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framework of variational multiscale methods. In the proposed formulation, both density and tem-
perature stratification are handled in a unified manner. The formulation is augmented with weakly-
enforced essential boundary conditions and is suitable for applications involving moving domains,
such as fluid–structure interaction. The methodology is tested using three numerical examples ranging
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1. Introduction

Flows with density and temperature stratification (here referred to as stratified flows) play
an important role in many geophysics applications. Examples of stratified flows include
oceanic and atmospheric flows over topography, mixing in the upper ocean layers, and
wakes behind towed or self-propelled objects. In many cases these are high-Reynolds-
number turbulent flows, where turbulent motions are strongly affected by the presence of
stratification.

In the case of wake flows, the presence of the buoyancy force strongly affects turbulent
mixing and decay rates. In a decaying wake velocity fluctuations in the direction of gravity
become small in comparison with the remaining components, which hampers the wake
growth in this direction and leads to a so-called wake collapse. The flow reorganizes into
a quasi-2D state, with the appearance of large-scale “pancake”-like vortices [1,2]. To date,
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most of the numerical simulations of turbulent wakes with density stratification using large-
eddy simulation (LES) and direct numerical simulation (DNS) techniques are based on
temporal wake evolution. Only a few researchers recently performed spatially-evolving
wake simulations (see, e.g., [3, 4]), which are more challenging due to high computational
costs associated with the need to use long computational domains and resolve small-scale
turbulent fluctuations [5].

Stably-stratified atmospheric boundary layers (ABLs) present another set of challenges
for modeling and simulation (see, e.g., [6]). Besides exhibiting more complex interaction
of turbulent structures with the mean flow than are present in classical turbulent boundary
layers, these flows often possess a host of complex, but non-turbulent structures, includ-
ing wave-like motions, solitary modes, and two-dimensional vortical modes. The inversion
layer, where the wind shear is strong, is an additional source of turbulence whose interac-
tion with the near-surface turbulence is known to be important but is poorly understood.
Finally, the turbulence is typically not in equilibrium with the non-turbulent motions, which
often prevents formation of the inertial subrange. The latter presents significant challenges
for turbulence modeling, especially for classical eddy-viscosity-based LES models that rely
on the presence of the inertial subrange [7].

Accurate simulation of stably-stratified ABLs is important for realistic modeling of
wind-turbine aerodynamics and fluid–structure interaction (FSI) at full scale, especially for
making predictions about power production, rotor loading, and blade structural response.
Attempts were made in the direction of LES simulation of ABL interacting with the wind-
turbine structure represented using an actuator disk model [8–10]. In the present work we
simulate a 5 MW wind-turbine rotor in an ABL, where the rotor is represented with full
geometric complexity. To our knowledge this is the first time such a computation is reported
in open literature. The computation is enabled through a collaboration between two groups
with expertise in FSI and environmental turbulence, respectively.

In this paper, motivated by the above challenges, we develop a numerical formula-
tion for stratified incompressible flows. The ALE–VMS method, proposed in this work for
the simulation of stratified flows, originated from the residual-based variational multiscale
(RBVMS) formulation of incompressible turbulent flows proposed in [11] for stationary
domains, and may be thought of as an extension of the RBVMS method to moving domains
handled using the Arbitrary Lagrangian–Eulerian (ALE) [12] technique. ALE–VMS was
presented for the first time in [13] in the context of FSI. ALE–VMS gave very good re-
sults for several important turbulent flows. However, it was evident in [11,14] that in order
to obtain accurate results for wall-bounded turbulent flows the method required relatively
fine resolution of boundary layers, making ALE–VMS a somewhat costly computational
technology. For this reason, weakly-enforced essential boundary condition formulation was
introduced in [15], which significantly improved the performance of the ALE–VMS for-
mulation in the presence of under-resolved boundary layers [16–18]. In the present paper,
weak boundary conditions are formulated and applied in the context of stratified flows. The
ALE–VMS technique was successfully applied to several challenging problems, including
full-scale 3D aerodynamics and FSI of horizontal- and vertical-axis wind turbines [19–26],
FSI of compliant hydrofoils [27], patient-specific cardiovascular FSI [28, 29], and FSI of



April 19, 2015 8:25 WSPC/INSTRUCTION FILE m3as˙stratified

ALE–VMS for Stratified Flow 3

bioprosthetic heart valves [30, 31].
Recently, an RBVMS formulation was derived in [32, 33] in the context of space-

time (ST) finite element methods in fluid mechanics [34–38], which is called ST-VMS
in [22, 26, 28, 29, 39, 40]. ST-VMS was successfully applied to wind-turbine aerody-
namics [19, 41–44], flapping-wing aerodynamics [44–51], cardiovascular fluid mechan-
ics [44, 50, 52–55], spacecraft aerodynamics [56], and thermo-fluid analysis of ground ve-
hicles and their tires [57]. The original version of the stabilized ST method, which is now
called ST-SUPS (see [33] for the terminology), has also been successfully used in address-
ing the challenges involved in FSI problems [58], including cardiovascular FSI (see [39])
and spacecraft parachute FSI (see [39] for earlier examples, and [59–64] for newer exam-
ples).

The paper outline is as follows. In Section 2 we present the governing equations and
develop the semi-discrete ALE–VMS formulation of incompressible stratified flows. In
Section 3 we present three numerical examples employing our numerical methodology.
The first example is a 2D test case where we show that our framework is able to reproduce
internal gravity waves that are consistent with the theoretical and experimental findings. We
then simulate the evolution of a self-propelled wake at Re = 15, 000 and provide compari-
son with the recent DNS simulation results of this test case [4]. We conclude the section by
presenting a simulation of a full-scale 5 MW offshore wind-turbine rotor in an ABL with
temperature stratification. In Section 4 we draw conclusions and discuss future work.

2. ALE–VMS Formulation of Stratified Flows

2.1. Governing equations of stratified flows on moving domains

To model stratified flow we use Navier–Stokes equations of incompressible flows with
the Boussinesq approximation. The Navier–Stokes equations with the Boussinesq approx-
imation are posed on a moving spatial domain, and are written in the ALE frame [12] as
follows:

ρ

(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u − f
)
−∇∇∇ ·σσσ − b = 0 in Ω, (2.1)

∇∇∇ · u = 0 in Ω. (2.2)

Here Ω is the problem domain, f is the external force per unit mass, u and û are velocities
of the fluid and problem domain, respectively. The stress tensor σσσ is defined as

σσσ (u, p) = −pI + 2µεεε (u) , (2.3)

where p is the pressure, I is the identity tensor, µ is the dynamic viscosity, and εεε (u) is the
strain-rate tensor given by

εεε (u) =
1
2

(
∇∇∇u +∇∇∇uT

)
. (2.4)

In Eq. (2.1),
∣∣∣∣
x̂

denotes the time derivative taken with respect to a fixed referential domain
spatial coordinates x̂. The spatial derivatives in the above equations are taken with respect
to the spatial coordinates x of the current configuration.
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A time-dependent scalar advection-diffusion equation, also posed on a moving spatial
domain in the ALE frame, is added to the model and is written as

∂φ

∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇φ −∇∇∇ · κ∇∇∇φ − f = 0 in Ω. (2.5)

The Navier–Stokes and advection-diffusion equations exhibit two-way coupling: The scalar
field φ enters the Navier–Stokes momentum equation through the Boussinesq term denoted
by b in Eq. (2.1), while the fluid velocity u appears in the convective term in Eq. (2.5).

Depending on the physical phenomena modeled, Eq. (2.5) describes the evolution of
the fluid density or temperature field. The two cases are distinguished in what follows.

Density stratification. Here φ is associated with with the non-dimensional fluid density,
and is defined as follows:

φ(x, t) = ρ0 + ρ̄(x3) + ρ′(x, t). (2.6)

Here the fluid density ρ(x, t) is decomposed into a constant background field denoted by
ρ0, a linearly varying field in the x3-direction denoted by ρ̄(x3), and a fluctuating field with
full space and time dependence denoted by ρ′(x, t). The Boussinesq forcing term may be
written as b = Bb̂, where B is the characteristic dimension and b̂ takes on the form

b̂ = −
ρ′

Fr2 e3. (2.7)

Here, e3 is the Cartesian basis vector, Fr is the Froude number, a non-dimensional param-
eter defined as

Fr =
U

ND
, (2.8)

where U and D are the characteristic velocity and length scales. In Eq. (2.8), N is the
so-called Brunt–Vaisala frequency [65, 66] defined as

N2 = −
g
ρ0

∂ρ̄

∂x3
, (2.9)

where g is the gravitational acceleration magnitude. Note that the definition given by
Eq. (2.9) is meaningful in the case of negative vertical density gradient (i.e., lighter fluid
on top and heavier fluid on the bottom), which is what defines stable stratification.

Temperature stratification. This form is typically employed in atmospheric boundary layer
(ABL) modeling. Here φ is associated with with the fluid potential temperature, and is
defined as follows:

φ(x, t) = θ̄(x3) + θ′(x, t). (2.10)

Here the fluid temperature θ(x, t) is decomposed into the background field varying in the
x3-direction denoted by θ̄(x3), and a fluctuating field with full space and time dependence
denoted by θ′(x, t). The Boussinesq term b takes on the form

b = ρg
θ′

θ0
e3, (2.11)
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where θ0 is the reference temperature assumed constant in the Boussinesq approximation.

In the case of ABL the Earth rotation effects may be important. For this the Coriolis force
is applied in the momentum equation Eq. (2.1) as

f = fcεi j3u jei, (2.12)

where fc is the Coriolis parameter and εi jk’s are the Cartesian components of the alternator
tensor.

2.2. Semi-discrete formulation of stratified flow

The weak form of the stratified-flow equations in the ALE framework is stated as follows:
Find u, p, and φ, the fluid velocity, pressure, and scalar fields, respectively, such that for all
w, q, and η, the linear-momentum-, incompressibility-, and advection-diffusion-equation
test functions, respectively:∫

Ω

w · ρ
(
∂u
∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇u − f
)

dΩ +

∫
Ω

εεε (w) : 2µεεε (u) dΩ −

∫
Γh

w · h dΓ −

∫
Ω

w · b

+

∫
Ω

q∇∇∇ · u dΩ +

∫
Ω

η

(
∂φ

∂t

∣∣∣∣∣
x̂

+ (u − û) · ∇∇∇φ − f
)

+

∫
Ω

∇∇∇η · κ∇∇∇φ dΩ −

∫
Γ
φ
h

ηh dΓ = 0,

(2.13)

where Γh and Γ
φ
h are the subsets of the domain boundary with traction and flux bound-

ary conditions prescribed for the Navier–Stokes and advection–diffusion equations, respec-
tively, and h and h are the prescribed traction and flux values.

We use the RBVMS technique [11, 39, 67, 68] in the ALE frame (i.e., the ALE–VMS
technique) to discretize the equations in space. ALE–VMS relies on the decomposition of
the solution and test-function fields into coarse and fine scales as

u = uh + u′,
p = ph + p′,

φ = φh + φ′,

w = wh + w′,
q = qh + q′,

η = ηh + η′. (2.14)

The coarse scales, denoted with superscript h, are represented on a given problem mesh.
The test-function fine scales generate the so-called fine-scale equations, which give rise
to the closure problem for the fine-scale solution fields. Following [11, 39, 68], it can be
shown that the fine-scale equations are driven by the residuals of the coarse scales, which
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motivates the following simple algebraic fine-scale model:

u′ = −
τSUPS

ρ
rM

(
uh, ph, φh

)
, (2.15)

p′ = −ρνLSICrC

(
uh

)
, (2.16)

φ′ = −τSUPGrA

(
uh, φh

)
, (2.17)

Here rM, rC, and rA are the residuals of the momentum, incompressibility, and advection-
diffusion equations, respectively. They are defined as:

rM

(
uh, ph, φh

)
= ρ

(
∂uh

∂t

∣∣∣∣∣∣
x̂

+
(
uh − ûh

)
· ∇∇∇uh − fh

)
−∇∇∇ ·σσσ

(
uh, ph

)
− bh,

rC

(
uh

)
= ∇∇∇ · uh,

rA

(
uh, φh

)
=
∂φh

∂t

∣∣∣∣∣∣
x̂

+
(
uh − ûh

)
· ∇∇∇φh −∇∇∇ · κ∇∇∇φh − f h. (2.18)

In Eqs. (2.15)-(2.17), parameters τSUPS, νLSIC, and τSUPG originate from stabilized methods in
fluid mechanics. Their various definitions may be found in [11,13,15–18,32,37,38,68–75].
Here we provide the definitions employed in the present work:

τSUPS =

(
4

∆t2 +
(
uh

1 − ûh
)
·G

(
uh

1 − ûh
)

+ CIν
2G : G

)−1/2

, (2.19)

νLSIC = (trG τSUPS)−1 , (2.20)

τSUPG =

(
4

∆t2 +
(
uh

1 − ûh
)
·G

(
uh

1 − ûh
)

+ CIκ
2G : G

)−1/2

, (2.21)

where

trG =

d∑
i=1

Gii (2.22)

is the trace of the element metric tensor G, ∆t is the time-step size, and CI is a positive
constant that derives from an appropriate element-wise inverse estimate (see, e.g., [76–78]).

Introducing the expressions given by Eqs. (2.15)-(2.17) into the coarse-scale variational
equations generated by the coarse-scale test functions, the semi-discrete form of the ALE–
VMS formulation for stratified flows may be stated as follows: Find uh, ph, and φh, such



April 19, 2015 8:25 WSPC/INSTRUCTION FILE m3as˙stratified

ALE–VMS for Stratified Flow 7

that, for all wh, qh, and ηh:

∫
Ω

wh · ρ

(
∂uh

∂t

∣∣∣∣∣∣
x̂

+
(
uh − ûh

)
· ∇∇∇uh − fh

)
dΩ −

∫
Ω

wh · bh dΩ

+

∫
Ω

εεε
(
wh

)
: 2µεεε

(
uh

)
dΩ −

∫
Γh

wh · hh dΓ +

∫
Ω

qh∇∇∇ · uh dΩ

+

∫
Ω

ηh
(
∂φh

∂t

∣∣∣∣∣∣
x̂

+
(
uh − ûh

)
· ∇∇∇φh − f h

)
dΩ −

∫
Ω

∇∇∇ηh · κ · ∇∇∇φh dΩ −

∫
Γ
φ
h

ηhhh dΓ

+

Nel∑
e=1

∫
Ωe

τSUPS

((
uh − ûh

)
· ∇∇∇wh +

∇∇∇qh

ρ

)
· rM

(
uh, ph, φh

)
dΩ

+

Nel∑
e=1

∫
Ωe

ρνLSIC∇∇∇ · whrC

(
uh, ph

)
dΩ

−

Nel∑
e=1

∫
Ωe

τSUPSwh ·
(
rM

(
uh, ph, φh

)
· ∇∇∇uh

)
dΩ

−

Nel∑
e=1

∫
Ωe

∇∇∇wh

ρ
:
(
τSUPSrM

(
uh, ph, φh

))
⊗

(
τSUPSrM

(
uh, ph, φh

))
dΩ

+

Nel∑
e=1

∫
Ωe

τSUPG

(
uh − ûh

)
· ∇∇∇ηhrA

(
uh, φh

)
dΩ = 0, (2.23)

where Nel is the number of elements that subdivide the problem domain Ω. We note that a
comparable ST-VMS method was presented recently in [57] for thermo-fluid analysis, with
application to a ground vehicle and its tires.

We augment the formulation given by Eq. (2.23) with weakly enforced essential bound-
ary conditions [15] to improve boundary-layer solution accuracy. For this, the following
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terms are added to the left-hand-side of Eq. (2.23):

−

Neb∑
b=1

∫
Γb ⋂

Γg

wh ·σσσ
(
uh, ph

)
n dΓ

−

Neb∑
b=1

∫
Γb ⋂

Γg

(
2µεεε

(
wh

)
n + qhn

)
·
(
uh − gh

)
dΓ

−

Neb∑
b=1

∫
Γb ⋂

(Γg)−

wh · ρ
((

uh − ûh
)
· n

) (
uh − gh

)
dΓ

+

Neb∑
b=1

∫
Γb ⋂

Γg

τBwh ·
(
uh − gh

)
dΓ

−

Neb∑
b=1

∫
Γb ⋂

Γ
φ
g

ηhκ∇∇∇φh · n dΓ

−

Neb∑
b=1

∫
Γb ⋂

Γ
φ
g

κ∇∇∇φh · n
(
φh − gh

)
dΓ

−

Neb∑
b=1

∫
Γb ⋂

(Γφg )−

ηh
((

uh − ûh
)
· n

) (
φh − gh

)
dΓ

+

Neb∑
b=1

∫
Γb ⋂

Γ
φ
g

τ
φ
Bη

h
(
φh − gh

)
dΓ (2.24)

where Neb is the number of surface elements that subdivide the domain boundary, Γg

and Γ
φ
g are the subsets of the boundary with prescribed essential boundary conditions

for the Navier–Stokes and advection–diffusion equations, (Γg)− and (Γφg)− denote the “in-
flow” parts of the essential boundary, and gh and gh are the boundary condition values. In
Eq. (2.24) τB and τφB are the boundary stabilization or penalty parameters defined from con-
siderations of stability, optimal convergence, and connection with near-wall modeling (i.e.,
wall functions). For more details on weakly enforced boundary conditions and definition
of stabilization parameters the reader is referred to [16–18].

2.3. Additional VMS modeling terms and stabilization parameters

In the VMS framework, coupling between Navier–Stokes and advection–diffusion equa-
tions brought about by the Boussinesq approximation gives rise to additional model-
ing terms. In particular, it can be shown that the x3-component of the linear-momentum
equation and incompressibility constraint are coupled with the residual of the advection-
diffusion equation, and the following terms may be added to the left-hand-side of
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Eq. (2.23):

+

Nel∑
e=1

∫
Ωe

(uh − ûh
)
·
∂wh

3

∂x
+

1
ρ

∂qh

∂x3

 τ̄rA

(
uh, φh

)
dΩ. (2.25)

The stabilization parameter τ̄ may be obtained following the developments of stabilized
methods for advective–diffusive systems presented in [79–81], which gives a possible can-
didate for τ̄,

τ̄ = −
a2

a1
√

a3 + a3
√

a1
, (2.26)

where ai’s are given by

a1 =
4

∆t2 +
(
uh − ûh

)
·G

(
uh − ûh

)
+ CIν

2G : G,

a2 =
4
∆t

Ri,

a3 =
4

∆t2 +
(
uh − ûh

)
·G

(
uh − ûh

)
+ CIκ

2G : G, (2.27)

and where Ri = 1/Fr2 is the so-called Richardson number, a non dimensional parameter
that characterizes the degree of stratification in the flow. Although the numerical examples
presented in the following sections do not make use of these additional terms, it may be of
interest to assess their importance in future studies.

3. Numerical Examples

3.1. Internal gravity waves in a density-stratified fluid

This example deals with generation of internal gravity waves in laminar flow. Internal grav-
ity waves occur in density-stratified fluids under the restoring force of gravity. The disper-
sion relation for such waves is

ω = N cos(θ), (3.1)

where N is the buoyancy (or Brunt–Vaisala) frequency, ω is the wave frequency, and θ is
the angle between the fluid particle velocity and vertical direction (see, e.g., [65, 66] for
details). The dispersion relation clearly shows that the maximum frequency of propagating
internal waves is the buoyancy frequency N. The generation of internal gravity waves was
demonstrated in several laboratory experiments [82, 83]. The waves may be generated by
a small disturbance in the fluid (e.g., by means of an oscillating cylinder), and visualized
using a so-called schlieren system [82, 83].

Here the problem is defined numerically and is set up using a cylindrical domain with
length L = 1 and radius R = 5. The fluid occupying the domain has uniform buoyancy fre-
quency N = 1 and is forced along the cylinder axis in the vertical direction (i.e., direction
of density stratification) at a frequency ω = 0.71. Although the problem is computed in 3D,
it is constrained to produce a 2D response. On the lateral boundaries we set zero traction
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Fig. 1. Internal gravity waves. Problem mesh.

Fig. 2. Internal gravity waves. Left: Visualization of experimental results from [65]. Right: Vertical velocity gra-
dient magnitude from the present computation.

boundary conditions and scalar flux boundary conditions that are consistent with the back-
ground density stratification. The problem is computed on a mesh of 304,240 tetrahedral
elements (see Figure 1), and the vertical-velocity gradient magnitude is visualized in Fig-
ure 2. Experimental observations from [65] are also plotted for comparison. The velocity
gradient exhibits “streaks” at 45◦ to the stratification direction, a result that is consistent
with the analytical dispersion relation given by Eq. (3.1) and experimental observations.
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Fig. 3. Spatially evolving wake. Mesh of the problem domain with refined regions.

Num. of nodes Num. of elements
Mesh 3,815,319 22,547,731

Table 1. Spatially evolving wake. Problem mesh statistics.

Inner cone Outer cone Outer box
0.08 0.1 0.25

Table 2. Spatially evolving wake. Element size employed in the different regions of the problem domain.

3.2. Spatially evolving self-propelled wake in a density-stratified fluid

We compute a spatially evolving wake in a density-stratified fluid at Re = 15, 000, Fr = 3,
and Pr = 1. The flow is turbulent and the problem setup corresponds to a recent DNS study
of a self-propelled wake with 50% mean kinetic energy and a given energy spectrum [4].
In what follows we refer to this case as SP50.

3.2.1. Problem setup and mesh

The problem computational domain is defined as follows. The outer boundary is a box with
dimensions 22.125D × 14.482D × 65D, where D is the characteristic length. In order to
get the desired non-dimensional values of Re, Fr, and Pr, the problem parameters are set
as follows: D = 1, U = 1 (background inlet velocity), ρ0 = 1, µ = 1/15, 000, N = 1/3,
and κ = 1/15, 000. At the inlet, the inflow velocity and density are imposed strongly. The
inflow data comes from a separate temporally evolving wake simulation described in detail
in the next section. At the outlet, zero traction and zero scalar flux boundary conditions
are imposed. On the lateral boundaries, no penetration and zero tangential traction bound-
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Fig. 4. Spatially evolving wake. Triangular mesh of the inflow boundary.

ary conditions are set for the Navier–Stokes equations, and flux boundary conditions con-
sistent with the background density stratification are imposed for the advection–diffusion
equation. Two cone-shaped mesh refinement zones are defined to better capture the tur-
bulent wake features. At the inlet, the radii of the inner and outer cones are 2.5D and
3.5D, respectively. At the outlet, the radii of the inner and outer cones are 3.5D and 6D,
respectively. These two refined regions are sufficient to contain the expanding wake. The
problem tetrahedral mesh with refined regions is depicted in Figure 3. The mesh statistics
are summarized in Tables 1 and 2. The time step is set to ∆t = 0.002, and the simulation is
performed for 520 non-dimensional time units, which corresponds to eight flow-throughs.

3.2.2. Turbulent wake inflow generation

In order to generate the inflow data that is used for the present simulation, a standalone com-
putation of a temporally evolving wake is carried out using a structured-grid finite-volume
technique. The computational procedure and set-up of this auxiliary computation is identi-
cal to that employed in the DNS of [4]. Solution data generated by this auxiliary simulation
is “fed” into the computational domain of the present spatial simulation as inflow boundary
conditions. To impose stratified turbulent inflow conditions for the spatial simulation, the
inflow velocity and density data are transferred from the structured grid to the unstructured
triangular mesh. Figure 4 shows the unstructured triangular mesh at the inlet of the spatial
domain. On the inlet plane, the unstructured mesh is clustered in the inner region to have
a more accurate representation of the flow features. The triangular mesh becomes coarser
near the lateral boundaries since no significant velocity and density fluctuations are present
in this location, and thus do not need to be resolved. To transfer the velocity and density
data between the two meshes, the L2-projection technique is employed. Figure 5 shows the
the velocity magnitude before and after the L2-projection. Note that all the scales are pre-
served in the region near the center of the inflow face. The L2-projection is performed for
every plane generated by the auxiliary simulation. Piecewise linear interpolation in time is
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Fig. 5. Spatially evolving wake. Velocity magnitude on the inflow plane. Left: before projection. Right: after
projection.

assumed when the turbulent inflow field is needed in the intermediate locations between
the planes of the auxiliary simulation.

3.2.3. Flow features and statistics

We present wake flow features and statistics obtained in the present computation and use
the DNS data from [4] as reference. Figure 6 shows the contours of the mean stream-wise
velocity at several cuts along the flow direction. The top figure shows the mean velocity
profile right near the inlet. The profile is axisymmetric and contains positive and negative
velocity lobes (i.e., thrust and drag lobes). The middle and bottom figures depict the sub-
sequent anisotropic growth of the wake that occurs mainly in the horizontal direction. The
negative velocity lobes eventually vanish along the horizontal direction, but remain along
the vertical direction over the entire stream-wise extent of the domain. The reason for the
survival of the negative lobes is the effect of buoyancy that inhibits vertical mixing of mo-
mentum. The wave field associated with the self-propelled wake is shown via the contours
of horizontal vorticity at various downstream locations in Figure 7. The current simula-
tion, although performed on a much coarser mesh, is able to replicate the gravity wave
patterns present in the DNS computation. In addition, Figure 7 shows that, at later time, the
central region of the wake has multiple coherent layers of stream-wise vorticity. These cor-
respond to regions of large vertical shear between the adjacent “pancake” eddies. Figure 8
shows vorticity isosurfaces colored by flow speed. The wake anisotropic growth along the
stream-wise direction can be clearly observed. The figure also illustrates the complexity
of the underlying turbulent flow phenomena, and underscores the necessity to develop and
use stable and accurate numerical techniques for this problem class. The plane-integrated
statistics, namely, production and turbulent kinetic energy (see [7] for definition of these
standard turbulent-flow quantities), are plotted as a function of the stream-wise variable in
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Fig. 6. Spatially evolving wake. Mean velocity contours at several streamwise cuts. Left: Present computation;
Right: DNS data from [4].

Figure 9. Good agreement with the DNS data is observed, especially further downstream of
the inlet. However, in the region where the stream-wise coordinate ranges from x1 = 15 to
x1 = 25, there are some differences in the turbulent production, which may be attributable
to lower resolution of the present computation relative to the DNS.

3.3. Wind-turbine rotor in an atmospheric boundary layer

In this section we investigate the behavior of a full-scale offshore wind-turbine rotor placed
in a thermally stratified ABL. For this we first perform a standalone 3D large-eddy simu-
lation (LES) computation of an ABL on a domain which is a cube with dimension 400 m
and uniform grid size of 5 m. The LES [84, 85] employs a mixed spectral-finite difference
algorithm and dynamic eddy viscosity and eddy diffusivity models to simulate stratified
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Fig. 7. Spatially evolving wake. Instantaneous internal gravity wave field visualized by snapshots of streamwise
vorticity at several streamwise cuts. Left: Present computation; Right: DNS data from [4].

flows. The reference temperature is set to 260 K, and a vertical temperature gradient of
0.01 K/m is prescribed starting at 100 m above ground. The geostrophic wind speed is set
to 8 m/s, and the Coriolis parameter fc = 1.39 × 10−4 s−1 is employed in the computa-
tion. The computational set-up is similar to that in [6]. The data from the LES computation
is used as inlet boundary conditions for the ALE–VMS wind-turbine rotor computation,
which is described in what follows.

The problem domain is a cylinder that is 240 m in length and diameter. A 5 MW wind-
turbine rotor with diameter of 120 m, analyzed earlier in [19–21, 25, 41–43, 86], is placed
in the cylindrical domain. The rotor spins with a prescribed, constant angular velocity,
and no sliding interface or FSI coupling are employed in the present computation. The
problem domain is discretized using triangular prisms in the boundary layer region and
tetrahedra elsewhere, resulting in 7,431,784 linear elements (see Figure 10). The boundary-
layer mesh design is based on that reported in [21], where an FSI simulation of a full
offshore wind turbine with yawing motion was performed using a newly proposed moving
sliding-interface technique. The mesh is refined in the inner region of the domain in order
to better resolve the ABL turbulent flow that impacts the rotor.

To impose turbulent inlet velocity and temperature boundary conditions, the solution
data is transferred from the structured grid of the LES simulation to the unstructured mesh
of the spinning rotor problem. The spinning rotor domain is immersed into a larger LES
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Fig. 8. Spatially evolving wake. Isosurfaces of vorticity colored by flow speed at a time instant.

Fig. 9. Spatially evolving wake. Left: Plane-integrated turbulent production as a function of streamwise coor-
dinate; Right: Normalized, plane-integrated turbulent kinetic energy. (See [7] for definition of these standard
turbulent-flow quantities.) DNS data from [4] is also shown.

domain and the velocity and temperature data assigned to the nodes of the cylinder inflow
plane and lateral boundaries is obtained by interpolating the finite-difference solution (see
Figure 11). At the outlet, traction boundary conditions are prescribed. The distribution
of outlet traction is obtained by computing the problem on a non-spinning domain, with
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Blade 1 

Blade 3 Blade 2 

Fig. 10. Wind-turbine rotor in an ABL. Mesh of computational domain in 2D and 3D views. The rotor blades are
numbered clockwise and arrow indicates rotation direction.

Fig. 11. Wind-turbine rotor in an ABL. Velocity (in m/s) initial and boundary conditions obtained by “immersing”
the cylindrical spinning domain into a larger LES domain and performing interpolation of the LES solution.
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Fig. 12. Wind-turbine rotor in an ABL. Mean velocity and temperature as a function of the vertical coordinate.

the rotor removed, and with zero outlet traction boundary conditions. The inlet tractions
produced as a result of this computation are assigned as outlet traction boundary conditions
in the rotating-domain computation. We note that a similar concept was used in [57] for
detailed thermo-fluid analysis of the rear tires of a ground vehicle. In [57], the thermo-
fluid computation over the global domain (including all the tires) with a reasonable mesh
refinement is followed by a higher-resolution computation over the local domain containing
the rear set of tires, with the boundary and initial conditions coming from the data computed
over the global domain. The data computed over the global domain is stored using the data
compression method introduced in [87].

Figure 12 shows the mean velocity and temperature as a function of the vertical coor-
dinate, at x1 = 120 m and x1 = 240 m locations downstream of the inflow. The results
are compared to the mean of the velocity and temperature imposed on the inlet, which
corresponds to the interpolated LES data. The two profiles are very close, suggesting that
ALE–VMS and LES ABL are mutually consistent.

For the wind turbine simulation the rotor speed is set to 9 rpm. This rotor speed chosen
gives the optimal tip-speed ratio for 8 m/s wind speed [88], which is also the geostrophic
wind speed used in the computation. The time-step size of 2.0 × 10−4 s is employed. The
flow is initialized using the LES data interpolated to the interior of the rotor mesh, and the
computation is started impulsively. Figure 13 shows vorticity isosurfaces at t = 8.5 s. Due
to the presence of the inversion layer, tip vortices travel with different speeds, faster near
the top and slower near the bottom of the domain. As a result, the perfect helical pattern of
tip vortices, which is expected in the case of uniform flow, is no longer present. As the rotor
turns and blades travel in and out of the inversion layer, they introduce a certain amount
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Fig. 13. Wind-turbine rotor in an ABL. Vorticity isosurfaces colored by flow speed (in m/s) at t = 8.5 s.

of mixing in the flow (see Figure 14). This inversion-layer mixing propagates downstream
and gives a complex and largely unstudied wake behavior.

The next set of figures examine the time-dependent rotor loads. The rotor-thrust time
history is shown in Figure 15, where thrust is plotted for each individual blade (see Fig-
ure 10 for blade numbering). The presence of ABL produces an 18% fluctuation in the
thrust load during the cycle. Figure 16 shows rotor-torque time history for each individ-
ual blade, which exhibits an even larger variation during the cycle. These fluctuations are
significant and, to our knowledge, are reported for the first time for a full-scale rotor in an
ABL. The time history of the total rotor torque is shown in Figure 17. Adding the torques
from all three blades appears to remove the fluctuation in the signal. The result is compared
with the torque data from [88] for uniform inflow of 8 m/s. The present computation pre-
dicts a lower torque value since the average wind speed the rotor sees is less than 8 m/s
(see Figure 12).

4. Conclusions

We developed an ALE–VMS formulation aimed at the simulation of stratified flows on
moving domains. The formulation couples the Navier–Stokes equations of incompressible
flows with the Boussinesq approximation, and a scalar advection–diffusion equation for the
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Fig. 14. Wind-turbine rotor in an ABL. Flow speed (in m/s) contours on a 2D slice of the problem domain showing
mixing of the inversion layer in the rotor wake.

density or temperature field. The proposed formulation was tested on three examples and
showed good agreement with experimental results and DNS simulations reported by other
researchers. In the last example we simulated a full-scale 5 MW offshore wind-turbine
rotor in a thermally-stratified ABL and observed significant variations in the rotor-blade
thrust and torque loads during the rotation cycle. These results, presented for the first time
in the open literature, indicate that stratification strongly affects the transient rotor loads,
and should be considered in the structural and FSI analyses of offshore wind-turbine blades,
especially for the prediction of fatigue damage and remaining useful life of these structures.

In the near future we plan to combine the newly developed ALE–VMS formulation of
stratified flows with our full-machine FSI framework to simulate wind turbines operating
in an ABL. These simulations will likely produce more realistic structural mechanics re-
sponse of the blades, and will give us better understanding of the turbulent wake structures
created downstream the turbine. As mentioned at the end of Section 2, the Boussinesq term
in the linear-momentum balance equation gives rise to additional residual-based terms. Al-
though not investigated in the present work, these modeling terms may play an important
role, and will be considered in the future implementations of the ALE–VMS framework.
Finally, in the present work low-order FEM was employed in the simulations. The use of



April 19, 2015 8:25 WSPC/INSTRUCTION FILE m3as˙stratified

ALE–VMS for Stratified Flow 21

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 980

85

90

95

100

105

110

115

120

Time, s

Th
ru

st
 F

or
ce

, k
N

 

 

Blade 1
Blade 2
Blade 3

60 120 180 240 300 360 60 120

80

85

90

95

100

105

110

115

120

Azimuth, °

Fig. 15. Wind-turbine rotor in an ABL. Time history of the thrust force acting on each blade.
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Fig. 16. Wind-turbine rotor in an ABL. Time history of the aerodynamic torque acting on each blade.
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Fig. 17. Wind-turbine rotor in an ABL. Time history of the total aerodynamic torque. Torque data from [88] for
uniform inflow of 8 m/s is also shown.

Isogeometric Analysis (IGA) [89, 90] in combination with the proposed ALE–VMS for-
mulation will likely produce further improvements in the per-degree-of-freedom accuracy
for stratified flow simulations due to the higher-order accuracy and smoothness of the un-
derlying discretizations in IGA.
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