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Direct numerical simulation is performed with a focus on the characterization of
nonlinear dynamics during reflection of a plane internal wave at a sloping bottom.
The effect of incoming wave amplitude is assessed by varying the incoming Froude
number, Fr, and the effect of off-criticality is assessed by varying the slope angle
in a range of near-critical values. At low Fr , the numerical results agree well with
linear inviscid theory of near-critical internal wave reflection. With increasing Fr , the
reflection process becomes nonlinear with the formation of higher harmonics and the
initiation of fine-scale turbulence during the evolution of the reflected wave. Later
in time, the wave response becomes quasi-steady with a systematic dependence of
turbulence on the temporal and spatial phase. Convective instabilities are found to play
a crucial role in the formation of turbulence during each cycle. The cycle evolution
of flow statistics is studied in detail and qualitative differences between off-critical
and critical reflection are identified. The parametric dependence of turbulence levels
on Froude number and slope angle is calculated. Interestingly, at a given value of Fr ,
the turbulent kinetic energy (TKE) can be higher for somewhat off-critical reflection
compared to exactly critical reflection. For a fixed slope angle, as the Froude number
increases in the simulated cases, the fraction of the input wave energy converted into
the turbulent kinetic energy and the fraction of the input wave power dissipated by
turbulence also increase.
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1. Introduction
Quantification of oceanic mixing rates is crucial for the correct modelling of

Meridional Overturning Circulation (Park & Bryan 2000; Vallis 2000; Wunsch &
Ferrari 2004). Interestingly, the latter is sensitive not only to the magnitude of mixing,
but also to its spatial distribution (Saenko 2005). Several field measurements have been
presented in recent years which reveal increased mixing and dissipation rates near the
boundaries. High levels of dissipation (and by inference, mixing) in bottom layers that
can extend to several hundred metres above the bottom are found near topographic
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boundaries (Eriksen 1998; Munk & Wunsch 1998; Laurent & Garrett 2002; Moum
et al. 2002; Nash et al. 2004; Aucan et al. 2006), often associated with tidal
frequencies. The barotropic tidal velocity is mild and the barotropic tidal boundary
layer is too thin to explain these observations. It is thought that internal tides (internal
waves generated at bottom topography by the oscillatory tide) are responsible for
the enhanced dissipation. This is due to the peculiar dispersion relationship satisfied
by internal waves (Phillips 1977). It constrains the angle α between the horizontal
direction and the group velocity vector to satisfy, in the non-rotating case,

sinα = Ω

N∞
, (1.1)

where Ω is the frequency of the wave (conserved during reflection) and N∞ the value
of the Brünt–Väisälä frequency (buoyancy frequency, assumed constant). A similar
relationship exists in the rotating case. As a consequence, when a plane wave reflects
off a sloping bottom, the component of the wavenumber of the reflected wave in the
direction normal to the group velocity increases by a factor ∼|α − β|−1, where β is
the slope angle of the boundary. When β is close to α (the critical angle), this can
lead to high levels of shear and increases the energy density of the reflected wave,
leading to the well-known breakdown of the theory in the frequency domain when
β = α (Dauxois & Young 1999; Scotti 2011). Whether coincidentally, or because of
a feedback mechanism (Cacchione, Pratson & Ogston 2002), the slope β of most
continental slopes is close to the critical angle for the semidiurnal internal tide. Thus,
critical or near-critical reflection is a potentially widespread phenomenon that needs to
be properly understood in order to quantify its contribution to the global mixing within
the ocean. It is worth noting that critical slopes have also been implicated as hot spots
of turbulence in generation regions (Gayen & Sarkar 2010, 2011a; Bluteau, Jones &
Ivey 2011).

Theoretically, internal waves have been treated most frequently in the frequency
domain (Wunsch 1968; Phillips 1977; Thorpe 1987; Tabaei, Akylas & Lamb 2005),
but such an approach leads to divergent behaviour in the physical quantities at
criticality. However, Dauxois & Young (1999) and recently Scotti (2011) have shown
that in the time domain a laminar solution can be constructed even at criticality,
neglecting nonlinear terms. It was used to infer the possible pathways for turbulence
to develop. The solution obtained by Scotti (herein referred to as S11) shows that both
shear and convective-driven instabilities can be found. The former are mostly found
near the boundary. Since the S11 solution is inviscid, its validity in the immediate
proximity of the boundary is questionable. However, convectively unstable regions are
predicted in patches originating away from the boundary, reminiscent of what was
observed in laboratory experiments (DeSilva, Imberger & Ivey 1997).

Two-dimensional numerical experiments were performed by Javam, Imberger &
Armfield (1999) to study the nonlinear processes induced by internal wave reflection.
Higher harmonics were observed near the boundary and attributed by the authors to
nonlinear interactions between incident and reflected waves. Overturning was seen
close to the wall at critical frequency and the region of overturning moved away
from the wall as the off-criticality increased. Recently, two-dimensional numerical
experiments as well as laboratory experiments were performed by Rodenborn et al.
(2011) to study the reflection of internal wave beams at various slope angles and
wave amplitudes. Except for very weak incoming waves, the highest amplitude of the
reflected internal wave beam at the second harmonic frequency occurred when the
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slope angle was significantly shallower than the critical angle. This study suggests
that reflection at near-critical slopes may also play an important role in turbulence
and mixing. A three-dimensional computational model for internal wave reflection
was developed by Slinn & Riley (1998a) and numerical simulations (direct numerical
(DNS) and large-eddy simulations (LES) using a hyperviscosity) were performed by
Slinn & Riley (1998b) for cases with critical slope angle. Cyclical turbulence with
periodic density overturns was found when the Reynolds number based on wavelength
and peak velocity of the incident wave exceeded 1500. Examination of the local value
of Richardson number suggested that both shear and convective instabilities could
occur.

Previous studies have clearly shed some light on the nonlinear reflection processes
that occur when the slope is critical. However, there seems to be no clarity regarding
the mechanism of transition to turbulence, whether initiated by convective or shear
instabilities. The importance of off-criticality is still obscure, i.e whether it is the
critical reflection or near off-critical reflections which plays the major role in mixing
over the slopes. Also, the effect of slope angle and incoming wave strength on the
reflection process needs better understanding. In view of these outstanding questions,
we have performed a DNS study where the slope angle is systematically changed
for various incoming-wave Froude numbers and the numerical data are examined
to identify the instabilities that lead to turbulence, to characterize the phasing of
turbulence in the quasi-steady state, and to ascertain differences between critical and
off-critical reflection as a function of incoming wave amplitude.

The paper is organized as follows: § 2 describes the formulation of the problem, and
boundary and initial conditions. Section 3 presents results for laminar cases that are
compared with analytical solutions. Section 4 discusses the mechanism and phasing of
turbulence events. Sections 5 and 6 describe the parametric dependence of turbulent
kinetic energy (TKE) and dissipation. The paper concludes with a summary of the
results of the present numerical experiments.

2. Formulation of the problem
2.1. Governing equations

Direct numerical simulation is used to solve the Navier–Stokes equations, under the
Boussinesq approximation in a non-rotating environment. The Navier–Stokes equations
for dimensional variables (denoted by subscript d) are written as

∇ ·ud = 0, (2.1a)

Dud

Dtd
=− 1

ρ0
∇p∗d −

gρ∗d
ρ0

k̂+ ν∇2ud, (2.1b)

Dρd

Dtd
= κ∇2ρd. (2.1c)

Here, p∗d denotes deviation from the background hydrostatic pressure and ρ∗d denotes
the deviation from the linear background state, ρb

d(zd). The quantities ud, vd,wd denote
streamwise, spanwise and vertical velocity, respectively. The evolution equation for ρ∗d ,
the deviation density, is written as

Dρ∗d
Dtd
= κ∇2ρ∗d − wd

dρb
d

dzd
. (2.2)
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The dimensional parameters in the problem are the amplitude of the incident wave
velocity in the x-direction U0, frequency Ω , x-direction wavenumber kd, background
density gradient dρb

d/dzd, acceleration due to gravity g and the fluid properties:
molecular viscosity, ν, thermal diffusivity, κ , reference density, ρ0. The variables in
the problem are non-dimensionalized as follows:

t = tdΩ, x= (x, y, z)= (xd, yd, zd)

1/k
, p∗ = p∗d

ρ0U0Ω/kd
,

u= (u, v,w)= (ud, vd,wd)

U0
, ρ∗ = ρ∗d

ρ0U0Ω/g
.

 (2.3)

The non-dimensional parameters that govern the flow are Reynolds number Re, Froude
number Fr , N∞2/Ω2 and Prandtl number Pr .

The resulting non-dimensional form of the governing equations is:

∇ ·u= 0, (2.4a)
∂u
∂t
+ Fr(u ·∇)u=−∇p∗ − ρ∗k+ Fr

Re
∇2u, (2.4b)

∂ρ∗

∂t
+ Fr(u ·∇)ρ∗ = FrRe−1Pr−1∇2ρ∗ + N∞2

Ω2
w. (2.4c)

The non-dimensional parameters are defined as follows:

Re= U0

νkd
, Fr = U0kd

Ω
,

N∞2

Ω2
=− g

ρ0Ω2

dρb
d

dzd
, Pr = ν

κ
. (2.5)

The Froude number as defined here measures the distance of wave self-advection
relative to the wavelength and thus the nonlinearity of the incoming wave. Note
that Fr/

√
N∞2/Ω2 = U0kd/N∞ can be taken as a measure of the nonlinearity of the

highest-frequency internal wave in the system.
The dimensional form of the governing equations in the reference axis system
[xs, ys, zs] rotated by an angle β in the x–z plane is given by

∇ ·us = 0, (2.6a)

Dus

Dt
=− 1

ρ0
∇p∗ − gρ∗

ρ0
(sinβi+ cosβk)+ ν∇2us, (2.6b)

Dρ∗

Dt
= κ∇2ρ∗ − dρb

dz
(us sinβ + ws cosβ). (2.6c)

Here, us, vs,ws are along-slope, spanwise and slope-normal velocities respectively
in a rotated coordinate system. Subscript d for dimensional variables is dropped
for convenience. Equations (2.6a)–(2.6c) will be solved numerically; details of the
numerical method are discussed in the following section.

2.2. Wave forcing
Volumetric body forcing (Slinn & Riley 1998b) is employed to generate incident
waves that propagate towards the slope from above and subsequently reflect as shown
in figure 1. The cases to be considered are at critical slope angle and somewhat
off-critical. Volume forcing has been implemented here by adding forcing functions
(Fu, Fw,−dρb/dzFρ) to the right-hand side of the us, ws and ρ equations in the rotated
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FIGURE 1. (Colour online) Schematic of the problem of internal wave reflection at a slope.
Cg and Cp are group and phase velocity vectors respectively. The slope makes an angle β with
respect to the horizontal and the angle that the phase lines make with the horizontal is denoted
by α. The density profile shown is referenced to the slope normal axis zs. The coordinate, zs,
is related to the vertical coordinate z by z= xs sinβ + zs cosβ.

coordinate system as follows:

Fu =−A0ms

ks
F(zs) cos(ksxs + mszs −Ωt)− A0

ks
F′(zs) sin(ksxs + mszs −Ωt), (2.7a)

Fw = A0F(zs) cos(ksxs + mszs −Ωt), (2.7b)

Fρ = −A0 cos(β)
Ω

F(zs) sin(ksxs + mszs −Ωt)+ A0ms sin(β)
Ωks

F(zs)

× sin(ksxs + mszs −Ωt)− A0 sin(β)
Ωks

F′(zs) cos(ksxs + mszs −Ωt). (2.7c)

Here, F(zs) is the localization function given by F(zs) = exp[−b(zs − zs0)
2], the

parameter zs0 is the centre of the forcing region, b = 50 m−2. Here, ks and ms are
the slope-parallel and slope-normal wave number, respectively, while F′(zs) is the
derivative of F(zs) w.r.t zs. A0 is chosen to impose a given value of Fr . At low Fr
with domain height of 2 m, the forcing region is centred at zs0 = 1.1 m and is between
zs = 0.85 and 1.35 m. At high Fr with domain height of 4 m, the forcing region is
centred at zs0 = 1.8 m and is between zs = 1.55 and 2.05 m. In order to prevent the
spurious accumulation of energy near the forcing region in the near-critical cases with
higher Froude number (Fr = 0.11 and 0.148), a high-order filter is applied to the
velocity field (us, vs,ws) in the slope-normal direction. Filtering is limited to a region
between zs = 1.5 and 2.5 m that is far away from the turbulent near-boundary region.
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A fourth-order compact filter with the filter width parameter α = 0.48 (Lele 1992) is
chosen so that only the highest wavenumbers are affected.

2.3. Boundary conditions
No-slip boundary conditions have been imposed at the bottom boundary for us, vs,ws.

The total density can be written as summation of background density, and incident
and reflected components of deviation densities:

ρ = ρ0 − zs cosβ − xs sinβ + ρ∗. (2.8)

A zero-mass-flux boundary condition is imposed at the sloping bottom resulting in the
density deviation at the sloping boundary given by

∂ρ∗

∂zs
= cosβ. (2.9)

2.4. Numerical method
The simulations use a mixed spectral/finite-difference algorithm. Derivatives in the
streamwise and spanwise directions are treated with a pseudo-spectral method and
derivatives in the vertical direction are computed with second-order finite differences.
A staggered grid is used in the wall-normal direction. A low-storage third-order
Runge–Kutta–Wray method is used for time stepping, and viscous terms are treated
implicitly with the Crank–Nicolson method. The code has been parallelized using the
message passing interface (MPI). Periodicity is imposed in the xs and ys directions.
The top boundary is an artificial boundary corresponding to the truncation of the
domain in the vertical direction. Rayleigh damping or a sponge layer is used to
minimize spurious reflections from the artificial boundary into the computational
domain. The velocity and scalar fields are relaxed towards the background state in
the sponge region by adding damping functions −σ(zs)[(us, vs,ws)] and −σ(zs)[ρ∗] to
the right-hand side of the momentum and scalar equations, respectively. The sponge
region lies between zs = 1.5 and 2 m in the low-Fr cases with domain height of 2 m,
and between zs = 2.5 and 4 m at the higher Fr = 0.148 with domain height of 4 m.
The value of σ(zs) increases exponentially from zero at the bottom boundary of the
sponge to a maximum value of σ(zs)1t ∼ O(0.1). The pressure boundary conditions
are p∗ = 0 at the bottom wall (due to the staggered grid) and ∂p∗/∂zs = 0 at the top of
computational domain. Variable time stepping with a fixed CFL number of 1.2 is used.
All the simulations are well resolved with 1x+ 6 20, 1y+ 6 10, 1z+ 6 2 in terms of
the viscous wall unit ν/uτ . Here, uτ =√τw/ρ, with τw denoting the shear stress at the
wall defined as follows:

τw = µ
√(

dus

dzs

)2

zs=0

+
(

dvs

dzs

)2

zs=0

. (2.10)

In all the simulated cases, the wave has the same horizontal wavenumber
k = 3.84 m−1, frequency Ω = 0.15 s−1 corresponding to a time period of T = 41.9 s,
and internal wave angle α = 15◦. The background stratification is N∞ = 0.5795 s−1,
dynamic viscosity is µ = 10−3 Pa s and kinematic viscosity is ν = 10−6 m2 s−1. The
corresponding non-dimensional parameters are N∞2/Ω2 = 14.928 and Prandtl number
Pr = 1.0.

Three series of simulations are performed. Table 1 shows parameters for a series of
simulations at a constant value of a near-critical slope angle (β = 10◦), wave angle
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Case U0 (m s−1) Fr Re α (deg.) β (deg.) Remark

FR1 0 0 0 15 10 Laminar
FR2 1.0× 10−4 0.003 26 15 10 Laminar
FR3 1.1× 10−3 0.029 286 15 10 Laminar
FR4 2.8× 10−3 0.074 750 15 10 Turbulent
FR5 4.3× 10−3 0.110 1114 15 10 Turbulent
FR6 5.7× 10−3 0.148 1484 15 10 Turbulent

TABLE 1. Parameters of the first series of simulations to study the effect of Froude number,
Fr , by varying the wave amplitude. The slope angle β is 5◦ smaller than the internal
wave propagation angle of 15◦. The along-slope domain size of lxs = 2λxs = 2 m permits
two wavelengths and the spanwise length is lys = 0.25 m. For cases FR1–FR4, the domain
height is lzs = 2.0 m and, for cases FR5 and FR6, lzs = 4.0 m. Multiply Re by 2π to obtain
Reynolds number based on horizontal wavelength, λ, instead of the horizontal wavenumber,
k. In all these simulations, the ratio Fr/Re is kept constant at ≈10−4.

Case Fr = U0k/Ω β (deg.) Remark

FR4S15 0.074 15 Transition
FR4S10 0.074 10 Turbulent
FR4S5 0.074 5 Transition

TABLE 2. Series A with the amplitude of the incoming wave fixed at Fr = 0.074. The role
of off-criticality is explored by changing the slope angle. The wave propagation angle is
α = 15◦. FR4S10 has the Froude number of case FR4 (table 1) and a slope angle of 10◦,
similarly for other cases. The domain size is lxs = 2λxs m, lys = 0.25 m, lzs = 2.0 m. The
grid size is Nx = 256, Ny = 64, Nz = 221.

of α = 15◦, and six values of incoming Froude number, Fr . The set of simulations,
series A with parameters listed in table 5, was performed to explore the effect of
off-criticality at a fixed low value of Fr = 0.074 by changing the slope angle. Series B
with parameters listed in table 3 is analogous to series A but at a higher Fr = 0.148.

2.5. Turbulence diagnostics
Any fluctuating quantity in the flow field is defined by subtracting the spanwise
average from the instantaneous value:

A′ = A− 〈A〉y, (2.11)

〈A〉y =
1
ly

∫ ly

0
A dy. (2.12)

Detailed analysis of the TKE budget is important to understanding the mechanisms
underlying the phasing of turbulence. The evolution of TKE is governed by the
following equation:

dK

dt
= P− ε + B− ∂Ti

′

∂xj
, (2.13)

where K = 〈u′iu′i〉y/2, P = −〈ui
′uj
′〉y〈Sij〉y, ε = ν〈(∂ui

′/∂xj)∂ui
′/∂xj〉y, B =

gi/ρ0〈ρ∗′ui
′〉y = −g/ρ0〈ρ∗′w′〉y, Ti

′ = 1/ρ0〈p∗′uj
′〉y − 2ν〈ui

′sij
′〉y + 〈ui

′ui
′uj
′〉y/2. Here, K
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Case Fr = U0k/Ω β (deg.) Remark

FR6S15 0.148 15 Turbulent
FR6S10 0.148 10 Turbulent
FR6S5 0.148 5 Turbulent

TABLE 3. Series B: as Series A but with the amplitude of the incoming wave fixed at
Fr = 0.148. FR6S10 has the Froude number of case FR6 (table 1) and slope angle of 10◦,
similarly for other cases. The domain size is lxs = 2λxs m, lys = 0.25 m, lzs = 4.0 m. The
grid size is Nx = 512, Ny = 128, Nz = 449.

denotes turbulent kinetic energy, P is production, ε is turbulent dissipation rate, B
is buoyancy flux with w′ denoting the vertical velocity, ∂Ti

′/∂xj is the transport of
turbulent kinetic energy with sij

′ = (∂ui
′/∂xj + ∂uj

′/∂xi)/2.
Averaging over the slope-normal coordinate and over several cycles is employed to

quantify turbulent statistics used to compare results at different Fr and slope angles.
These averages are calculated as follows:

〈A〉zt =
1

z1t1

∫ z1

0

∫ t2

t1

A dt dzs, (2.14)

where z1 = 0.25 m, and t1 and t2 are chosen such that the averaging includes a
minimum of four cycles in the quasi-steady state.

3. Laminar regime
The wave amplitude intensifies during reflection from a near-critical slope. However,

when the incoming wave amplitude is small and the corresponding value of Fr � 1,
the flow field associated with the reflected wave remains laminar. The effect of Fr in
the laminar flow regime is discussed here.

3.1. Velocity field
Figure 2 shows contour plots of the along-slope instantaneous velocity field for cases
FR1, FR2 and FR3 of table 1. Figure 2(a) corresponds to Fr = 0 with no forcing. The
zero-mass-flux boundary condition at the inclined wall creates a slope-wise density
gradient resulting in a thin boundary layer (Phillips 1970; Wunsch 1970) with a steady
upslope flow, us(zs), that is established by a balance between viscous and buoyancy
forces. The Phillips–Wunsch solution is realized in the absence of wave forcing
as illustrated by figure 2(a). Figure 2(b,c) shows a reflected wave of along-slope
wavelength 1 m that propagates at 15◦ angle to the horizontal corresponding to an
angle of 5◦ relative to the boundary. With increasing wave forcing, the unidirectional
boundary velocity field of the Phillips–Wunsch solution is dominated by the oscillatory
wave response.

Numerical results for case FR3 are compared with the analytical solution obtained
using linear inviscid theory by S11. Figure 3(a–c) shows the profiles of along-slope
velocity. As time progresses, the velocity intensifies until it reaches a steady state after
approximately five cycles. The vertical wavelength of the velocity decreases during the
transient, as can be observed from the shortening distance between successive zero-
velocity points in figure 3. Numerical results and the analytical solution are in good
quantitative agreement in the region outside the boundary layer. Within the boundary
layer, since viscous effects are prominent, the inviscid analytical solution deviates from
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FIGURE 2. (Colour online) Contour plots of us (m s−1) in the xs–zs plane at quasi-steady state
for a constant slope angle (β = 10◦) and different wave amplitudes: (a) no wave, Fr = 0,
(b) Fr = 0.0028, (c) Fr = 0.029. Velocity vectors are also shown. Note that the zs-axis
corresponds to a smaller distance relative to the xs-axis. The ratio Fr/Re is constant (≈10−4)
in all these cases, even when there is no wave (i.e. Fr = 0).

the DNS. In the inviscid analytical solution, the maximum along-slope velocity is at
the bottom boundary, whereas it is maximum away from the wall in the DNS.

3.2. Frequency spectra

The distribution of energy among different frequencies is discussed in this section.
Figure 4 shows the power spectrum of along-slope and slope-normal velocity for case
FR3, a case with off-criticality of 5◦ and Fr = 0.029, at two locations. The spectra
are evaluated over a period of six cycles.The spectra exhibit discrete frequencies in the
form of multiples of the forcing harmonic (nΩ, n ∈ N). These peaks carry a substantial
fraction of the energy at zs = 0.17 m. There are also local peaks at subharmonic
frequencies of approximately, 0.3Ω and 0.7Ω .

To compare the spectra in case FR3 with 5◦ off-criticality with those in the case
of critical slope, another simulation is done at an exactly critical slope angle and
the results shown in figure 5. The spectra do not exhibit qualitative changes. One
difference is that the spectrum of vertical velocity drops rapidly for ω > N∞ in the
near-critical case but, when the slope angle is critical, the spectra show some discrete
peaks for ω > N∞, that may correspond to forced waves generated and trapped in the
near-boundary region.
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FIGURE 3. (Colour online) Profiles of along-slope reflected velocity component us as a
function of wall-normal distance taken at xs = 1 m for case FR3 at different time instances
with a time gap of half a wave period. Corresponding profiles of theoretical solution by S11
are also shown in the figure (squares).
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FIGURE 4. (Colour online) Off-critical case FR3 at Fr = 0.029 and slope angle of 10◦:
power spectra of (a) along-slope velocity, and (b) slope-normal velocity, at two different
heights zs = 0.005 m and zs = 0.17 m. The solid vertical line represents the frequency when
ω = N∞.

4. Turbulent regime
At sufficiently high values of incoming Froude number, the energy density in

the reflected wave field is found to be large enough for stratified, phase-dependent
turbulence to develop when the slope is either critical or somewhat off-critical. The
inviscid, linear analysis of S11 concluded that, during the transient evolution of a
near-critical reflected wave, unstable regions could occur and the present results are
in agreement with that conclusion. DNS allows us to go beyond theory by making
precise the mechanism of transition to turbulence during near-critical reflection as will
be shown in § 4.1 and quantifying the role of turbulence during the flow evolution.
After the transient buildup of turbulence, the flow statistics reach an approximately
quasi-steady dependence on wave phase. The phasing of turbulence during this quasi-
steady state is found to have qualitative differences between critical and near-critical
cases as described in § 4.2.
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FIGURE 5. (Colour online) Critical case with Fr = 0.029 and slope angle of 15◦: power
spectra of (a) along-slope velocity, and (b) slope-normal velocity, at two different heights
zs = 0.005 m and zs = 0.17 m. The solid vertical line represents the frequency when ω = N∞.

4.1. The development of turbulence in near-critical cases
During the transient evolution of the reflected wave, the fluid velocity increases
and, correspondingly, the density deviation from the background increases. Since the
near-bottom vertical wavelength also decreases, the isopycnals steepen leading to the
possibility of wave breaking and turbulence. The simulations show wave breaking
within one wavelength from the boundary. Figures 6(a) and 6(b) show contour plots
of along slope-velocity and turbulent kinetic energy for case FR4S10 at time t = 10T .
The velocity contours in figure 6(a) show the spatially periodic field corresponding to
an internal wave as well as the velocity intensification (approximately 5 times that of
the incoming wave) expected for near-critical reflection. The TKE field in figure 6(b)
shows two locations of turbulence within a span of a single along-slope wavelength.
These two turbulence patches, one close to the wall and another away from the wall,
appear periodically during a cycle at any given streamwise coordinate. After the initial
transient, the amplitude of the oscillatory TKE in these patches remains approximately
constant corresponding to a quasi-steady state. Figure 6(c,d) shows vertical density
profiles at locations 1 and 2 indicated in figure 6(a). The grey shaded regions
in figures 6(c) and figure 6(d) are convectively unstable regions that correspond to
turbulence locations near the wall and further away from the wall, respectively.

We now move to the development of turbulence in case FR6S10 with the same
value of off-criticality, 5◦, as case FR4S10, but with a higher incoming wave amplitude
corresponding to Fr = 0.148. Figure 7 shows contours of turbulent statistics in case
FR6S10 at three time instances. Figure 7(a–d), comprising column 1, shows the
onset of turbulence near the wall. Figure 7(e–h) corresponds to a later time when
another patch of turbulence develops away from the wall. Figure 7(i–l) corresponds
to the fully developed, quasi-steady state. At early time, t = 4.8T , there is a single
patch of turbulence near the boundary, denoted by 1 in figure 7(a). At intermediate
time, t = 5.5T , the near-wall patch 1 has strengthened and grown spatially. There
is also an additional patch of turbulence detached from the boundary, denoted by
2 in figure 7(e). At time, t = 7.7T , the detached patch 2 is stronger in amplitude
and also spatially larger (figure 7i). Examination of the isopycnals in front of the
near-wall turbulence patch shows the presence of a thermal front with high streamwise
temperature (density) variation. This front is found to propagate upslope as observed
in previous laboratory experiments, e.g. Ivey & Nokes (1989), Thorpe (1992). The
second row (figure 7b,f,j) shows positive buoyancy flux, associated with convective
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FIGURE 6. (Colour online) The development of intensified velocity and patches of turbulence
during near-critical reflection is illustrated by spatial x–z cuts at t = 10T for case FR4S10
with Fr = 0.074 and off criticality of 5◦: (a) contours of along-slope velocity, (b) contours
of turbulent kinetic energy. Half the streamwise domain size, corresponding to a single
wavelength, is shown. Convectively unstable regions (shaded ellipses) are shown by profiles
of density as a function of height from the bottom at (c) location 1 and (d) location 2,
indicated by dotted lines in (a).

instability, at all locations with enhanced TKE, while positive values of production are
also seen in the third row (figure 7c,g,k). Noteworthy is the behaviour at quasi-steady
state (column 3, figure 7i–l) where the correspondence of the detached large patch 2
of TKE to a similar large patch of positive buoyancy is clear. High dissipation is seen
at all locations with enhanced TKE (figure 7d,h,l).

The analytical solution derived by S11 was evaluated for case FR6S10; a statically
unstable region develops initially at the wall at a time that is earlier than in the
DNS (where the first turbulence patch is observed at 4.8T), during flow reversal from
downslope to upslope. Owing to the absence of the viscous boundary layer in the
analytical solution, the statically unstable region during the other flow reversal event
from upslope to downslope that was seen in the DNS is absent. At later time, a
statically unstable region develops away from the wall and merges with the initial
region so the region that could potentially break in the analytical solution to give
turbulence is large. However, in the DNS, turbulence is found only in the region
between the solid boundary and the first zero-crossing of the horizontal velocity.
Evidently, in the simulations, turbulent mixing of the density and turbulent dissipation
of momentum both change the isopycnal distribution above the first zero-crossing to
prevent the internal wave from breaking into turbulence.
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The TKE level increases with increasing wave amplitude. More interestingly, the
spatial distribution of turbulence also depends on the incoming wave amplitude. At
low Fr = 0.074, the patch near the boundary has higher TKE compared to the patch
detached from the boundary as was noted earlier in figure 6(b). In contrast, for case
FR6S10 with higher Fr = 0.148, TKE in the patch away from the wall is almost of
the same magnitude as that in the patch near the wall. This is because, away from
the boundary, the increase in the magnitude of density deviation caused by the higher
wave amplitude of case FR6S10 is able to cause a thicker region of unstable density
leading to a larger positive buoyancy flux and more intense turbulence. In contrast, the
wall boundary condition limits the thickness of the overturning region that develops
adjacent to the bottom boundary.

4.2. Comparison of turbulence between critical and near-critical cases
The nonlinear response differs qualitatively between critical and near-critical slopes.
For instance, at low Fr = 0.074, there is little turbulence during critical reflection
while the case with 5◦ off-criticality has substantial TKE and turbulent dissipation.
Qualitative differences in near-bottom turbulence are discussed in this section by
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The dashed curve represents along-slope velocity. Both cases have wave angle of α = 15◦ and
Fr = 0.148.

comparing cases FR6S15 (critical) and FR6S5 (10◦ off-criticality). Both cases
have Fr = 0.148, wave propagation angle of 15◦, and develop substantial levels of
turbulence.

We now turn to the temporal phasing of turbulence. The time evolution of turbulent
kinetic energy along with available potential energy, APE = g2ρ∗2/(2ρ0

2N∞2) with
ρ∗ denoting the deviation from the background density, is shown for critical and
near-critical slope reflection in figure 8. Both quantities are averaged over the slope-
normal coordinate, 0 < zs < 0.25 m. The slope-wise velocity is also plotted to show
the relative phases of peak TKE and APE. In the critical case, turbulence is initiated
at cycle 4.5 as shown in figure 8(a). A peak in APE occurs twice in each cycle
shortly prior to the zero-velocity point as shown by downward pointing arrows 1 and
3. The TKE increases when the APE is maximum (arrow 1) and it peaks as marked by
arrow 2 before the upslope velocity reaches its maximum value. However, no peak of
TKE is found after the peak APE (arrow 3) during the flow reversal from upslope to
downslope motion.

The phasing of turbulence during near-critical reflection is shown in figure 8(b) and
is now compared with the critical case. The important difference is that the TKE peaks
skip cycles in contrast to the critical case where there is one TKE peak every cycle.
During near-critical reflection, the first peak in TKE is found at t = 6.5T as shown in
figure 8(b). The next peak of TKE at approximately t = 8.5T , see arrow 2, occurs after
two cycles during transition from up- to downslope flow and a peak in APE. During
this cycle, there is a single peak of TKE with shear production playing an important
role aided by the convective instability that occurs during flow reversal from upslope
to downslope flow. The next peak of TKE occurs after three cycles at approximately
t = 11.5T . Later, during cycle 14, there are two peaks in TKE: peak 5 occurs at a
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FR6S15, with critical slope angle β = 15◦ and Fr = 0.148, is shown at t = 9.1T; (b) case
FR6S5 with near-critical slope angle, β = 5◦ and Fr = 0.148, is shown at t = 20.8T .

similar downslope flow phase as the earlier peaks while the second peak (arrow 6)
occurs shortly after flow reversal from downslope to upslope motion when there is a
peak in APE (arrow 7). The different phasing of TKE in the near-critical case occurs
because the interaction between the incident and reflected waves becomes important
in this situation. Owing to this interaction, the wave field gets weaker periodically as
evident from the small velocity peaks and little turbulence between cycles 9–11 in
figure 8(b). Mean flows with little temporal variability are found during this quiescent
period with little turbulence when the near-boundary wave field is weak. However,
there is strong down- and upslope flow every three cycles (for example at t = 8–8.5T ,
11–11.5T and 14–14.5T) and correspondingly strong turbulence bursts during these
periods.

Figure 9 shows a comparison of TKE contours during times with turbulence
after a quasi-steady state has been reached. Critical slope reflection results in one
turbulence burst every wavelength and the burst occurs close to the wall as shown in
figure 9(a). Near-critical slope reflection results in two distinct patches of turbulence in
a wavelength. The patch closer to the wall in figure 9(b) occurs during the transition
from up- to downslope flow and the second patch that is detached from the wall
occurs during the transition from down- to upslope flow.

Figure 10 shows the time evolution of production, dissipation and buoyancy flux
averaged in the slope-normal direction for critical and near-critical slope angles. The
difference observed between the critical and near-critical slope cases is that, for critical
slope reflection, the peak of buoyancy flux is dominant when compared with the peak
of turbulent production, whereas during near-critical slope reflection, both buoyancy
flux and production are significant contributors to the increase in the turbulent kinetic
energy. Figure 10(a), corresponding to the critical slope case, exhibits a positive
peak in the averaged buoyancy flux at 8.2T when the near-bottom flow reverses
from down- to upslope flow. There is some inter-cycle variability: the magnitude
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of the buoyancy flux peak changes during the subsequent cycles (not shown here).
Negative production, which is unusual in turbulent flows, is seen after the positive
peak in buoyancy flux. The mechanism of the negative production in the context of
internal tide generation has been shown by Gayen & Sarkar (2011b) to be related to
shear acting on turbulence structures initiated by buoyancy, a mechanism that is also
operative here. For near-critical slope reflection with off-criticality 10◦, a period with
turbulence peaks is shown in figure 10(b). The primary peak, marked 2, is associated
with both positive buoyancy flux and shear production. There is an auxiliary peak
marked 1 which occurs because of turbulence advection.

5. Mean kinetic energy
Turbulent dynamics has been discussed extensively in the previous section. The

impact of turbulence on the mean flow is discussed in this section by making use of
the mean kinetic energy equation.

The mean kinetic energy MKE = (〈ui〉y〈ui〉y)/2 evolves as

∂(MKE)

∂t
+ 〈uj〉y

∂(MKE)

∂xj
=−P− ε̄ + B̄− ∂Ti

∂xi
, (5.1)

where P = −〈ui
′uj
′〉y〈Sij〉y, ε̄ = ν(∂〈ui〉y/∂xj)(∂〈ui〉y/∂xj), B̄ = −g/ρ0〈ρ∗〉y〈w〉y, Ti =

〈p∗/ρ0〉y〈uj〉y − 2ν〈ui〉ySij + 〈ui
′uj
′〉y〈ui〉y. Here P is production, ε̄ is the viscous

dissipation rate of the mean velocity, B̄ is the mean buoyancy flux with 〈w〉y denoting
the mean vertical velocity, ∂Ti/∂xi is the transport of mean kinetic energy with
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P/I D/I −B/I A/I

FR6S15 0.06 0.51 0.42 0.005
FR6S5 0.035 0.44 0.48 0.04
FR4S10 0.03 0.51 0.42 0.03

TABLE 4. Ratio of integrated production, mean dissipation, mean buoyancy to the input
energy flux, I. The energy input is transferred to turbulent kinetic energy through P,
to mean potential energy through −B, and dissipated by viscosity through D, and the
remaining energy represented by A is the flux advected out of the domain.

Sij = (∂〈ui〉y/∂xj + ∂〈uj〉y/∂xi)/2. The above equation is integrated in the slope-normal
direction and time, e.g. the integrated advection is

〈A〉zt =
∫ z1

0

∫ t2

t1

A dt dzs, (5.2)

where z1 = 1.5 m, t1 and t2 are chosen such that at least four wave periods are
included in the quasi-steady state.

Let the integrated unsteady (or tendency) term in (5.1) be denoted by U, the
advection term by A, the transport term by T, the production term by P, the
dissipation term by D, and the buoyancy term by B. After the reflected wave
is established, the integrated values of advection and tendency are found to be
approximately zero. Among the transport terms, the dominant contributor is the
velocity–pressure correlation (internal wave flux). The value of the internal wave flux
at zs = 1.5 m is considered to be the input energy flux, I, to the system that drives the
near-boundary flow. The input, I, is as follows:

I=
∫ lx

0
[〈p∗〉〈ws〉]zs=1.5 dxs. (5.3)

It is accessible for conversion to mean buoyancy, conversion to turbulence through
production, and destruction through viscous effects. The production term, P, is usually
positive resulting in the gain of turbulent kinetic energy at the expense of a loss of
mean kinetic energy. The mean buoyancy term is the work done by gravity on the
mean vertical motion. A negative mean buoyancy term indicates a transfer to mean
potential energy. The input flux, I, computed at zs = 1.5 has two components: (i) the
wave field generated at the forcing region that travels towards the boundary, and (ii)
the reflected wave field. The contribution of the reflected wave can be estimated by
calculating the wave flux in a section above the wave forcing region and below the
sponge region. It negligibly small in the exactly critical case FR6S15. However, in
off-critical case FR6S5, since the reflected waves move away from the boundary, the
radiated flux is significant (≈10 % of the total incoming flux).

Three different cases (FR6S15, FR6S5, FR4S10) are examined to assess the role of
the different terms in the mean kinetic energy equation. Table 4 lists various terms
in the mean kinetic energy equation. The mean dissipation, D, and the transfer to
mean potential energy through B balance the input wave flux. For critical reflection,
89 % of the total mean dissipation occurs in the boundary region, i.e. 0< zs < 0.15 m,
and the remainder occurs outside the boundary layer. For the off-critical case FR6S5,
82 % of the total mean dissipation occurs in the boundary region. Mean dissipation
is high in all the cases because of the relatively weak incident wave and low value
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Off-criticality (deg.) 0 5 10

τw,avg Fr = 0.148 0.1815 0.1406 0.1325

TABLE 5. Wall shear stress normalized with incoming wave along-slope amplitude,
averaged over 10 cycles at a mid-slope location for different values of the off-criticality
and Fr = 0.148.

of the Stokes Reynolds number, Res = U0δs/ν, where δs = √2ν/Ω is the Stokes
boundary layer thickness: Res = 20.8 for cases FR6S15, FR6S5 and Res = 10.22 for
case FR4S10. We emphasize that a typical Stokes boundary layer on a non-sloping
bottom is laminar at these values of Res. It is the phenomenon of wave intensification
and breaking associated with critical slope dynamics that results in turbulence in the
present simulations, albeit at a Reynolds number much lower than in the ocean.

6. Parametric dependence of turbulence statistics
DNS results at various Froude numbers for every slope angle considered in our

simulations are collected to characterize the TKE dependence on Froude number and
off-criticality.

Figure 11 shows averaged turbulent kinetic energy, 〈K〉zt, and averaged turbulent
dissipation rate, 〈ε〉zt, at Fr = 0.074 and 0.148 as a function of off-criticality defined
as the difference between internal wave angle (α = 15◦) and the slope angle (β) of
the case in question. Thus, off-criticality of 0◦ corresponds to an exactly critical slope,
while 10◦ off-criticality corresponds to a slope angle of 5◦. At a low Fr = 0.074, the
critical case is not turbulent, and the values of 〈K〉zt and 〈ε〉zt are maximum when the
off-criticality angle is 5◦ and then they drop. For the larger incoming wave amplitude
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of the Fr = 0.148 series of simulations, 〈K〉zt and 〈ε〉zt are maximum at critical slope
reflection and then decrease monotonically as the off-criticality increases.

Table 5 shows the wall shear stress (normalized with ρU2, where U is the amplitude
of the incoming wave velocity in the along-slope direction), averaged over 10 cycles,
recorded at mid-slope. The wall shear decreases with increasing off-criticality due to
an increase in vertical length scale of the region of bottom turbulence.

Normalized values of turbulent statistics are defined as follows,

K = 2〈K〉zt

U2
0 +W2

0

, D = 2〈ε〉zt

Ω(U2
0 +W2

0 )
, (6.1a)

B = 2〈B〉zt

Ω(U2
0 +W2

0 )
, P = 2〈P〉zt

Ω(U2
0 +W2

0 )
. (6.1b)

For a near-critical slope angle, β = 10◦, the effect of Fr on various turbulent
statistics is assessed. Figure 12(a) shows averaged turbulent kinetic energy, 〈K〉zt, and
figure 12(b) shows normalized turbulent kinetic energy, plotted as a function of Froude
number. Similarly, figures 12(c) and 12(d) show averaged and normalized values of
terms in the TKE balance: dissipation, buoyancy flux and production, respectively. A
rapid increase in averaged turbulent kinetic energy is found with increasing Fr . Upon
normalization using the incoming wave amplitude, a natural velocity scale for the
problem, the turbulent kinetic energy does not increase at the highest value of Fr .
Terms on the right-hand side of the TKE equation, such as turbulent dissipation rate,
also rapidly increase with increasing Fr . Guided by the finding here that turbulence
occurs during only a fraction of the cycle and that this fraction eventually shows little
dependence on the incoming wave amplitude, we take the scaling of the terms in the
TKE transport equation to be Ω(U2

0 +W2
0 ). Figure 12(d) shows that this normalization

is able to substantially reduce the variation between cases at high Fr . An alternative
normalization, based on (U2

0 +W2
0 )

3/2
/λ, was ruled out because it led to a systematic

decrease with increasing Fr in the high-Fr regime.

7. Conclusions
The dynamics of internal waves reflected from a slope is examined as a function

of incoming wave amplitude, measured by the wave Froude number, Fr , and the
deviation of the slope angle, β, from the wave propagation angle, α. The choice of
laboratory scale dimensions, e.g. the wave has a horizontal wavelength of λ= 1.636 m
and a frequency of Ω = 0.15 s−1, allows the DNS approach that resolves turbulence,
including the turbulent dissipation rate, without any additional models.

The effect of Fr at a near-critical slope angle is assessed. At zero Fr (no incoming
wave), the numerical solution corresponds to a steady upslope streaming flow (Phillips
1970; Wunsch 1970) with a balance between buoyancy and viscous drag. Near-critical
reflection with an off-criticality angle (α − β) of 5◦ was examined for incoming waves
with 0< Fr < 0.148. At low Fr , the internal wave response remains laminar. However,
higher temporal frequencies, subharmonics and inter-harmonics are generated. During
the initial transient, the near-bottom amplitude of the reflected wave increases and
the near-bottom vertical wavelength decreases. The numerical solution in the laminar,
low-Fr cases agrees well with the analytical, inviscid solution derived by Scotti (2011)
for critical and near-critical reflection except at the wall where there is a viscous
boundary layer in the DNS. At a sufficiently high value of incoming wave amplitude
(Fr), there is transition to turbulence.
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FIGURE 12. (Colour online) Turbulent statistics (cycle-averaged and spatially averaged over
a 0.25 high boundary region at mid-slope) as a function of Froude number for a slope angle
β = 10◦: (a) averaged kinetic energy; (b) normalized kinetic energy; (c) averaged dissipation,
buoyancy flux and production; (d) normalized dissipation, buoyancy flux and production.

The wave amplitude is also found to affect the functional dependence of the flow
on slope angle. When Fr is small, the critical case is laminar and there is turbulence
only in a narrow range of near-critical angles. At high Fr , there is turbulence at all the
slope angles considered here.

The mechanism of transition to turbulence is investigated. It is found that,
during the initial transient when the amplitude of the density variation in the
internal wave increases, regions of static instability (Rig < 0) as well as shear
instability (Rig < 0.25) are formed. The gradient Richardson number is defined by
Rig = N2/S2, where N represents the buoyancy frequency and S is shear defined
by S =

√
(dus/dzs)

2 + (dvs/dzs)
2 The present nonlinear simulations show that it is

wave breaking by the convective instability just after flow reversal from downslope to
upslope that leads to turbulence during critical slope reflection, similar to the result of
Gayen & Sarkar (2011a) in the critical slope generation problem. In the case of near
but not exactly critical reflection, transition to turbulence occurs at a different phase
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and arises due to both shear instability in upslope flow (Rig < 0.25 owing to wave
shear) as well as convective instability during flow reversal from upslope to downslope.
The inviscid analytical solution of Scotti (2011) was evaluated in a near-critical case
and shows regions with static and shear instability, thus providing guidance as to the
formation of turbulence. However, quantitative predictions of turbulence require fully
nonlinear simulations. For instance, the first region of static instability occurs earlier in
the analytical solution than in the simulations and, at later time, the statically unstable
regions in the analytical solution are substantially larger than the turbulence patches in
the simulations.

After the initial transient, a reflected wave field is established with periodic flow that
has quasi-steady amplitude and phase-dependent turbulence. The phasing of turbulence
is examined when the off-criticality angle, α − β, varies between 0 and 10◦. There
are important differences between critical and near-critical cases. When the slope is
critical, there is a single prominent peak of TKE per cycle that occurs just after
flow reversal from down- to upslope flow and is caused by positive buoyancy flux
that occurs during the convective instability that accompanies the flow reversal event.
The contribution of shear production to TKE is small. The phasing is similar when
the off-criticality is 5◦. In contrast, when the off-criticality has a larger value of 10◦,
turbulence is less regular and skips cycles. Both buoyancy flux and shear production
are found to be important contributors to the TKE in the near-critical case. The results
in the various cases are collected to quantify the parametric dependence of TKE and
turbulent dissipation rate (averaged over time and over distance above bottom) on
slope angle and Froude number. Interestingly, it is found that reflection at near-critical
angles can lead to more intense turbulence than critical slope reflection, for waves
with small amplitude, that is, small Fr . The reason for this low-Fr behaviour is
that, although the velocity intensification is smaller when the slope is off-critical,
the convectively unstable region, not being restrained by the boundary, can be larger
and thereby lead to stronger turbulence than the exactly critical case. At higher Fr ,
the values of TKE and turbulent dissipation rate exhibit a monotonic decrease with
increasing off-criticality.

At a given slope angle, the TKE and turbulent dissipation rate increase with
increasing Fr . When normalized by incoming wave properties, the variability of
turbulent statistics at high Fr decreases. In the present simulations, the maximum
value of averaged TKE is approximately 7 % of the incoming wave kinetic energy,
Kwave, and the maximum value of averaged dissipation rate is approximately 5 % of
ΩKwave. If turbulent statistics, when appropriately normalized by wave characteristics,
saturate with increasing Fr , parameterizations of wave dissipation for use in ocean
models will be facilitated. Nevertheless, more work is necessary to establish if the
results found in the present simulations hold under more general parametric variation
as well as at geophysical scales.
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