con-

sider the function
w(Z)=e Ta/T@ (52)

as a starting point to ascertain the ability of the ARM mode

Mellado, Sarkar, and Pantano
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FIG. 16. Different parts of the Arrhenius term with;,=0.2 and A¢
=16A,. Hollow symbols correspond to exact values and solid symbols to
ARM model predictions], M, SGS par{w(Z)sy; O, @, total term(w).
Dashed line denotes the resolved pas(Z)). Vertical solid line indicates
position of the stoichiometric surface.

a

the behavior is poorer, with errors around 30% fivg
=16A,. As in the case of the functiongZ) andT(Z), the
error in the ARM model for the case @f(Z) is due to the
relatively large remaindeE,(r) in Eg. (29) because the pre-
dictions using the exact model coefficiec§(y) were the
jsame. Similar results are obtained for the other two cases of

to predict subgrid-scale contributions to the reaction rate®(2)-

coming from the Arrhenius term. Equatidb2) represents a
strongly nonlinear function of the mixture fractiah

The profilesT(Z) used for this nonlinearity are those of
the preceding section, i.e., the caség=0.055 andZ;
=0.2 with T{=10, and an activation temperature Df/T;
=10 was fixed. An additionaimore localized inZ space
situation of T,/T;=50 at Zs;=0.055 was also considered.
These curves(Z) are shown in Fig. 14.

Expected values of the subfilter pas{Z), for the case
Z,=0.2 are plotted in Fig. 15. For the smallest filter sizes

Positive and negative subfilter contributions are ob-
tained, accordingly to the alternation of sign in the curvature
of w(Z), shown in Fig. 14, and the explanation given in
Appendix A, Eqg.(A11). The physical reason is easy to un-
derstand. In the region where the stoichiometric surface is
located, Z~Z;, the additional subgrid-scale fluctuations
move the scalaz toward lower values o#(Z) and therefore
they tend to decrease. Similarly, for spatial locations
where Z is such thatw(Z)~0, sufficiently large subfilter-
scale fluctuations can bring the scalainside the nonzero

the agreement between the exact subgrid contribution an@terval of w(Z), and therefore the subgrid-scale part is
the predicted value from the model is good, with errorspOSltl_Ve-
smaller than or around 10%. But as the filter size is increased Figure 16 shows the expected value of the resolved and

0.05

0.00 ¥ h‘: s
@"’ -0.05
g

-0.10

-0.15

0.0 0.5 1.0 1.5 20
y/3,

FIG. 15. Prediction of the SGS part e{Z). Hollow symbols correspond to

exact values and solid symbols to ARM model predictions. Circles, squares,

subgrid-scale parts of the Arrhenius nonlinearity for the filter
sizeA;/A4=16. The total termw = w(Z) + w(Z)gis the one
entering the governing equations, and the prediction given by
the ARM model corrects about 60% of the overestimation
caused by the resolved part, leading to a final error of about
15%. It is worth noticing that if the mean reaction rate were
calculated using only the mean profd&), i.e., using the
approximation{w)~w({Z)), it would yield a maximum
value of 1(in these normalized unitsit both sides of the jet,
where (Z)~Z,,. However, fluctuations around the mean
value are rather large in this flow and such a simplification
leads to a substantial overprediction of the peak expected
value of the Arrhenius term, since the true maximum shown
in Fig. 16 is about 0.3.

With respect to the pointwise behavior of the ARM
method in the case of the Arrhenius nonlinearity, scatter plots
of model predictions against exact DNS values were ob-

and triangles denote filter sizes of 4, 8, and 16, respectively. Vertical solid@ined for a crosswise locatiop at which (0(2)sg was

line indicates position of the stoichiometric surfa¢g)=0.2.

maximum. The correlation coefficientSg),, calculated as
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TABLE IV. Correlation coefficients obtained with the ARM model for the Af/Ag=4 (30 points per jet halfwidthgives good results
Arrhenius termw(Z). Case(a) corresponds t&g=0.2 andT,/T;=10, with the ARM model

case(b) to Z5,=0.055 andT,/T{=10, and cas€c) to Z,=0.055 and . . .
® st at €0 st From the preceding discussions of the results for the

T, /T¢=50. _ o :
nonlinearities p(Z), T(Z), and w(Z), the ratio X\
A¢lA, 0 o® 08 @ ® © =(Z2)" 4 AZ comes up physically as the parameter that de-
4 096 093 085 0.99 0.95 071 fines the range of appllcabmty of thg ARM model. This re-
8 0.92 0.90 0.78 0.93 0.81 0.49 Sult was already obtained mathematically in Sec. Il. The nu-
16 0.90 0.87 0.72 0.84 0.56 0.29  merator gives the level of fluctuation around the filter value

and it is controlled by the filter size. The denominator is the
characteristic scale i@ space of the particular nonlinearity
and it is dictated by the nature of the nonlinearity.

previously explained, are gathered in Table IV. Values of

Cgy for the subgrid-scale part are of the order of 0.90 for the!V. A POSTERIORI ANALYSIS

smooth case of;;=0.2, but they decrease for the other two o pescription of the LES

situations, as the characteristic scalg of the nonlinearity ) ) ) _

»(Z) is reduced, for the same reason explained previously in ~ Large-eddy simulation of a spatially evolving turbulent
the case ofp(Z) or T(Z). With respect to the realizability Plane jet has been previously perforrffe? successfully. In

condition 0<w(Z)<1, the first part of the inequality was the current work, a LES is conducted to performaaposte-
violated less than 1% of the times and the second only lesd0r! analysis of the ARM model. A dynamic mixed model is
than 0.03%. However, for the cases 2f.=0.055 they in- used in the momentum and scalar equations, so that the
creased up to values of 4%, corresponding to the cassubgrid-scale stress tensor and the subgrid-scale flux vector
T,/T;=50. are given by

Regarding the first casé;=0.2, for filter sizes of 4 and Tidj = P(Tuj_ 0,0, — 2ng§}),
8, Cgy is slightly below the corresponding correlation coef- . _
ficients for the case of the polynomial nonlinearities, which  q,=p(u;z—G,2— D21 %),
seems plausible because the Arrhenius term is more nonlin- _ P
ear. However, for the filter size of 16 the ARM prediction for where vgg=CyA S, D

(53

sy C4A?]S|, andCy and C,4 are
this last nonlinearity correlates better with the exact value§omputed dynamicallys; is the deviatoric part of the strain
than in the case aZ* or Z8. This behavior is, once more, a rate tensor of the filtered velocity field, aff| is defined by
consequence of the particular shapewg?). Let us recon- (23,—31)1’2. This closure of the subgrid terms corresponds to
sider Fig. 14, which shows thab(Z) has a well-defined an incompressible case, whereas the simulation was com-
nonzero region of lengthZ, and think of a location in the pressible. However, the convective Mach number is 0.16 and
flow domain that has a value @fthat falls into that zone. As the jet had the same temperature as the ambient fluid, incom-
one increases the filter size, so does the subgrid-scale flupressibility being therefore a good approximation, sufficient
tuation Zgg and the subgrid-scale contribution éo(in abso-  to test the ARM model.
lute valu@. However, when Zgg)lfz becomes of the order of As explained during the introduction of the model, first,
or larger thanAZ, these fluctuations move the scalar to havingZ from the simulation, second, estimatiKgandZ2
zones ofw~0 and the subgrid contribution is null regardlessfrom resolved-scale quantities and using the subgrid-scale
of the magnitude oZig as long as zggﬁmz. Thissatu-  dissipation fory to obtain the model coefficierd, from a
ration phenomenors observed as well in the study of the two-dimensional table, we can calculate the subgrid-scale
PDF approach, to be discussed later, and is the reason for tieentribution, f(Z) — f(Z), using the ARM model, Eq(28)
insensitivity of the result to the use of the exact model coefand Eq.(20), for any given nonlinear functiofi(Z). In this
ficient. o flow, averages are taken in thedirection and time, and
When the resolved pae(Z), known exactly, is added therefore they are unavailable from the beginninygs 1 can
to the subgrid-scale part, the correlation coefficients showive assumed initially to build up the required statistics.
in the last three columns of Table IV vary. If the unresolved  The notation follows that of the DNS description. The
contribution is small compared to the resolved one, thertomputational domain is 16<16hX4h, being discretized
Cew increases. However, the improvement in the correlatiorby a grid of size 64112x16. This yields a ratio of grid
is not as strong as in the case of the polynomial because spacing between the DNS and LES®f=/AJN5=8. Since
the fact that both parts have opposite signs, and the resultirthe LES grid can support wavelengths as smaIIA§E§ and
total term can have values of the order of or smaller than th¢he dynamic mixed model is applied with the grid filter size,
unresolved part. In this way we see how the correlation coA(=2A"°, these LES results should be comparable with
efficient in the case ah;/A4=16 drops from 0.9 in the case results obtained by filtering the DNS Withf/AgDst 16,
of the subgrid-scale field to 0.84 in the case of the total fielddiscussed in Sec. lll. The test filter used in the implementa-
of w(Z) for Z5,=0.2. tion of the dynamic procedure isA2. The numerical algo-
Cases(b) and (c) in Table IV are more challenging rithm used is a sixth-order compact scheme for the spatial
Arrhenius nonlinearities. It can be seen from the correspondderivatives and a fourth-order Runge—Kutta scheme for the
ing correlation coefficients that only the resolution with time advancement. The number of grid points in the present
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FIG. 17. LES of a passive scalar. Instantaneous plot of the sgdlar a

plane of constant. Black corresponds t@=1 and white taZ=0. FIG. 18. Model coefficient,: O, a priori DNS; B, a posterioriLES; A, a

posteriori LES with correction fork.

LES is 172 times smaller than the DNS, which implies amethodology explained in Pogé.In a similar way to the

400 Cray T3E hours. The grid is uniform in the streamwise
and spanwise coordinatesandz, respectively. In the cross- ﬁ =1-2.1640/%3 (54)
stream coordinatey, a small stretching of 2.5% is utilized in K ' '

order to have enough resolution in the shear layers at thﬁ)r the case of a top-hat filter plus a sharp spectral cutoff at

inflow. This stretching implifas_ nonuniformity of t_he _filter, 27/A; and valid only for high Reynolds numbers when the
and therefore noncommutativity between the derivative aner size is well inside the inertial subrange. The value of

the filter operations iry, but the associated error has beenthe Kolmogorov constant was set @&=1.5. These condi-
shown to be negligible for these levels of inhomogen®ity. (e do not hold in this particular low Reynolds number

The Schmidt number is unity. flow and we need to use a more specific kinetic energy spec-

In Fig. 17 an instantaneous snapshot of the scalar fielﬂum a good approximation being the one given by @@).
fr_om the LES is prese_nted. Comparing with the DNS CaS€ Ity the case of the velocity spectrum, the required param-
Fig. 4, the truncation in the range of resolved scales is 0bVigia g are Re=K%/ve=1157 andL=K¥%e=2.0, as obtained

ous. Nevertheless, the general structure of the jet is Prérom the DNS data. The ratio is

served, showing large-scale structures and engulfing of exte-

rior irrotational fluid. The growth of the jet is shown in Fig. K

5, along with the DNS results. As previously reporféd® K ~0.6032. (59
the agreement is good. The small departures are due to t
difference in the inflow condition§iltering of the broadband

fluctuayon f|_eld, which is strongly felt in tf_ns_mmal r€9IoN 4 ratio of 0.64 and confirming the estimate above. The com-
of the jet. Figure §_shows the mean_ profi{&), and root-_ pensated model coefficient profile is shown in Fig. 18 and we
mean-square profil&s. The fluctuation about the mean in geq that it is very close to the priori result. Thisa priori
the LES is smaller becguse the subgrid-scale contribution Srofile of co(y) was computed with the DNS values Zlfmg
not taken into account in that plot. x and K considering the filter size\;(y) corresponding to
the LES grid. The deviation of the value of obtaineda
posteriori remaining after the correction in the turbulent ki-
The model coefficient, is shown in Fig. 18, whera  netic energy is applied, is due to the approximatitfpJ x
posterioriresults are compared with the value obtained from~2z2 / Xsg and is found to be about 6%. However, the sen-
the DNS data. The difference with tlagpriori analysis is the sitivity of the ARM model to these small variations of is
utilization of resolved values of turbulent kinetic energy, sca-observed to be very small, as shown in Sec. I, and therefore
lar variance and subgrid scalar dissipation. The inputs to ththe ARM approach in tha posterioricontext maintains the
ARM model are a characteristic timg2,J/y, and a velocity high accuracy observed in tkepriori one, even if the cor-
scale,K'2. The first one might be expected to be well rep-rection onK is not used.
resented b;ZerSIXSg, i.e., using the resolved scalar variance ~ Figure 19 shows the expected value of the subgrid-scale
and the subgrid-scale dissipatiop,= —(20;0Z/Jx;) . The variance as well as the total variance across the jed/Iat
latter has the deficit of the unresolved scales. As a conse=11.0 obtained from the LES. The subgrid-scale variance is
quence, the model coefficient is slightly below the result obwell predicted by the ARM model. In order to obtafd?)
tained from the DNS analysis, as can be seen in Fig. 18. Thigorrectly, in addition to prediO(EZgg} accurately, it is neces-
underprediction can be compensated by the estimate of thgary to obtain the variance of the resolved scalgs, pre-
total kinetic energyK, from the resolved park, , using the cisely, as shown below. By definition,

hﬁwis result was checked once the LES was performed, com-
paring directly with the value oK from the DNS, obtaining

B. Performance of the ARM model
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FIG. 19. A posterioriand filtered DNS values of scalar fluctuations. SGS FIG. 20. SGS model performance in predictifigf). Hollow symbols de-

part: O, <z§g>DNS; o, <z§g>LES. Total fluctuation:d, Z3 o pns M, Z2e e note filtered DNS values and solid symbols are LES resl{$®, resolved

+(Z&)1es- term(Z*) (no SGS mode| [J, M, SGS term(Z¢); ARM model; A, A, total
term, (Z*)=(Z*+(Z%y.

?=?+Z§g. (56)  as before;T,=100 andT;=10. The subgrid-scale contribu-
tion follows closely the filtered DNS results. The resolved

Taking the average of both sides, part from the LES does not depart seriously from the DNS

<?>=<ZZ>+<z§g> result, and therefore the error in the total tefa@) is similar
= 2. T 5 to thea priori values, less than 10%. Compared to the use of
=(Z)=(2) + Zinst({Z5y no subgrid modelthe line with circle$, the results improve

e Nt significantly using the ARM procedure.
:><Zz>_<z>2zzr2ms+<zgg>' (57)
The second equality in the above equations follows from the/. ANALYSIS OF THE ERROR IN THE ARM MODEL

definition of the root-mean-square of the scalar. In the case

of filtering in homogeneous directions, the left-hand side of The ARM model has two sources of error. The first one
* i from th tation of th | coeffici
the last equation in Eq57) can be replaced byz?)—(Z)? comes from the computation of the model coefficiepiby

. U Eqg. (23), and the second one is due to the use of the inter-
=72 . In our case, the effect of inhomogeneity in thand d. (23

ms . . . mediateZy,(x) to compute the subgrid part of the nonlinear-
y directions is weak becausg¥; /5, is small, so that, finally, ity, Eq (Zg)( '?’hese twr;) issues aregnovs explored

72 ~Z72 +(Z2). (58)
. rms e Sg> . . A. Error in the model coefficient
We initially used a dynamic Smagorinsky model. However, S _
as reported by other authdjt tends to overestimate the One approximation implicitly assumed for the particular

resolved-scale variables and fluxes. Therefore, a dynamigase of turbulent flows with one or more inhomogeneous
mixed model was used so as to obtﬁﬁws correctly. The dlrectlo_ns is to considet, constant in the filtering process
results are shown in Fig. 19, where both sides of the(&). shown in Eqg.(22). In the present case of a turbulent plane
are plotted, showing the good agreement.

The correct prediction of the subgrid-scale variance and 06
the resolved field implies a behavior of the ARM model re-
garding other nonlinearities very similar to the one observed /ﬁh,\

in the a priori analysis. Figure 20 shows the expected value | 0.4 -’f_/ﬂ‘ﬂ@%

of the resolvedno subgrid-scale modglsubgrid-scale and

(2)) » ()

total values corresponding to the functi¥(z) =Z*. As be- ! 0.2 N

fore, the profiles are expected to be symmetric and only half @ '

of the extent is shown for clarity. It can be observed that the —»

agreement with the profiles obtained from the filtered DNSis § 0.0

remarkable. The accuracy of the unresolved part is due to the %

ARM model, whereas the good prediction of the resolved

partZ* comes from the dynamic mixed model employed in 0.0 05 1.0 1.5 2.0
the closure of the momentum and scalar transport equations. y/8,

The behavior of the model for the case of the exponen-

tial nonlinearity w(Z) is shown in Fig. 21, where the ex- FIG. 21. SGS model performance in predicting the Arrhenius t&im),
! with Z;,=0.4. Hollow symbols denote filtered DNS values and solid sym-

pected value of the resolved, subgrid-scale and total terms Sols are LES resultsO, @, no SGS modelw(2)); O, W, SGS term

present?d- .The stoichiomgtric mixture fractionZig=0.4. (0(Z)sg, ARM model; A, A, total term(w), ARM model. Vertical solid
The activation and adiabatic flame temperatures are the samee indicates position of the stoichiometric surface.
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FIG. 23. Error estimate for the polynomial terff with filter size 16:0,

FIG. 22. Predigtions of the ARM model coefficient for. filter of size - error(exact minus ARM-predicted subgrid par®, error prediction
A¢/A4=16. 1D filter: O, exact;®, assumed spectrum. 3D filter], exact; from Eq. (35).

M, assumed spectrum.

B. Error in the nonlinearity

The second source of error in the model comes from
using the fieldZy (x), given by Eq.(20), as a intermediate to
compute the subgrid-scale part for the nonlinearity,
f(Z)sfX). This step is justified by Eq29), the Taylor ex-
pansion off (Z)(r) around the constant functidi{Z(x)) in-
side the cell volume)¢(x). Therefore, the relative magni-

. - . . tude of the remaindeE,(r) has to be studied for the

Second, in Ea(23), a hzypothe5|§ Is required to ObtaiN yigerent nonlinearities. An estimate of the error is obtained
the single unknown tern{(Z%) sy, to find the coefficiena, . from Eq. (35). To retain only the error intrinsic to the non-

The case in which the subfilter scales are in equilibrium haﬁnearity Eq.(28), we work with the exact(y) (obtained
been considered, leading to the requirement of the threedirectly ’from the’DNS.

_dimensional scalar spectruliy(«) in the subgr!d range as The power function¥ (Z), Eq.(48), are considered first.
input to the model. In the present study, a fit to the one-he fourth-degree function has a very small error, and thus
dimensional scalar spectrufy(«,) obtained from the DNS  the higher order cas@?, is considered. Figure 23 shows the
has been used, E¢46), since the Reynolds number is t00 exact error, obtained by subtracting the ARM prediction from
small to have a good representation of the actual spectrum hyie exact profile, along with the expected valueE¢k,t) as
the power lawx ™. In order to obtairE;(x) from Fz(x;1)  given by Eq.(35). We see that the ARM model provides not
isotropy is assumed, and this is inaccurate. One can studynly an accurate prediction of the subgrid part of a polyno-
this last hypothesis comparing results from filtering only inmial term, but a good estimate of the error as well. Besides,
the x direction, where the isotropy assumption is not re-E(x,t) gives a pointwise correction of the standard ARM
quired, with those from filtering in the three directions. This prediction if higher accuracy is desired, at the additional cost
comparison also retains the effect of having an anisotropiof one filtering operation required for calculatin§3osg. If
filter kernel, G(x). we use Eq(38) to get a characteristic scalZ for the power

Figure 22 shows the exact model coefficient, as obtainefunctionsY(Z) we obtain the following expression far.
from the DNS according to E¢22), compared to the profile _ 21172

i i i ; ”legﬂ (n 2)(239)

of ¢cq yielded by the assumption of a one-dimensional scalar )\, = = ) (59)
spectrum. We see that the model prediction is exact for the AZ 3z
case of a one-dimensional filter, as it should. On the othepn estimate of this controlling parameter can be obtained
hand, the agreement in the case of a three-dimensional filteiynsidering z) and(Zgng, this latter bounding from above
is not as good, indicating that isotropy of the subfilter scalaq(zgg)m) according to Eq(A5). The values are gathered in
field is an inaccurate approximation at this Reynolds numbetfaple V. It is seen thak is less than 1, indicating that the
and filter size. It is recognized that there are many situationfirst term in the Taylor expansion, E(9), accounts for a
in which either isotropy does not exig.g., strong shear or major part of the nonlinearity, and therefore the ARM ap-
presence of graviy or the slope of the spectrum is yet un- proach provides a good estimate. It is also shown Mhat
known (e.g., highly compressible caggand approaches dif- increases with the filter size and with the degree of the poly-
ferent to the spectral variant are being derived. Neverthelesgomial, as expected.
it is always interesting to consider a spectral analysis as a It should be emphasized that these estimates do not give
first step because it allows to compute estimates easily and a very precise value of the actual error due to the different
gives useful insight into the problem. simplifications adopted; e.g<E>/<Z§g>~0.18 at the center-

jet, the stronger inhomogeneity of the coefficient is in the
crosswisey direction(the inhomogeneity in the streamwige
direction is much smallgr However, Fig. 22 shows that the
variation ofcy with y occurs over distances bigger than the
filter size A;/ 87, shown in Table I, and the error might be
reasonably expected to be small.
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TABLE V. Estimates of the controlling parameterfor the different non- 0.5
linearities. Caséa) of p(Z) corresponds t&g=0.055 and casé) to Z;,

=0.2, andw(Z) corresponds t&,=0.2 \\:\/d\/b\\
Af/Ag z4 z8 p@ p® ® 0.0 N\ FM

N g
4 0.11 0.32 0.68 0.33 0.63 e \/
8 0.14 0.43 1.13 0.50 1.04 x
16 0.18 0.53 1.54 0.68 141 w e

-0.5 \MD/

line for a filter size of 16, whereas~0.53. They should be -1.0
understood only as representatives of the error obtained com- 0.0 05 1.0 15 2.0
paring exact and model subfilter quantities in arpriori v,

context, and extrapolate them to work arposterioriprob-  FG. 24. Error estimate for the Arrhenius term with,=0.2 and filter size
lems. What is given by the expression)ofs the scaling of  of 4: O, exact error(exact minus ARM-predicted subgrid par®, error

the error in the ARM model with the filter SiZAf as \ pre_diqtion fr_om Eqg.(35). Vertical solid line indicates position of the
«AY3, expressed by Eq40). This scaling means that if we Stochiometric surface.

divide the filter sizeA¢ by 2, the error in the physical model

is reduced by a factor of 1.26. This analytical result agree

with the variation of with the filter size observed in Table case of the power function, due to the stronger nonlinear

V for the nonlinearityY(Z). character and implying a larger error in the prediction of the
With respect to the density functign(Z), Eq. (50), the  subfilter part ofw(Z). Apart from the effect ofZg;, ex-
expression foi is plained already in the density function, the second important

ST o2 21 parameter that appears in the expressior\ aé the ratio
:Hzlsgﬁ - T'(2)(Z5y - (Zs9 (60) T,/Ts. It shows that the relative importance of the remain-
PAZ T(2) Zg ' der E,(r) increases when the activation energy increases,

which is expected because(Z) becomes more local. The
example is given by the correlation coefficients obtained for
the casel,/T{=50, shown in thea priori analysis in Table
V.

Smaller subfilter fluctuation of the scalar implies better
erformance of the ARM model, as describedNyyand this
§ shown in Fig. 24, which represents the Reynolds average
of the error estimat&(x,t) given by Eq.(35) along with the

where terms involving derivatives df(Z) higher that the
first one have been neglecte@!/T can be estimated by
1/Zs,, with T~T;. Using the values ofZ2)"? shown in
Fig. 9 at the crosswise locatioy 5, corresponding tdZ)
=Z, the values of\ shown in Table V are obtained. It is
seen that they are larger than the polynomial ones. The cas
of Z,=0.055 for large filter sizes gives=1, indicating that

the ARM model is close to the limit of applicability. As it actual error in the prediction ofw(Z).), for the case

was said for the case of the polynomial, the valua.efl is AP/Ag:A" The results in all the figures are nondimensional-

not a clear cut between acceptable and unagceptable beha\_/l ed with the instantaneous peak value. Comparing with the
and these numbers are better understood simply by associ

) . tal term({w), shown in Fig. 16, the error in the case of the
ing them to the resu_lts presented in Sec. ”.I' T_he S€CONGter size of 16 is about 20%. As we reduce the filter size the
comment to be made is about the effecZgf, which is clear

) . L accuracy increases, and thus for the case of filter size 4 the
in the expression fok: as the stoichiometry decreases, the Y

slopedT/dZ increases on the lean side and a smaller level o?rror 'S gbout 20./0 of the totgl term. N~

. o . L . It is interesting to consider the casgT), a situation
subfilter fluctuation, i.e., higher rgsglunon, is required for t_hethat appears when a conserved scalar approach is not taken.
ARM model to be successful. This is observed by comparing. o ratio T 12T is the one entering in the definition
the values of the parametarbetween the casgs=0.055 of A ,Fi ure 25 ssgows an estimate of thig ratio for the case
and the cas&4=0.2. - 719

Let us consider now the case of the Arrhenius nonlinear-ZSt:O'Z’ and it is observed that the subfilter fluctuation of

. _ ' the temperature increases as we approach the edges of the
ity «(2), Eq.(52), for Zy=0.2. The parametex defined by jet. This behavior with the coordinageis similar in the case

Eq.(39)is . of higher stoichiometric mixture fractions, lik&,=0.5,
|Zisd  TaT (2)(ZZ)Y?  (TalTH)(Z5)™M? which corresponds to the reaction zone being closer to the
AN,= A7 3T(Z)2 ~ 37, , (61) centerline. Physically, the intermittency of the edge of the jet
S

implies higher probability of having blobs of cold fluid than
an expression valid for high activation ener@yT,<1. The in the center of the jet, and those are able to produce higher
estimate o\ is shown in Table V. It was calculated similarly gradients and therefore higher subfilter fluctuation3 (r),
to the case op(2), i.e., usingT'/T~1/Z,, andT~T;, be-  even if the flame is not located there. Hence, when the reac-
cause the stronger subfilter fluctuatidescept for the sharp tion is taking place in the center of the jet the ARM model is
gradients at the viscous superlayappear around the reac- expected to perform better than in the case of the stoichio-
tion zone(every term in the Taylor’s formula has a factoy. metric surface being on the edge.
It is seen again that is higher in this nonlinearity than in the Finally, it is worth noticing that in the Reynolds-
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0.3 tered fine grained PDF as the filtered density functiebF)
and it will be denoted byP,(¢{;x,t) for notational conve-
nience.

A. Beta-PDF model

fﬁ\\
M/\\\ In the presumed FDFapproach the FDF is assumed to
oo follow a prescribed distribution, the beta distribution being

Rl SN the usual choicé>?* This is given by

= L=t
0.0 \\ Pz(é;x,t)~Pz(§;Z,Z§g)~f (65

& lya—1/q_ #\b—-1 !
0.0 0.5 1.0 15 2.0 ol (1= d¢

/8, where the denominator is the beta functioB(a,b)
=I'(a)'(b)/T'(a+b), and the exponents are given by

(T,

FIG. 25. Subgrid-scale temperature fay,=0.2. Symbols denote different _ _ —
filter sizesA¢/A,: @, 4; W, 8; and A, 16. Vertical solid line indicates a:Z(Z(l—Z)lzgg—l), b=a(1/2-1). (66)
position of the stoichiometric surface.

It is well defined in the sense that the exponentdb

are non-negative at any point of space and instant of time as
averaged Navier—StokéRANS) context, an expression for long as the filter kernel is positive. This is shown as follows.
the mean Arrhenius term can be obtained carrying out a simiThe positiveness of the filter maintains the order relation,
lar expansion of the exponential functibending up with ~ and thus 6Z<1 because & Z<1. Hencep is positive ifa
the requirement’ T,/(T)2<1, a condition that is not usu- is positive, and this latter is true because of the inequality Eq.
ally fulfilled. The difference between RANS and LES is that, (A6). The limiting casea=b=0, which corresponds a2,
in RANS, the fluctuationT’ of the temperature about the =Z(1—2Z), has to be handled with more care, since the nu-
mean is fixed by the physical problem, whereas in LES thanerator of Eq(65) becomes nonintegrable and the denomi-
subgrid-scale fluctuation can be reduced by decreasing theator of that same equation becomes infinity. A closed ex-
filter size until\ is small enough. pression forf(Z) can be obtained by decomposing the
function f(¢) in a linear part betweed=0 and (=1, f,
+(f1—fg)¢, and a remaindeR({), so that Eq(63) yields

S Y 1- 9P R(O)d¢

VI. PRESUMED FDF MODEL

A popular subgrid model for turbulent combustion is the  f(z)= f0+(fl_f0)2+

so-calledpresumed FDF modeln this approach, the filter- B(a,b)
ing operation is written in terms of a probability density (67
function. Starting from the fine grained PBEp’(¢;x,t), This remaindeR({) is zero at 0 and 1, which eliminates the
one can obtain the filtered fine grained POy possible singularity of the integranfassuming f(¢{) is
o smooth in the last term the equation above. Hence, the nu-
p’({;x,t)zf S(Z(r,t)—)G(x,r)dr (62)  merator of this last term is bounded for zero values ahd
. b, obtaining finally
to write the filtered value of a general nonlinear function v =
lim f(Z2)=fy+(f;—f)Z.
£(2) with 0=Z=<1 as Jim (2)=fot (f1~To) 68
o ! - All this information allows the construction of the map-
fo,t=J'f "(¢;x,1)de. 63 L= . . =
(2)x 0 (Op(Extyde ©3 ping f(Z)(Z,Zgg) for each nonlinearityf (Z), where 0<Z

2 _ . _ . . .
The filtered fine grained PDF is a random function because it1 and 0sZg<Z(1-Z). This wo-dimensional table is

is defined by a deterministic mapping of the random functionWhat is required to perform a LES using the FDF approach,

Z: for a fixed () point, the whole curvep’(Z) will be and can be computed beforehand and then, given the pair

different in different realizations as a consequence of théZ+Zsg at each point of space and instant of time, interpola-
random variation ofZ(r) from one realization to another. tion can be used to obtaii{Z). This approach was used in
The expected value of a filtered quantity is then given by the a priori results presented below, an approach that was
) found to provide a better control of the singularities that
(7 N UYe _ 4 might appear in the integrand, E(5), and to reduce sig-
{f(2)(xH Jo (EXPExDAL ©4 nificantly the time of computation.

The filtered fine grained PDF has been given different name
by different authors: the filtered density functihihe large-
eddy PDE! and the subgrid-scale PB#&?* As originally The beta-PDF approach involves two assumptions, as it
presented, p’ (£;x,t)d{ represents the fraction of the fluid is shown by Eq(65). The first one is thaP, depends only
aroundx (weighted byG) whoseZ concentration is in the on the first two momentsZ and Zig, i.e., different points
range{=Z</(¢+d¢. From now on, we will refer to the fil- with the same filtered and variance values have the s&me

?. A priori analysis of the beta-PDF model
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FIG. 27. Averaged FDF at the centerlifright se} and at the half-width of
6 T T T T the jet(left se): —, exact; ---, beta PDF; and-, composite PDF. Filter size

(b) is 16.

to the beta distribution with the exact subgrid-scale variance.
It should be noted that the ARM procedure has the Reynolds-
average subfilter variance as input, rather than the detailed
2+ 1 pointwise subgrid-scale variance of the beta-PDF model.
Nevertheless, though the exact FDF is described incor-
rectly, the results obtained with the presumed FDF model
0 , . . ‘ have been found to be fairly good within thee priori
0.0 0.2 0.4 0.6 0. 1.0 context?*?939The reasoff is that, although the model does
¢ not follow the exact FDF, the local deviations balance each
FIG. 26. FDF at(a) the centerlin_e andb) the_jet_ half-width. Hollow sym- ZLh:r;B;hﬁ] t'g;?_gizlsotLEgﬁses) f:fe:l(cze) Isvg?;;/t?galt?gr?“iﬁegome
bols denote FDFs aZ(r) and solid symbols indicate FDFs &f,(r) at the . . ; s i
same point. The solid line corresponds to the beta-PDF approximation witintervals implies underestimation in otherg-urthermore,
the exact subfilter variance. Filter size is 16. the estimate of the expected value of the FK]IP:Z>(§), is
even better due to the averaging process, as it is shown in
Fig. 27, and therefore the prediction df(Z)) is more accu-
This is not generally true, and several cases were founghte than the pointwise behavitthe composite-PDF will be
where at two different times the scalar field happens to hav@efine later and the corresponding results in Fig. 27 will be
similar filtered and variance values with the FDF beingthen discussed
qualitatively different, showing certain asymmetries or dif- e now discuss our evaluation of the beta-PDF closure
ferent flatness. The second is that, given that two paramete{gith the variance given by the scale similarity model as de-
are sufficient to represent the FDPz has the particular  gcribed in Sec. IlI, for the nonlinearitieq z) = z*, p(Z) for
shape of a beta PDF. Some realizations are described reg- = 0.055 andw(Z) for Z,,=0.2. Though the FDF model
sonably well by a beta distribution, as shown in Fig(@6  gives the required term(Z) directly, we subtracted the re-
However, the beta PDF cannot represent the distribution e, e parf (z) in order to directly measure the influence of
ther near the limits 0 and 1 of the scalar or in case of bimoday, g yiq variations of the scalar. Figures 28 and 29 show the
distributions; this latter situation is observed in Fig(I26 mean profiles for the first two cases and the pointwise be-
By definition of the FDF, the ARM approach can be | ,yior is again analyzed with the aid of the correlation coef-

PA0)

0]

Q0 ¢

written as ficients, calculated as in the preceding section and collected
- 1 _ in Table VI.
f(Zm)—f(Zm)=jo[PzM(§)—5(§—Zm)]f(§)d§, (69) The performance of the FDF model in the case of the

polynomial function is very poor, in the average as well as in
where the dependence ox,{) has been dropped for clarity. the pointwise behavior, with a correlation coefficient of 0.41
Hence, the ARM approach has an associated FBf({),  for the filter sizeA(/Ay=16. This is less than half the cor-
which is also of interest. Figures @b and 26b) show the relation coefficient obtained with the ARM model. Since the
FDF computed at a certain instant of time in the center of thaonlinearityY(Z) is global(characteristic scalAZ~1) the
jet and at the crosswise positigr= 5, . They show the FDF  source of this error must be the local subgrid-scale variance
associated with the field(r), the original scalar field from entering the beta PDF, which was shown before to be poorly
the DNS, and the FDF obtained from the intermediate fieldestimated by the scale similarity model. If the exact value of
Zy(r), obtained using the ARM model with the exact modelthe local subgrid-scale variance is employed, the prediction
coefficientcy(y). Along with those two lines the beta PDF is is very good, as shown in Fig. 28.
also plotted. It is striking to see that the FDFAy is similar On the other hand, in the case of the dengif¥), the
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0.04 TABLE VI. Correlation coefficients with the FDF model for different non-
linearities. The variance was obtained with the SSM model in the @se
A\ and with the ARM model in the cag®).

0.03
b; b; b,
AflA, Ve P& 0% Yo o) 0

sg

N Je. 4 0.80 0.84 0.89 0.96 0.93 0.96

~, 002 N ¥ 8 077 08 091 093 091 095
N -\ 16 041 08 094 088 087 095
A\

0.00 . SSM model, though more smoothly indicating a smaller sen-
0.0 0.5 1.0 1.5 2.0 sitivity to the subgrid-scale variance. It was found as well
y/8, that the predictions for the large filter size of 16 were better

- . than the ARM model estimates, in the mean profiles as well
FIG. 28. Predictions of the SGS part ¥{Z)=Z" by the beta-PDF model.

Hollow symbols correspond to exact values and solid symbols to FDFAS in the pOintWise behavior, as can be seen by comparing
model predictions. Circles, squares, and triangles denote filter sizes of 4, g,able 1V and Table VI.
and 16, respectively. Dashed line corresponds to FDF with exact variance  Several questions arise from these results. First, how
for Aj/Ag=16. does the sensitivity of the FDF approach to the subgrid-scale
variance depend on the nonlinearityZ). Second, what is
S _ the importance of the particular shape of the assumed FDF,
behavior is different. The expected values of the subfilter,oyiged that it is a two-moment-based FDF satisfying cer-
part are plotted in Fig. 29 and can be compared to the ARMgin physical requirements. Third, how does a two-moment-
model results of Fig. 13. For small filter sizes the FDF modelyaseq FDF behave as the nonlineafitg) becomes more

overestimates considerably the subgrid-scale part, and thg,q more local. i.e.. in the limihZ—0. These issues are
prediction improves as the filter size is increased. The correqow considered.

lation coefficients of Table VI present the same trend. In this
case, ARM model yields better results. However, when the
exact variance is used, the estimates are very close to ttfe Sensitivity of the FDF approach to the
exact values for small filter sizes and, though not shown irsubgrid-scale variance
that figure for the sake of clarity, they deteriorateAgsbe- As previously exposed, the assumption of a beta-PDF
comes larger, as could be expected beforehand. Hence, thgth a given meanz, and a given variancezﬁg, leads to a
error in the FDF model comes from the use of the SSMunique valuef (Z), of the subgrid-scale contribution for any
model to provide the subfilter variance, error that compengiven function f(Z), which we refer to as the mapping
sates the underprediction of the assumed FDF with the exa$KZ)Sg(z,z§g). Figures 30a) and 3@b) show isocontours of
variance to give seemingly a good estimate(0fZ)sg for  this mapping for the two function¥(z) =z* andw(Z) with
Af/Ag=16; Cey is, however, relatively low compared to z_=0.2. The region defined by the parabola corresponds to
the ARM result shown in Table 1Il. Eg. (A6) and it represents all the possible values of the pair
The nonlinearityw(Z) with Zs=0.2 presents the same (Z,Z%) for any point in space at any instant of time. For
behavior withA; in the average profiles due to the use of thezggzo we have zero unresolved contribution, which is the
contour line coinciding with the abscissa axis. FMgZ) the
subgrid-scale part is always positive but, in the case of
0.32 w(Z), the zone around the stoichiometry surface is associ-
ated with negativef (Z)s, while zones sufficiently far away
from Z, [out of the region defined by the dashed line in Fig.

estimating the subgrid-scale value.

.24
02 30(b)] are associated with positivie(Z),, for the reasons
~ /"\ \\ explained in Appendix A.
) 0.16 B It can be seen that for(Z) the contours are approxi-
S %A \ mately parallel to th& axis, and therefore any error in the
0.08 %:( \ prediction of the variance‘{gg causes appreciable error in
=7

0.00 =t=4

™~ On the other hand, for the Arrhenius case, the contours
0.0 05 10 15 20 around the stoichiometric surfaég=Z2,=0.2 are more or
y/s less parallel to the ordinate axis onzég is above certain
r4

threshold, about 0.01 in this particular case. This means that
FIG. 29. Prediction of the SGS part pfZ) by the beta-PDF model. Hollow large variations of the subgrid-scale variance do not change
symbols correspond to exact values and solid symbols to FDF model prehe subfilter contributionw(Z)Sg very much. The physical

dictions. Circles, squares, and triangles denote filter sizes of 4, 8, and . - . .
respectively. Dashed line corresponds to FDF with exact variance fo eason was already seen in Sec. lll. The filter sizes consid

At/A4=4. Vertical solid line indicates position of the stoichiometric sur- ered i_n thisa priori St_Udy correspond to average values of
face,(Z)=0.055. subgrid-scale fluctuation not much larger than this threshold
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FIG. 31. Partition of the domain of definition of the composite PDF in four

0.25 r gualitatively different subdomains. The solid curves are the boundaries of
(b) the subregions and the shape of the corresponding PDF is shown as an inset.
020 | The case of the beta PDF is qualitatively the same.
0.15 - This region in the domain of definition of the density func-
W tion is the lower central zone in Fig. 31. For cases vidth
0.10 1 AN <0.5 and subgrid-scale variance greater t#ar8, the left
lower zone in that figure, we have to modify the presumed
0.05 FDF such that it provides the requiragg. We do so by
[Q\ placing a ¢ function at (=0, which is the usual solution
0~000_0 0.2 0.4 0.6 0.8 1.0 found in the literature. The unknowns that define now the
Vi FDF are the magnitude of th&function, the right limit{, of

_ the uniform part and the height of this uniform zone. The
FIG. 30. Beta-PDF mapping8(Z)sfZ,Z%) for the functions:(@ Y(Z)  equations are the same as before. Admissible solutions are
I o eonars eresent onsnt SGS ALy those that makey =1, which imposes a new consirain
in the unresolved varianc&g,<Z(2/3—Z2). Similarly, we
have the symmetric part, the right lower region in Fig. 31,
(Table | shows(Z2)=0.02 for A;/Ay=16). This fact ex- with Z>0.5 and as function at{=1. Additionally, if ZZ is
plains the increase of the correlation coeffici€y,, with larger than the level of fluctuations defined by the previous
the filter size, shown in Table VI, when the subfilter varianceequations we are required to place eheinction at{=0 and

is predicted inaccurately, as it is the case with SSM. another at{=1 besides the uniform distribution between 0

and 1, corresponding to the upper region in Fig. 31. This
3. Sensitivity of the FDF approach to the assumed particular last case, only possible for high enough values of
distribution Z%, has already been used in the pdst.

As mentioned before, the role of the specific assumption A first interesting observation is that a similar partition
of a beta PDF for the FDF is also interesting. The idea of ar®f the domain of definition of the FDF into four subregions is
assumed distribution to statistically describe one or severdiroduced by the beta PDF. The boundary of each region is
scalars for application to turbulent combustion has bee@iven by the conditionss=1 or b=1, a and b being the
studied by different author¥,although not in a LES context exponents of Eq(65). If a<1, or equivalentlyZZ>Z?(1
until more recently. Several choices have been made: & Z)/(1+Z) an (integrable singularity appears at=0,
Gaussian profilé? a beta-PDE3 a density function com- which corresponds to the case of&unction in the compos-
posed of a uniform distribution with two delta functions at ite PDF. In the same way, a singularity occurgatl when
the limits 0 and ® or a clipped Gaussiatt.All these den- b<1, which corresponds to the casg >Z(1-2)%(2
sity functions are based on the first two moments. _Z)_

In order to investigate the effect of the assumed shape of The expected values of the various nonlinearities calcu-
the distribution, we construct the following simple two- |ated using the composite PDF are very similar to the ones
moment-based composite PDF. We start with a uniform dispbtained using the beta PDF, the prediction @{Z) sy im-
tribution between(; >0 and{,<1, which has the given val- proving slightly at the edges of the jet, and in the polynomial
uesZ andZZ; as mean and variance. These two conditionscase being indistinguishable from one another. These results
along with the normalization one, constitute a system ofare clear by considering?,)(¢), which is shown in Fig. 27.
three equations for three unknowns, namély, ¢, and the In terms of the pointwise behavior, the scatter plots give
height of the FDF. However, the constraintg>0 and{,  approximately the same correlation coefficients and they are
<1 allow solution to the previous system of equations if andindeed very much alike. Considering for instance the filter
only if Z5,<Z?/3 for Z<0.5 orz3;<(1-2?)/3 for Z>0.5.  size A;/Ay=16, the power functionY(Z) yields Cgy
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~0.99 if the beta distribution is used, af,;,~0.98 is the 1.0
composite distribution is utilized instead. In the case(¥)
with Z4,=0.2, Cgy=~0.97 in both cases. —
These results indicate that thparticular shapeof the o
) . . . . 0.9
adopted FDF isot very important provided that it satisfies
two conditions. First, the assumed FDF has to be used with 2 /
the correctZ and Z§g. Physically this means that the FDF

takes into account intermittendpresence of pure unmixed 0.8 é/j

——

fluids inside the filter ceJlas well as small-scale diffusive
mixing. The consequence of this condition is shown by the g
partition into four subregions with qualitatively different 0.7
FDF shapes, as shown in Fig. 31. Second, the nonlinearity 0.0 0.1 0.2 0.3 0.4 0.5
under consideration should not be very localized. If this sec- AZ
ond condition is met, there is compensation of errors in EqFIG. 32. Correlation coefficient between model predictions and exact values
(63), for overestimation of the FDF in some parts of the of g at they location of the stoichiometric surfacéZ)=Z,=0.2, for dif-
interval 0<{=<1 implies underestimation in others and, sinceferent characteristic scalésZ: O, beta PDF{], composite PDF.
the integral averages these deviations, some local inaccuracy
in modeling the FDF is acceptable. Similar results have been
found in the RANS contex® tively large values ofAZ, the composite PDF and the beta
PDF do similarly, as reported before; the nonlinearity is suf-
ficiently global so that the precise shape of the FDF is not
crucial. AsAZ decreases, the beta PDF represents slightly
better the FDF, though there is not a big difference between

Motivated by the preceding discussion, it is of interest tothe two FDF choices. For reacting flow problems in which
observe the behavior of the subgrid-scale model as the lengthz is small enough and a correlation greater than 70% is
scaleAZ of the Arrhenius tern{see Fig. 14 decreases. In desired the estimated FDF has to be better than either a beta
typical combustion chemistry, the thickness of a nonprePDF or composite PDF.
mixed flame is approximately proportional to a fractional
power of the rate of local scalar dissipatibrys;. AS xet B. Combination of ARM and FDF approaches
decreases, so does the flame thicknes&s space(analogous . : . .

To conclude thea priori analysis, and following logi-

to AZ herg. S'nC(.aXS‘ IS a ra_ndom varla_ble n a.turbulent cally from previous results, the ARM prediction of the
flow, the flame thickness varies from point to point and the . . o .

: . - subgrid-scale variance was utilized as the input to the FDF
subgrid-scale model must provide accurate predictions for

instances in which the flame becomes very thin. We havadeI‘ since the reconstruction is an approximation of a

. %igher order than the scale similarity model at the low addi-
seen that the reconstruction procedure can lose accuracy jn

such a situation. In a FDF context, the local estimate of th tional computauonal C.OSt of one filtering opgranon. Th?
. . . RM provides the spatial structure of the subgrid-scale vari-
FDF in an intervalAZ aroundZg; becomes more important

and, since a global averaging of error does not oceur, inhance field accurately, an input that is required in a presumed

: EDF approach.
performance of an assumed FDF model is expected to dete- Figure 33 shows the performance of the FDF—ARM

riorate. This aspect was studied using the Burke—Schumann ~ T o
limit for T(Z) and varying the ratiol,/T; to control AZ. model for the case of (2)=2". The correction in the poly-
Instead of the characteristic scal@ given by Eq.(38) in

Sec. V, we define it in this particular study by the interval 0.04
between the points where the reaction rate drops to 10% of

its maximum value. The characteristic length is then given

4. Sensitivity of the FDF approach to the locality of
the nonlinearity

by 0.03 \L\
1 BN
SR FE e ATETi) (79 3 0.02 %\:\\g\\
The limit AZ=0 was analyzed assuming a delta function at ™~
Z.:, which yields a direct comparison of actual values of 0.01 /‘\*\'\'\ ™

P-(Zs;) against model predictions.

Figure 32 shows the correlation coefficier@g,, for 0.00 :
both the beta and the composite distributions as a function of 0.0 0.5 1.0 1.5 2.0
the scaleAZ. The stoichiometric mixture fraction i€ y/8,
=0.2 and the scatter plots of model against exact pointwise o ,
values were obtained at the location wgre Z,. The exact F'C: 33 Predictions of the SGS part {z) =2". Hollow symbols corre-

. . . .. spond to exact values and solid symbols to FDF—ARM model predictions.
subfilter variance was Use‘_j- Corr_elat'on coefficients alircles, squares, and triangles denote filter sizes of 4, 8, and 16, respec-
above 0.70 always, decreasing &% is reduced. For rela- tively.
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0.05 the subgrid-scale variance field being better than the one pro-
vided by the scale similarity model; the reason is the small
sensitivity of the Arrhenius and the density terms to the
subgrid-scale variance once this latter quantity is above a

0.00

. 7 certain threshold.
¥

= -0.05

N

3 M

~ \}k\ /\ VII. CONCLUSIONS
-0.10 \\/ Large-eddy simulation of combustion problems requires

modeling of the subgrid-scale contributidi{Z) — f(Z2), that
-0.15 arises after filtering terms such as the reaction rate or the
0.0 0.5 1.0 1.5 2.0

radiation terms, which involve strongly nonlinear functions,
f(2), of a scalarZ.
FIG. 34. Predictions of the SGS part ©{Z). Hollow symbols correspond Reconstruction models, in which a intermediate field
to exact values and solid symbols to FDF—ARM model predictions. CirclesZy (X,t) is estimated to calculate the subgrid-scale part, have
squares, and triangles denote filter sizes of 4, 8, and 16, respectively. Vertheen discussed here, with particular emphasis on approxi-
cal solid line indicates position of the stoichiometric surfa@),=0.2. mate reconstruction using momei#RM). The pure decon-
volution procedure, Eq(14), presents two drawbacks: first,
the convergence of the Neumann series, (&§.is too slow,
nomial case is clear, and the model prediction follows nowand, second, deconvolution does not account for the unre-
the correct shape of the profile. The model prediction iscoverable subfilter scales. On the other hand, the scale simi-
slightly low, but this comes from the underprediction of the larity model, Eq.(18), only retains the leading order term of
model coefficient due to low Reynolds number effects, aghe reconstruction. The procedure of ARM, Eg0), com-
exposed previously. For high &let numbers, ax, ap- bines purely mathematical deconvolution with additional
proaches the asymptotic value, the agreement is expected physical input, namely, the expected value of the subfilter
be better. Similarly, correlation coefficients are significantlyvariance. In this work, a model spectrum applicable to the
increased, as shown in Table VI, going from 0.41 in the casenresolved subgrid scales is used, which yields the model
of the scale similarity model to 0.88 if the ARM model is coefficientcy (see Fig. 3as an explicit function of the filter
used. This is a consequence of the good spatial structusize, A;/L,, and the turbulent Réet number, Pe It has
provided by ARM model. It has to be noted as well that thebeen shown that reconstruction provides a good spatial de-
prediction of FDF—ARM model is similar to that of the scription of the subfilter variance and that ARM improves
ARM model alone for these polynomial cases. significantly the SSM prediction by adding only one addi-
Figure 34 correspond to the Arrhenius functio(Z) for  tional filtering operation(see Fig. 10
Z,=0.2. The improvement in the Arrhenius case is not very A priori studies of the ARM procedure have been carried
conspicuous for large filter sizes, because of the small sensbut with a DNS database of a spatially evolving turbulent
tivity of this particular nonlinearity to the subgrid-scale vari- plane jet for filter sized; /A of 4, 8, and 16, corresponding
ance, explained before. This behavior is observed in the exapproximately to a LES with 30, 16, and 8 points per half-
pected values as well as in the pointwise results, with thevidth of the jet at the downstream location of interest, 11
correlation coefficient being very similar in the FDF and times the nozzle width. Here}; and A4 denote filter size
FDF-ARM models, 0.94 and 0.95, respectively. The im-and DNS grid spacing, respectively.
provement is more significant for the smaller filter sizes,  The results show that the averaged profiles of the
when the influence of the subfilter variance is more notori-subgrid-scale contribution of the varian¢é,§g), agree well
ous. The same conclusions can be drawn for the densityith the exact DNS data for the two smaller filter sizes, with
function p(2). errors less than 5%. The poorer response of the model for
A further extension of the presumed FDF model, notA;/Ay=16 is expected due to the large filter size, but still
explored in this study, is to consider FDF models that in-the error is less than 15% and it is due to the lack of isotropy
volve more than two subgrid-scale mometftdRM makes  of the subgrid scales for this low Reynolds number flow and
this feasible by providing the required moments with highthe corresponding inapplicability of the model spectrum to
accuracy, as the results from the analysis involving the polyall directions. In terms of the pointwise behavior, correlation
nomial terms prove. coefficients between model predictions and exact values at
The conclusion is that, for polynomial nonlinearities, thethe centerline of the jet are high, about 0.90 for the subgrid-
ARM model by itself provides very good predictions, of the scale part and above 0.95 for the total term.
order of or better than the FDF—ARM model, and the imple-  Polynomial nonlinearities’(Z)=2" behave very simi-
mentation of the ARM is very simple, specially for high larly to the subfilter variance, and thus the results show that
Reynolds numbers when the model coefficieptis just a  the subgrid-scale part can be correctly predicted with ARM.
constant. The same applies for the Arrhenius case and thEhe density profilep(Z)=1/T(Z) has been considered for
density when the filter size is sufficiently small. For largethe typical case of methane-air combustion, wity,
filter sizes, the performance of FDF—ARM is similar to the =0.055. The errors in the prediction of the expected value
standard FDF, despite the ARM prediction of the structure ofare below 20% and correlation coefficients are of the order of

y/d,
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0.90. The Arrhenius termw(Z)=exp(—T,/T(2)) has been nomial terms, ARM is more accurate than FDF. Correlation
analyzed. For a smooth casezf=0.2 andT,/T;=10, the  coefficients forY(Z) =Z7% can be compared between Table Il
results show an error below 10% for the smallest filter size@nd Table VI. For instance, for the filter size of 16, ARM
while, for the largest filter size, these errors increase as th@ives a correlation of 0.89 whereas FDF yields only 0.41.
remainder in the Taylor’s formula, E¢29), augments, untii  The combination FDF-ARM improves significantly the per-
the order of 30%. The pointwise behavior is similar, with formance of the FDF approach because the polynomial non-
correlation coefficients between exact and predicted Va|uel§1earities have a high sensitiviFy to the subfilter variance
of the unresolved part at the locati¢) = Z., above 0.90. field, and thg results become similar tp those pf thg ARM
However, as the characteristic scai& of the nonlinearity ~aPProach. With respect to the Arrhenius nonlinearity and

w(Z) decreases, so does the performance of the ARM mode?jhensny’ it has been shown that for filter sizels such aal
as expected from the rationale behind the approach. the ARM and FDF predictions are comparaffithe subgrid-

A LES has been performed to obtarposterioriresults S_Ca!e \_/ariance for the FDF is given by f[he ARWhe scale .
on a grid having spacing;Esz 8AgDNS. The closure in the similarity model does not provide sufficiently accurate esti-

P ans S S 1 gt a0 e bl e T s o g o
mixed procedure with filter sizé\¢=2A¢"° and test filter ' g

size of 2A; . The filter in the LES approximately corresponds §ubgr|d-scale fluctuatloné_larger filter sizek the combina-

o . DNS A tion of FDF with ARM gives the best performance. ARM
to ana priori test with A;=16A4"". The main difference ives the correct spatial structure of the subgrid scalar con-
with respect to the priori context is that the two physical g b g

o . . ribution, while the FDF provi h rrect magni .
quantities required by the ARM model, a velocity sck&? tribution, e the provides the correct magnitude
and a time scalzfmsl X, are approximated by resolved values
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A detailed analysis of the error involved in the ARM APPENDIX A: LOCAL ANALYSIS OF THE FILTER
method has been presented. The first source of error lies in Consider a particular filter cefl¢(x) at a fixed point,
the assumption of isotropy of the subfilter scales and a pawhich is the domain of the mapping—G(x,r). If we as-
ticular scalar spectrum. This error is expected to decrease a&sime a positive filter, then we can define an inner product by
the Reynolds number increases, and, besides, it has been
shown that the sensitivity of the subgrid-scale variance to (qﬁ,w):j G(x,r)g(r)yg* (r)dr (AL)
errors in the model coefficient is small, about 0.25. It is @
recognized that the spectral formulation is not always appliin the linear space of square-integrable functions defined
cable (e.g., compressible cases or flows with inhomogeneover ()((x).%” The asterisk as superscript indicates complex
ities imposed on the subfilter scales, like in situations ofconjugate. We assume that the integral|¢f2 over ()¢ is
strong shear or the presence of graviyd alternatives are finite for any flow variableg(r) at any instant of time. The
currently under investigation. The second source of errorassumption of positive filter, i.eG(x,r)=0 (excluding the
associated with using the intermediate filg to compute  zero function, physically, is a necessary condition if we de-
the subgrid part of the nonlinearityZ), is estimated using a sire to maintain positiveness of the filtered quantities of posi-
Taylor expansion of (Z). This analysis shows that the ac- tive variables, like temperature, density or pressure. This in-
curacy of the model depends on how large is the magnitudaer product induces thie? norm
of the subfilter fluctuations compared toZ, a particular lbll= (b, )2 (A2)
scale for each nonlinearityf(Z). Hence, the ratio\ ' ' o
=(Z§g)1/2/AZ comes up as the controlling parameter of the  Consider a specific nodal valug(x), on the LES grid.
model, a ratio that varies with the filter size 5%, where  We take ¢(x) to be a constant value inside the associated
y=A¢/2L;. An expression to estimat&Z is given by Eq. filter cell Q¢(x) to define alocal subfilter fieldby
(38), which can be used to choose the filter size of the LES — )
in order to achieve the desired accuracy in the subgrid ¢isd")=¢(1)—¢(x), rel(x) for a fixed x.
model. Values oh for different nonlinearities and filter sizes (A3)
are reported in Table V. Note that this is different from the usual ong((r) = ¢(r)

With the aim of comparing with the ARM model, the — ¢(r). It is straightforward to show that the? norm of
assumed filtered density functidfDF) approach has been ¢, is just the square root of the subgrid-scale variance of
considered in tha priori context. With respect to the poly- at the pointx,
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TABLE VII. ARM model for different filters in the limit of high Pelet number under isotropic conditions:
subfilter variancdzgg) in the first column, followed by the recoverable part of it, model coefficignand
sensitivityI" of the modeled variance t,.

Filter Transfer function a b Co r
Top-hat sing/¢é 1.44 0.52 4.09 0.27
Gaussian expt £/6) 1.41 0.50 4.35 0.24
Top-hat and cutoff (sidgl&H(m—¢&) 1.44 0.52 4.85 0.23
Gaussian and cutoff expE@l6)H (m— &) 1.41 0.50 4.49 0.24
Mid-point and cutoff 2(1+cosH(m—&) 1.64 0.57 472 0.23
Simpson and cutoff 2(2+cosH(m—&) 1.40 0.50 4.31 0.24
— 2\1/2 i i i i
[ p1sdl= (s ™. (Ad) Finally, we consider the sign of the subgrid scale part of

) _ o a nonlinearity f(¢). If this function has globally non-
This result is the motivation to have used th& norm, for negative curvaturef”(¢)=0, then the inequality

the ARM model is designed to provide accurately the point-

wise instantaneous value of the subgrid-scale variance in a f(#)=f(#o)+ ' (do) (¢~ o) (A10)
LES, and this quantity iilenticalto theL? norm of the local  holds for any¢ and ¢,. If ¢, is considered constant and
subfilter field in€(x). equal tog and this equation is filtered, the order relation is

Itis convenient to take the expected value of the previmaintained by the positive filter to yield
ous pointwise quantity, which leads to the inequality _
f"(¢)=0, Vo=1(4)—f(¢)=0.

(212
<”¢|Sg“> <¢Sg> ' (45) Examples considered in this paper that fall into this case are
This is proved considering the probability density functionsthe polynomials and the density profile of Fig. 12. Similarly,
Pg(G) and py(H) of the random variableg= 3, andh it can be proved that if(¢) is convex, then the subgrid scale
=g'% respectively. Then, basic probability theory showspart is negative; the typical example would be the tempera-
that p(H)=2Hpy(H), where H<0.25 because of Ed. tyre as a function of the mixture fraction. There are nonlin-
(A6), having then(h)=<(g). The last step i$g)<(g)"*be-  earitiesf(¢) that are convex in some regions and concave in

causeg<1, obtaining the desired result. others, for instance the Arrhenius term, displayed in Fig. 14,
Afew useful relations are now derived. First, itis easy toor the radiation loses proportional to the fourth power of the
show that the inequality temperature in the optically thin regime; their subfilter part
YPEER can be either positive or negative.
0=¢Z=¢(1-¢) (A6) P 9

always holds for a field(x) satisfying G<=¢=<1, as it is the  APPENDIX B: RESULTS FOR OTHER FILTERS
case for the mixture fractiod or the species mass fractions ) ) . .
Y;. In general, all we require is boundedness, for then we For completeness, we consider here various filters in ad-

can just think in terms of a normalized field; for instance, thedition to the top-hat and calculate some results presented
temperature is going to be bounded from above by the adi;prewously for the top-hat. Isotroplc turbulence at.hlglu:lée
batic flame temperature, S&/T; remains between 0 and 1. Numbers is always assumed, in order to work with the spec-
The first part of the above inequality holds for any positivetra| formulation. Thg data are gathered in Table VII. First, 'Fhe
filter, since the Cauchy—Schwarz inequality, along with thedmount of fluctuation energy represented by the subfilter

normalization condition of5(x,r), yields scales,
|p|2< ¢? (A7) a=(Z2)/(Z4Cov?d) (B1)
and the positiveness of the filter ensuéso if $=0. The given by Eq.(12), is calculated, along with the recoverable

part of it, <z§g>r , given by that same integral in the interval
second part follows because [0.7],

OS¢$1:¢2$¢:>?<g:?—gzsg—gz, (A8) b=<Z§g>r/<Z§g>- (B2)

where the positiveness @&(x,r) is required again in the Recal thaty=A/2L, is the normalized filter width. Second,
second implication. Hence, an upper_bound to the subgridp,e ARM model coefficient,, Eq. (23) and Eq.(44), and

scale variance is 0.25, the maximum§f1 - ¢). the sensitivityl', Eq. (27), are computed.
Following the same reasoning, i.e)'<¢" <4, Eq. The kernel for theGaussian filtet" is
(A6) can be generalized to higher order moments, obtaining 21 )
_ - G(r)=(6/mA%)Y2exp —6r2/Af). (B3)
D= dlg 1T " HLI-P)=p(1-g" Y. (A9)

The effect of the grid cutoff aA; (which means a grid spac-
This relation can be used as a constraint in any presumedg Ag=A¢/2) is expressed by the spectral low-pass filter
FDF model that depends anmoments. H(7m—§), where H(¢) is the Heaviside function and
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2
z/h zh

FIG. 35. Effect of sampling the scalar field in theoriori results. From left to right, contour plots at the pladé=11.0: (a) Z, (b) Zﬁg with a top-hat filter
of A¢/A4=16, and(c) Z§g with a top-hat filter ofA /A= 16 plus sampling ad /2.

=vklL,. The last two cases represent the usual discrete vedesired using an interpolation. The aliasing error in the sam-
sion of the top-hat, depending on the integration rule emypling, if done after filtering, involves less than 1% of the
ployed. Themidpoint filteris given by subgrid-scale energy, corresponding to the lobes of the top-
_ B hat filter transfer function for>27/A¢. This estimate is
G(r)=1/4(5(r + A4/2) +26(r) + 5(r = A¢/2)), (B4) obtained using the same kind of analysis that yields(E2).
and theSimpson filteiis expressed by The energy in excess in the DNS grid is

G(r)=1/6(8(r +A2)+48(r)+ 8(r—A2)).  (B5)

2 2/3 H 2¢£—5/3
It is worth noticing that these last two discrete filters, repre-(zrmsccy )L (singfg)"e =rde
sented in a continuous fashion with the aid of the delta func-
tion, do not include a spectral cutoff, and this has to be 20'0074Zf2m5C°72/3)’ €D
additionally imposed to represent the effect of the grid. less than one per cent of the result in EtR).

From the numbers of Table VIl it is clear that there is As a consequence, results were practically the same be-
little difference among the various filters. Reconstruction altween using the DNS grid or the LES grid. The pointwise
lows to recover about 50% of the subfilter energy for everybehavior is also similar, as shown in Fig. 35, where differ-
filter, as shown by the parametbr The model coefficient ences of the ﬁele§g in the DNS grid and the LES grid are
does not vary considerably. The mean valuepis 4.5 and  very small.
all the filters have a model coefficient in a range of4064.

Note that although the spectral cutoff means less than 1% of
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