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The effect of nonvertical shear on turbulence in a stably stratified medium

Frank G. Jacobitz and Sutanu Sarkar
Department of Applied Mechanics and Engineering Sciences, University of California, San Diego, La Jolla,
California 92093-0411

(Received 2 January 1997; accepted 5 January)1998

Direct numerical simulations were performed in order to investigate the evolution of turbulence in
a stably stratified fluid forced by nonvertical shear. Past research has been focused on vertical shear
flow, and the present work is the first systematic study with vertical and horizontal components of
shear. The primary objective of this work was to study the effects of a variation of the éngle
between the direction of stratification and the gradient of the mean streamwise velocityd from
=0, corresponding to the well-studied case of purely vertical shea#=ta/2, corresponding to
purely horizontal shear. It was observed that the turbulent kinetic efergyolves approximately
exponentially after an initial phase. The exponential growth yatéthe turbulent kinetic energi

was found to increase nonlinearly, with a strong increase for small deviations from the vertical,
when the inclination anglé was increased. The increased growth rate is due to a strongly increased
turbulence production caused by the horizontal component of the shear. The sensitivity of the flow
to the shear inclination anglé was observed for both low and high values of the gradient
Richardson number Ri, which is based on the magnitude of the shear rate. The effect of a variation
of the inclination angled on the turbulence evolution was compared with the effect of a variation

of the gradient Richardson number Ri in the case of purely vertical shear. An effective Richardson
number Rji; was introduced in order to parametrize the dependence of the turbulence evolution on
the inclination angle with a simple model based on mean quantities only. It was observed that the
flux Richardson number Ridepends on the gradient Richardson number Ri but not on the
inclination angled. © 1998 American Institute of Physid$§1070-663(98)00905-3

I. INTRODUCTION addressed the Reynolds number dependence of the turbu-
. . L lence evolution. The experimental investigations were
Stably stratified shear flow is an ubiquitous feature Ofcomplemented by direct numerical simulations by Gerz
fluid motion in the geophysical environment. Consequentlyet al.® Holt et al.1% and Jacobitzet al*! In these simula-
much attention has been drawn to the turbulence evolution iﬂons1 the depenc’ience of the turbulence evolution on a wide
vertically stably_ stratified and ve_rtically shgared f!ow moti- rangé of parameters was addressed. Gerl. studied the
vated by oceanic gnd at.mosphenc apphcahb?zﬁhze IMPOT™ hccurrence of counter gradient buoyancy fluxes at high Ri-
tance r?f the gradulgqtnl?\’fmhardson numbt_evtﬂﬁl /Sh’ where chardson numbers. Hodt al. addressed the Reynolds num-
v,\\llali éisecs\:grnet dveﬁﬁ; bryeqel:]eersgill, ;gcfn:;% s'l?hz Zs;"r?:’ ber dependence of the turbulence evolution. Jacadditl.
investigated the possibility of Reynolds number indepen-

tion of linear inviscid stability theory by Milésand Howard ) .
established Rt 1/4 as the sufficient condition for stability in dre]nce at hl')gh llz/eynolhdlshnymtr)]ers qnd ;he mfluencel of fthe
a stratified shear flow. More recently, laboratory experiment§ ear numbeBSK/e, which is the ratio of a time scale o

and direct numerical simulations have been performed in oriurbuléncek/e to the time scale imposed by the shezs.1/

der to study many aspects of the turbulence evolution iffi€r€K is the turbulent kinetic energy andthe turbulence
vertically stratified and vertically sheared flow. The evolu-dissipation rate. Kaltenbacht al.* performed large eddy
tion of turbulence in vertically stably stratified andnverti- ~ Simulations of vertically stratified and vertically sheared
cally sheared flow has received considerably less attentiorflow- In addition, passive scalars with linear gradients in all
The present paper appears to be the first systematic study girections were introduced. It was observed that these scalars
nonvertical shear flow. mix more efficiently in the horizontal than in the vertical.

A number of laboratory experiments on vertically strati- ~ Work on nonvertically sheared flow in a vertically stably
fied and vertically sheared flow have been performed. Kostratified fluid is restricted to Blumert$ application of
mori et al® investigated the turbulence structure in a strati-Howard’s semicircle theorem to such a flow. Nonvertical
fied open-channel flow. Experiments on the evolution ofshear flow in a stratified fluid occurs and has been studied
homogeneous turbulence in stratified shear flow were peiindirectly in experimental investigations of waké$® and
formed by Rohret al.” using a salt-stratified water channel, jets'® in a stratified medium. No previous laboratory experi-
and by Piccirillo and Van Atfausing a thermally stratified ments or numerical investigations of the evolution of homo-
wind tunnel. ltsweireet al. confirmed the importance of the geneous turbulence in a nonvertical shear flow with vertical
gradient Richardson number Ri and Piccirillo and Van Attastratification are known to the authors. This is surprising as

1070-6631/98/10(5)/1158/11/$15.00 1158 © 1998 American Institute of Physics
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this type of flow occurs frequently in environmental and en- X

gineering applications. Examples are flow over topography, —
river inflow into the ocean, or effluent discharge by power %

plants. The absence of previous work together with the wide U
range of applications are the primary motivation for the cur-
rent study.

In vertical shear flow, the gradient Richardson number is p
usually defined with the vertical shear rate. In the case of
more complex shear flows with additional nonvertical shear
components, the definition of Ri may need to be modified. InFiG. 1. Sketch of the mean velocity with vertical shear and the mean density
nonvertical shear flow, we choose to define the gradient Riwith vertical stratification. This case correspondsfte0.
chardson number as RN?/S?, whereS is the magnitude of
the shear rate. This selection is motivated by the observation » ) o
thatN is an external frequency scale imposed by the gravity The decomposition of the dependent variables is intro-
acceleration and the mean stratification, wiSlés a distor- duced into the equations of motion, and the following evo-
tion scale imposed by the mean velocity gradients. Therelution equations for the fluctuating parts are obtained:
fore, the Richardson number RN?/S?, the square of the au;

X

1

ratio of the two time scales, is a measure for the competm%f 0, (4)
effects of mean stratification and mean shear.

In Sec. Il the equations of motion are presented. In Seciu; du; au;
Il the transport equations for second-order moments are disgr Y 7x. ox; (S sin 6x,+ S 0S 6x3) - Iy
cussed. The numerical method is summarized in Sec. IV.
The results of direct numerical simulations are presented in (S Sin 6u,+S cos 6ug) 6,
Sec. V, and in Sec. VI the effective Richardson number is 1 op u; g
introduced. In Sec. VIl the influence of additional parameters =-———+v — pdis, (5)
on the turbulence evolution is discussed. Section VIl con- Po 9% (3X1-07X] Po
tains a summary of the work presented here. ap p (;p

P - tuj —— o -+ (Ssin 6x,+S cos&x3) +S oUs
(3’2p
Il. EQUATIONS OF MOTION = . (6)
t?X'(?XJ'

This study is based on the continuity equation of an in-
compressible fluid, the three-dimensional unsteady Navier
Stokes equation in the Boussinesq approximation, and a
transport equation for the density. In the following, de-
notes thath component of an orthonormal Cartesian coordi-
nate systemlJ; theith component of the total velocitg, the In this section the transport equations for second-order
total density, and® the total pressure. The dependent vari-moments are introduced. The overfaadenotes the volume
ablesU;, ¢, andP are decomposed into a mean pate- average ofa. The transport equation for the velocity corre-
noted by an overbaiand a fluctuating pasdenoted by small  |ation R; i =TUJ' is derived from Eq(5),
letters:

Hereg is the gravity acceleration; the kinematic viscosity,
‘and « the scalar diffusivity.

llI. TRANSPORT EQUATIONS

d

Ui=Ui+u;, e=g+p, P=P+p. (1) g; Ri=Pij—Bij+ 1L — €, @)

The mean streamwise velocity=(U,,0,0) is unidirectional P;j=—Ssin 6u, U25.1 S cos gmgil

and has constant horizontal and vertical shear rates - N

AU 119x,=S,=S sin 6 and dU, /dxg=S;=S cos ¥, respec- =S sin fu;u; 8y, — S €os OU;Uz 6, 8
tively. The mean density has a constant vertical stratification

rate 9o/ dxs=S,. Thus, x,
_=(S sin 0X2+S Ccos 0X3) 5il! Q_z p0+ SpX3. (2) X2

Therefore 6=0 corresponds to the well-studied case of
purely vertical shear shown in Fig. 1, artd= w/2 corre-
sponds to the case of purely horizontal shear shown in Fig. 2. U
It is assumed that a mean pressure gradient balances the p

mean buoyancy force: <
— 1

P
O=— —— g(po+ pr3)' (3) FIG. 2. Sketch of the mean velocity with horizontal shear and the mean
(2 density with vertical stratification. This case correspondg=om/2.
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By= - (Upda* Upda) O S St p o
Hij:i (ﬁ ﬂ) 10 B 1+Pr p. ﬁu3. o1
po \9X; X Pr axk IXy
au; du; FinaIIy_ a transport equation for the density fluctuations can
€j=2v (9—)(k a_xk (11 by derived from Eq(6):
Here P;; denotes the turbulence production terB); the %5_ S pu3 2a j_)z(;_)i' (22)

buoyancy term[I;; the pressure—strain term, arg the
turbulence dissipation term. Note that the turbulence producry,q transport equation for the turbulent kinetic enekgy
tion term appears only in equations for velocity correlat|0ns,_u u;/2 is:

that contain the streamwise velocity component, and that the
buoyancy term appears only in equations for velocity corre-  d

lations that contain the vertical velocity component. The  dt K=Py+P3—B—¢, (23
equations for the components of the velocity correlation ten-
sor are: P,=—S sin Au,u,, (24
g YU = —2S sin 6uu,— 28 cos fuyus+ Ty~ €y, P3= S cosfusus, (25)
g R
(12 B=—Usp, (26)
d Po
gt Y2u2= 2o~ €2, (13 au; du; )
. g E=TV 0_)(k (5'_)(1( ( 7)
gt Ysus= —2% Ugp + 1153~ €33, (14 HereP, is the turbulence production term due to horizontal
sheardU,/dx,, P3 the turbulence production term due to
i_——Ss'n G0t — S COS OUntat TLaoe vertical sheardU,/dx3, B the buoyancy term, and the
dt Y1427 N GUUz Uzla™ 2™ €12, dissipation term. The total turbulence production is given by
(15 P=P,+P3. The potential energi, is computed from the
density fluctuations:
& U1U3:_S sin 0U2U3_S Ccos 6U3U3_g@+nl3 1 g .
Po K,=5 pp. (28)
2 pO|Sp|
— €13, (16)
d g . IV. NUMERICAL APPROACH
gt Y2Us= — Upp+ 1153~ €z3. (17 . _ . _
PO The equations of motion are solved using a direct nu-

merical approach. All dynamically important scales of the
velocity and density fields are fully resolved. A method of
lines approach is used where a spatial discretization is first

The transport equations for the density fluxep are
derived from Eqgs(5) and(6):

d — — — — performed in order to obtain a semidiscrete system of ordi-
gt Uip=—Ssin 0Uyp iy = S €OS Buzp Siy — S,UiU3 nary differential equations. Then the system of equations is
. integrated to advance the solution in time. The spatial dis-

g — 1 dp 1+Pr dp dy; cretization is accomplished by a Fourier collocation method,

o ppIigt —- p ax Pr U ax, axg which yields high accuracy but can be used only for prob-

(19 lems with periodic boundary conditions. Following a method

originally used by Rogalld’ the equations of motion are
The components of the above equation are: transformed into a frame of reference moving with the mean
flow in order to allow periodic boundary conditions on the

U;p=—Ssin Ou,p—S cos Buzp—S u1u3 fluctuating parts of the dependent variables. The temporal

dt advancement is accomplished by a low-storage, third-order
1 Tp 1+Pr 2p ou R_ungefKutta schem_e. T.he initigl conditions are taken from a
—p— y 1 (19) simulation of decaying isotropic turbulence and allow for
o’ oxi  Pr U ax axy large scale growth. A computational grid with £4goints
R was used for all simulations. The evolution of the largest and
d — — 1 dp 1+ Pr 07’) ‘9u2 (20) smallest turbulence scales was monitored to ensure a proper

T Up=—S Uzus+ p v - ) ;
dt X Pr (9X X resolution of the simulations.
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FIG. 3. Evolution of turbulent kinetic enerdy as a function of the incli- FIG. 4. Dependence of the asymptotic value of the growth fats the
nation angled. The dashed lines are the exponential approximation to theinclination angleé.
solution.

The code developed during our previous study of turbuWhich corresponds to the case of purely vertical shear shown
lence in a stratified fluid with vertical shear only<£0) in Fig. 1, the turbulent kinetic energy continues to decay
discussed in Jacobitet al*! was modified to account for a throughout the simulation. In this case the stratification in-
variable shear inclination angle The governing equations fluences the shear production of turbulence directly. When
were written in a frame of reference;(,x;,x3) wherex is ~ the angled is increased, the decay & is less strong. For
coincident with thex, direction. Thex; andx; axes lie in the = /8 the turbulent kinetic energy remains constant in time.
same plane as the, andx; axes but are rotated around the For larger anglesy the evolution of the turbulent kinetic
x, axis by the inclination anglé with respect to the, and ~ energy changes from decay to growth. For m/2, which
x5 axes. The advantage of this new coordinate system is thg0rresponds to the case of purely horizontal shear shown in
there is a single mean shear compongatdU}/dx5, and Fig. 2, the turbulent klnetlc energy grows the strongest.
the standard Rogallo transformation can be applied. In th&lowever, the growth oK is not as strong as in the unstrati-
new coordinate system, there are two gravity componentfiéd case(labeled R=0 in Fig. 3 suggesting an indirect
g,=g sin @ in the spanwise directior}, andg;=g cosé in influence of the stratification on the turbulence production as
the shear directiox} as well as two stratification compo- discussed below. _ o
nentsS, sin 6 and S, cosé, respectively. However, the ad- In the case of purely vertical sheaf<0), the stratifi-

ditional gravity and stratification components do not requirecation influences the shear production directly. Buoyancy
any additional technique in the simulation. fluxes decrease the vemcal velocity fluctuatplyyg, [see_
Eq. (14)] and the magnitude of the 1-3 velocity correlation
V. RESULTS u,us [see Eq(16)]. Therefore the vertical shear production
P;=—S cos#u,us is directly reduced by buoyancy fluxes. It
. o ) was shown in previous investigatidri§** that the primary
d|f_ferent shear inclination angle®are pr_e_sented. .A.‘” SIMU- " affect of stable stratification is to decrease the shear produc-
lations were started from the same initial conditions taken[ion and, to a smaller extent, act as a sink for turbulent ki-

grom .? sllclmutlatut).n of dfﬁay'lgg r:so(tjroplc turblélerlcﬂiizv/vgzhout netic energy through the buoyancy flux. In the case of purely
ensity tluctuations. € Richardson number= horizontal shear §= 7/2), this direct mechanism of stabili-

=0.2 (where N*= —9S,/po is the Brunt—\/.a?‘:?ia fre- zation does not exist. The buoyancy fluxes still decrease the
quency, the Prandtl number Prv/a=0.72, the initial value o a1 yelocity fluctuations and the 1-3 velocity correla-
of the Taylor mmroscgle Reynold; number ”Rﬁ)‘h.} tion. However, there is no direct influence on the 1-2 veloc-
=33.54 (whereq_: V2K is the mfa\gnltude of the V?"_)(,:'ty' ity correlationu,u, [see Eq.(15)] and the horizontal shear
and A =5vq°/e is the Taylor microscaje and the initial productionP,= — S sin Au;u,. Only a redistribution through

value of the shear numb&K/e=2.0 are fixed. The Rich- pressure—strain terms leads to an indirect influence of

ardson number and thze shear numk;er are based on the MaGFatification on the turbulence evolution in the case of purely
nitude S= \/(dulldxz) +(dU;/dx3)° of the shear rates. pgrizontal shear.

While the Richardson number and the Prandtl number re- |+ \vas found that the asymptotic evolution of the turbu-

main constant, the Reynolds number and the shear nUmMbgLy; kinetic energy follows approximately an exponential

evolve as the simulations are advanced in time. ~_law. In this case the exponential growth rate obtained from
Figure 3 shows the evolution of the turbulent kinetic Eq. (23

energyK as a function of the nondimensional tingt for
different inclination angle®. Initially K decays in all simu- _ 1 dKk_ Pa Ps B €
lations due to the isotropic initial conditions. Fa@r=0, YT SK dt SK SK SK SK/)’

In this section the results of a series of simulations with

(29
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FIG. 5. Evolution of the normalized turbulence dissipate8K as a func-
tion of the inclination anglé.

FIG. 7. Evolution of the normalized vertical turbulence productiy SK
as a function of the inclination angie

reaches an approximately constant value. Then the equation

can be integrated and the exponential law
_ lence productiorP;/SK due to vertical shear. It vanishes for

K=Ko exp(ySY (30 the case of purely horizontal shed= 7/2) and increases as
is obtained. This exponential assumption is shown as dasheHe inclination angled is decreased. The normalized vertical
lines in Fig. 3. It approximates the asymptotic evolutionproduction P;/SK decreases throughout the simulation of
well. The constant of integration is used to fit the graphs. Theurely vertical sheard=0) due to the low Reynolds number
dependence of the asymptotic value of the growth saten  of this strongly decaying case. The other cases reach an as-
the inclination angle is shown in Fig. 4. The growth ratg  ymptotically approximately constant vertical production
increases strongly for€Q < x/4 and continues to increase P;/SK. Figure 8 shows the evolution of the normalized tur-
mildly for w/4< #<=/2. In the following, the dependence of bulence productiorP,/SK due to horizontal shear. It van-
each term on the right-hand side of Eg9) on the inclina- ishes for the case of purely vertical shea#=0), which
tion angled is discussed. includes the simulation of unstratified turbulence €Ri).

Figure 5 shows the evolution of the normalized turbu-As expectedP,/SK increases as the anges increased.
lence dissipatiore/ SK. It appears that the normalized dissi- Due to the effect of buoyancy that exists &t shear
pation does not depend on the inclination anglén Fig. 6, inclination anglesé, the total normalized production rate
the evolution of the normalized buoyancy flB/SK is P/SK (whereP=P,+ P3) of the stratified cases is always
shown. In the asymptotic regime, the normalized buoyancgmaller than the total normalized production rate of the un-
flux increases with increasing angle The asymptotic value stratified case as shown in Fig. 9. Furthermore, since the
of the normalized buoyancy flux is about twice as large ineffect of buoyancy acts directly in the vertical direction, the
the case of purely horizontal shed= 77/2) compared to the normalized turbulence productid? SK in the case of purely

Figure 7 shows the evolution of the normalized turbu-

case of purely vertical sheab€0).

0.15 T T T T i T 0.40
0.30
0.10
B/SK P/SK 0.0
0.05 H
0.10
/ ]
! /98=0 e
0.00 . . . 0.00 ! L A
0.0 5.0 10.0 15.0 20.0 0.0 5.0 10.0 15.0 20.0
St St

FIG. 6. Evolution of the normalized buoyancy flB{SK as a function of
the inclination angle.

FIG. 8. Evolution of the normalized horizontal turbulence production
P, /SK as a function of the inclination angie
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FIG. 9. Evolution of the normalized turbulence producttSK as a func-  FIG. 10. Evolution of the Reynolds stress anisotrbgyas a function of the
tion of the inclination anglé. inclination angleé.

vertical shear is smaller than the normalized turbulence pro-

duction in the case of purely horizontal shear. of simulations with constant gradient Richardson numbers Ri
The observation of a |arger Stab|||z|ng effect of Stab'ebut different inclination angle@ discussed in Sec. V. Again,

vertical stratification in the case of vertical shear relative to?n exponential evolution of the turbulent kinetic enekjy

horizontal shear is consistent with the transport equations fofas observed as shown in Fig. 12. The turbulent kinetic

the second-order moments. A buoyancy term appears denergyK decays for large Ri and grows for small Ri. The

rect]y in Eq. (14) for the vertical Ve|ocity Variancm, value of the critical Richardson number, for whi¢h re-

reducing@_ A buoyancy term also appears in Emﬁ) for mains constant in time, is abOUtCRi: 0.138 in this series of

the 1-3 velocity correlation;us, and it reduces the magni- simulations. The dependence of the asymptotic value of the

tude of U Uz in addition to the reduction fronuizuz. The growth rate y on the gradient Richardson number Ri is

decreasedu;U; reduces the vertical production rafe,  Shown in Fig. 13. In agreement with Jacobézal'' the

=—Scoshuuz. A similar direct influence of buoyancy on growth ratey decreases approximately linearly with increas-

the horizontal production rat®,=—S sin 6u;u, does not ing Richardson number Ri. The following relationship was

exist, because a buoyancy term neither appears ifE)y. obtained from linear regression:

for @nor in Eq.(15) for uyu,. The 2-3 velocity correla- y=0.1566)— 1.134)RIi. (31)

tion u,u; remains small compared tou, andu,u;. How- . . .

ever, there is an indirect effect of gravity through the In the oceanic and atmospheric environment, the flux

pressure—strain terms on the horizontal turbulence producichardson number RiB/P is frequently used instead of
tion as shown in Fig. 8 by the reducd,/SK at = /2 the gradient Richardson number Ri. The flux Richardson

with respect to the unstratified case. number Rj can be related to the gradient Richardson number

The anisotropic action of buoyancy in the vertical direc-Ri: if an eddy diffusivity model is used:
tion is evident in the evolution of the Reynolds stress anisot-
ropy tensor. In Fig. 10 the anisotropys is shown, on which
the normalized vertical production ras /SK depends. The 0.05 . . . .
magnitude of the anisotroply,; decreases with increasing
angle . On the other hand, the magnitude of the anisotropy

b, increases with increasing angéeas shown in Fig. 11. 0.00 ¢

The anisotropyb;, determines the normalized horizontal

production rateP, . -0.05
blz

VI. THE EFFECTIVE RICHARDSON NUMBER ~0.10

In this section, the effective Richardson numbeg;R$
introduced in order to parametrize the dependence of the —0.15
turbulence evolution on the shear inclination anglén ad-
dition, the relationship between the effective Richardson

It

- i i ~0.20 —
number Riz, the flux Richardson number Riand the gra- 50 10.0 15.0 20.0

1

0.0
dient Richardson number Ri is discussed.

A series of simulations with different gradient Richard-

son numbers _Ri but purely ve_rti_c_al shea_r_was perform?dFlG. 11. Evolution of the Reynolds stress anisotrbpyas a function of the
These simulations matched the initial conditions of the seriesiclination angleé.

St
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FIG. 12. Evolution of the turbulent kinetic enerdy for different gradient ~ FIG. 14. Evolution of the flux Richardson number; Rir different gradient
Richardson numbers Ri in the case of purely vertical sh@arQ). The Richardson numbers Ri in the case of purely vertical shéarQ).
dashed lines are the exponential approximation to the solution.

- where an increase of the turbulent Prandtl numbemith
B g Uusp @ gS, Ri increasing Richardson number Ri is observed only at larger
Rir=p5=" Po SU UL T e S PR (32 Richardson numbers Ri0.25, beyond the scope of the cur-
173 rent work. Figure 15 shows the evolution of the flux Rich-
Here u;=u; and uj=u, sin +uzcosé are the velocity ardson number Rifor different inclination angle® and con-
components in the plane of sheat=—uzp/S, is the eddy stant gradient Richardson number=Rl.2. The asymptotic
diffusivity of the density fieldy,= —uju3/Sis the eddy vis- value of R} remains very close to the value of R0.2.
cosity of the velocity field, and Pr v/« is the turbulent Therefore the turbulent Prandtl numbeg Rragain close to
Prandtl number. Therefore the flux Richardson numbegr Rione.
coincides with the gradient Richardson number Ri, if the In the case of nonvertical shear it was shown in Fig. 4
turbulent Prandtl number Pis equal to one. that the growth ratey depends on the inclination angéefor
The evolution of the flux Richardson number;R$ a constant gradient Richardson number Ri. Using the linear
shown in Fig. 14 for different gradient Richardson numbergelationship(31) between the growth ratg and the Richard-
Ri in the case of purely vertical shear. For all gradient Rich-son number Ri, an effective Richardson numbeg;Ran be
ardson numbers Ri, the flux Richardson numbgreRbolves  computed from the growth rateg observed at an anglé.
to a constant asymptotic value that is close to the correTherefore the effective Richardson numbeggRif a nonver-
sponding value of the gradient Richardson number Ritical shear flow is defined to be equal to the gradient Rich-
Therefore, in the parameter range considered here, the turbardson number Ri of a purely vertical shear flow with the
lent Prandtl number Premains always close to one. This same growth ratey. The dependence of the effective Rich-
agrees with previous simulations by Schumann and ¥erz ardson number R4 on the inclination angle is shown in
Fig. 16. The effective Richardson numberRdecreases
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0.50 —_— ———
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0.10 .
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FIG. 13. Dependence of the asymptotic value of the growth yade the
gradient Richardson number Ri for the case of purely vertical sheéar ( FIG. 15. Evolution of the flux Richardson number; Rir different inclina-
=0). tion anglesé.
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FIG. 16. Dependence of the effective Richardson numbgy &i the incli- FIG. 17. Evolution of the turbulent kinetic enerd¢y for different shear

nation angled. The diamonds represent the direct numerical results, theinclination angless in the case of strong stratification with RR.0.
dashed line represents E®3) and the solid line represents E@4).

with increasing anglé), because the stabilizing influence of Study the influence of additional parameters. First, the per-
sistence of the shear inclination angle effect in strongly

stable stratification decreases as the shear inclination @ngle o ) i i )
is increased fromp=0 (vertical shearto 6= /2 (horizontal stratified, high Richardson number flow is studied. Then the

sheay. In the following paragraphs two possible models for nfluénce of a high initial shear number is discussed.
the observed dependence are discussed. In the first series of simulations discussed in Sec. V, the

First consider the plane of shear defined by the velocity®€@r inclination anglé was varied fromp=0 to §=m/2 to

componentsu; and U, sin 6+u; cosé. This plane is the study the influence of the inclination angle on the turbulence
(x1,x3) plane discussed in Sec. IV on the numerical ap-volution. All other parameters were fixed in these simula-

proach. The mean sheracts only in this plane. The com- tions. In the_ secor_ld series of simulati(_)ns discu_ssed in Se_c.
ponentsg cosé and S, cos# of the gravity constanyg and YI' the g_r_ad|en_t R|c:ardson numbe_r R.' \;\I/as varied frr]om Ri
the stratificatiors, act also in this plane. Under the assump-g? to Ri=0.2 In oraer to compare Its Influence on t € tur-
tion that the componentg sin ¢ and S, sin ¢ outside the ulence evolution in vertically stratified and vertically

plane of shear do not influence the evolution of turbulenceSheared flow with the effects of a variation of the inclination

the effective Richardson number can be written as: angled in vertically stratified and nonvertically sheared flow.
Both parameters influence the growth ratef the turbulent

Rigyr=Ri cos’ 6. (33 kinetic energyK. Since stratification effects are often param-

This relation is shown as a dashed line in Fig. 16. It does nogtfizéd by the gradient Richardson number Ri, the shear in-
fit the numerical data well and leads to large errors at largé&lination angle effect was parametrized by the introduction
values of the inclination anglé, because it does not take the Of the effective Richardson numberRi The second series
effect of buoyancy outside the plane of shear into account.of Simulations covers only a limited range of Richardson
In a second approach, the sh&cos4 in the direction numbers that result in growth rates similar to those observed
of gravity ands sin 6 perpendicular to the direction of grav- [N the first series of simulations.
ity are weighted differently. Since the horizontal component ~ An additional series of simulations performed to study
Ssing is not directly influenced by gravity, it is given a the influence of the shear inclination angle on the turbulence

larger weight than the vertical componehitosé. Then the evolution at a large gradient Richardson number is now dis-

effective Richardson number Rican be written as: cussed. The objective of these simulations is to confirm that
. the sensitivity to the inclination angl as seen in the results
Ri.— R (34) presented in Sec. V with Ri0.2, persists in a strongly strati-
" cod 9+a sir? 6° fied medium with Ri=2.0. All simulations were started from

the same initial conditions with Ri2.0, P=0.72, initial
Re =33.54, and initialSK/e=2.0. Figure 17 shows the evo-
lution of the turbulent kinetic energi as a function of the
nondimensional timét for different anglesd. For all cases
the turbulent kinetic energlt decays due to the strong stable
stratification. However, the growth ratesvary for different
anglesé. Figure 18 shows the dependence of the growth rate
The primary aim of this work was to study the influence y as a function of the anglé for Ri=2.0 (open diamonds
of the shear inclination anglé on the dynamics of turbu- and Ri=0.2 (filled diamond$. Both series show a qualita-
lence in stratified shear flow, keeping other parameters cortively similar increase of the growth ratg with increasing
stant. However, more simulations have been performed tangle . In agreement with the Ri0.2 case, the asymptotic

Herea=2.7 is the weight given to the horizontal component
of shear. Equatioii34) is shown as a solid line in Fig. 16. It
fits the numerical data relatively well for a simple model
based on mean parameters of the flow.

VII. INFLUENCE OF ADDITIONAL PARAMETERS
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FIG. 18. Dependence of the growth raten the shear inclination angi#in FIG. 20. Evolution of the turbulent kinetic enerdy for different shear
the case R#0.2 (filled diamond$ and Ri=2.0 (open diamonds numbersSKi/e in the case of purely horizontal sheat= 7/2).

value of the flux Richardson number ;Ri0.3—0.4 was o o
found to be relatively insensitive to the angle variation in the( ¢=77/2) 10 ascertain if the shear number effect persists in
strongly stratified Ri 2.0 case. The large value of the turbu- the case of purely horizontal shear. Figure 19 shows the evo-

lent Prandtl number P£5—7 agrees with the results of lution of the turbulent kinetic energl{ for different initial
Schumann and Gels. shear numbers in the case of vertical shear. The simulations

Now consider only the case of purely horizontal shear’Ve'® started from the same initial cond|t|(_)ns _W|th=R].1,
(6=m/2). The Ri=0.2 case shows strong growth Kfas Pr=0:72, and Rg=33.54. The turbulent kinetic enerdy
discussed in Sec. V. The RR.0 case, on the other hand, 9"0ws for the cases with initigbK/e=2.0 andSK/e=6.0
shows a slight decay d€. Therefore strong stable stratifica- Put decays for the case with initi@K/e=14.0. Figure 20
tion is able to suppress the growth Kfin the case of hori- SNows the evolution dof in the case of horizontal shear. The
zontal shear despite the absence of the direct mechanism tiifnulations were started with the same initial conditions with
is responsible for the suppression of growth in the case ofRi=0-2, Pr=0.72, and Re=33.54. The turbulent kinetic en-
vertical shear. However, the value of the critical Richardsorr9y 9rows strongly foBK/e=2.0 but grows only mildly for
number R}, at which growth is suppressed is about an order>/€=14.0. Figure 21 shows the corresponding growth

of magnitude larger in the case of horizontal shear comparefftes - The cases with high initial shear numbers finally
to the case of vertical shear. result in an evolution with a smaller exponential growth rate

than the corresponding cases with low initial shear numbers.

the turbulence evolution in vertically sheared and stratified! "erefore the stabilizing effect olflhigh shear number flow
flow as discussed in Jacobitt all! Therefore additional that was observed by Jacobi#tral™" in the case of vertical

simulations with high initial shear numbers were performedS€ar Persists in the case of horizontal shear.
in purely vertical sheard=0) and in purely horizontal shear

The shear numbegK/e has an important influence on
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FIG. 21. Dependence of the growth rageon the initial value of the shear

FIG. 19. Evolution of the turbulent kinetic enerdy for different shear  numberSK/e in the case of purely horizontal shedilled diamond$ and
numbersSK/e in the case of purely vertical sheaf<0.0). purely vertical sheafopen diamonds
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VIIl. CONCLUSIONS model was used to capture the dependence of the effective
Richardson number Rj on the anglef. In this model the
The effect of both vertical and horizontal shear compo-horizontal component of shear is weighted more strongly
nents in a vertically stably stratified fluid has been investi-than the vertical component of shear, because the horizontal
gated using direct numerical simulations. To the best of outomponent of shear production is not directly influenced by
knowledge, no such study, either experimental or numericabuoyancy and therefore contributes more strongly to the net
has been performed previously. It was found that not onlyturbulence production than the vertical component of shear
the magnitude of the shear but also its orientation relative t@roduction.
the vertical direction of gravity and stratification has a sig- It was also observed that, for the parameter range studied
nificant effect on the flow dynamics. here, the flux Richardson number;Riepends on the gradi-
Two series of direct numerical simulations were initially ent Richardson number Ri but not on the shear inclination
performed. In the first series, the shear inclination arggle angle é. It is interesting that the normalized turbulence pro-
between the direction of stratification and the gradient of theluction is strongly influenced by the anglebut that the flux
mean streamwise velocity was varied frof=0, corre- Richardson number remains unaffected.
sponding to purely vertical shear, t= /2, corresponding An additional series of simulations was performed to
to purely horizontal shear. The gradient Richardson numbestudy the influence of the shear inclination anglef the
Ri=0.2 based on the magnitude of the shear @&teas turbulence evolution in a strongly stratified medium with
fixed. In the second series, the gradient Richardson numbéti=2.0 It was found that the angle effect persists in high
Ri was varied from R0, corresponding to unstratified Richardson number flow. The value of the critical Richard-
shear flow, to RF0.2. The angled=0 was fixed in this son number Rj, at which growth of the turbulent kinetic
simulation. All simulations were started from the same initialenergy is suppressed, is about an order of magnitude larger
conditions taken from a simulation of decaying isotropic tur-in the case of horizontal shear compared with the case of
bulence with no density fluctuations. The initial value of thevertical shear. The flux Richardson number Rias again
Taylor microscale Reynolds number ,Re33.54, the initial  found to be relatively insensitive to the angle variation. Ad-
value of the shear numb&%K/e=2.0, and the Prandtl num- ditional simulations confirmed that our earlier observation of
ber Pe=0.72 were fixed for all simulations. the stabilizing effect of a large initial shear numl&/ e in
The turbulent kinetic energy was found to evolve expo-vertically sheared flow applies in horizontally sheared flow
nentially after an initial period of decay for all simulations. too.
For the first series of simulations, the exponential growth
rate v was found to increase with the inclination anglas = ACKNOWLEDGMENTS
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