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Linear stability analysis is used to investigate instability mechanisms for a horizontally
oriented hyperbolic tangent mixing layer with uniform stable stratification and
coordinate system rotation about the vertical axis. The important parameters governing
inviscid dynamics are maximum shear S, buoyancy frequency N, angular velocity
of rotation Ω and characteristic shear thickness L. Growth rates associated with the
most unstable modes are explored as a function of stratification strength N/S and
rotation strength 2Ω/S. In the case of strong stratification, growth rates exhibit self-
similarity of the form σ(k1L, Sk3L/N, 2Ω/S). In the case of rapid rotation we also
observe self-similar scaling of growth rates with respect to the vertical wavenumber
and rotation rate. The unstratified cases show σ(k1L, 2|Ω̃|k3L/S) dependence while the
strongly stratified cases show σ(k1L, 2|Ω̃|k3L/N) dependence where Ω̃ represents the
difference between the angular velocity of rotation and least stable anticyclonic angular
velocity, Ω = S/4. Stratification was found to stabilize the inertial instability for weak
anticyclonic rotation rates. Near the zero absolute vorticity state, stratification and
rotation couple in a destabilizing manner increasing the range of unstable vertical
wavenumbers associated with barotropic instability. In the case of rapid rotation,
stratification prevents the stabilization of low k1, high k3 modes that occurs in a
homogeneous fluid. The structure of certain unstable eigenmodes and the coupling
between horizontal vorticity and density fluctuations are explored to explain how
buoyancy stabilizes or destabilizes inertial and barotropic modes.
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1. Introduction
The effects of strong stratification, where Frh = S/N . O (1), and moderate

rotation rates, where |Ro| = S/2|Ω| ∼ O (1), on shear flow are important for basic
understanding of submesoscale ocean dynamics. We concentrate our study on a
horizontally oriented hyperbolic tangent mixing layer including stable stratification and
rotation effects. Isolated horizontal shear is prevalent in boundary currents and in the
wake of isolated topography. Previous work has explored the three-dimensional linear
stability of a horizontally oriented shear layer subjected to rotation or stratification
alone, but not in combination. Figure 1 gives a schematic illustrating the rotating
stratified horizontal shear layer and relevant dimensional parameters.
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FIGURE 1. Schematic of the rotating stratified horizontal shear layer. Relevant parameters
include the vorticity thickness δω = 1U/|〈ω3〉|max , kinematic viscosity ν, mass diffusivity κ
and reference density ρ0. Cyclonic rotation refers to cases where 〈ω3〉 and Ω have the same
sign, while anticyclonic rotation refers to cases where they have opposite signs.

Deloncle, Chomaz & Billant (2007) explored the influence of uniform stable
stratification on the linear stability of a non-rotating horizontal hyperbolic tangent
mixing layer with shear concentrated in a region with characteristic length scale L.
When stratification was strong, with Frh . 1, self-similarity of growth rates with
respect to vertical wavenumber was realized with associated scale Frhk3L, as opposed
to the unstratified scale k3L. This result is consistent with the self-similarity of strongly
stratified flows proposed by Billant & Chomaz (2001) and implies that a wider range
of vertical wavenumbers are unstable when stratification is strong.

Johnson (1963) explored the effects of vertical shear U1(x3), subjected to coordinate
system rotation about an axis oriented at an arbitrary angle θ with respect to
the streamwise direction. Neutral modes were computed for a hyperbolic tangent
mean velocity profile for various values of θ . A horizontally oriented shear layer
subjected to vertical rotation without stratification is equivalent to the θ = ±90◦ cases
investigated by Johnson (1963). Rotation was found to stabilize the flow, except
for the anticyclonic case with 0 < 2Ω < dU1/dx3 where the effect of rotation was
destabilizing. This result is consistent with the Rayleigh criterion for inertial instability
(e.g. Holton 1992), which states that 2Ω (2Ω + ω3) < 0 implies instability. Here, ω3

is the relative vertical vorticity and 2Ω + ω3 is the corresponding absolute vertical
vorticity.

The stability of a viscous hyperbolic tangent mixing layer subjected to rigid-body
rotation perpendicular to the plane of the mean flow was explored by Yanase et al.
(1993). Two distinct instability regimes were observed. The first region corresponded
to the barotropic (or Kelvin–Helmholtz) instability with its growth rate peaking when
k1 = 0.43 and k3 = 0. The second region corresponded to the inertial (or shear/Coriolis)
instability with its growth rate peaking when k1 = 0 and k3 is large in comparison with
barotropic modes. The neutral curves found in Johnson (1963) were determined to be
incorrect and did not capture the inertial instability regime properly.

Smyth & Peltier (1994) explored the evolution of a rotating and unstratified
barotropic shear layer and the stability of the temporally evolving two-dimensional
flow with respect to three-dimensional perturbations. The evolution included
Kelvin–Helmholtz vortex formation and pairing. Slow rotation rates either stabilized
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or destabilized the barotropic vortices depending on the sign of f , while rapid rotation
stabilized the flow. When the absolute vorticity was small in comparison to the
relative vorticity, the vortex core was destabilized. Later, Smyth & McWilliams (1998)
explored the instability of a single columnar vortex in a rotating and stratified fluid.
In the case of rapid rotation and strong stratification, instability was restricted to a
band of vertical wavenumbers such that k3L ∼ |N/f |, consistent with quasi-geostrophy.
A surprising result was that this scaling was realized outside of the formal quasi-
geostrophic regime, when coordinate system rotation rates were only a few times
faster than vortex core rotation rates. Inertial instability was realized for moderate
anticyclonic rotation rates.

Numerical simulations of the inertial instability for various wall-bounded and free-
shear flows were explored by Kloosterziel, Orlandi & Carnevale (2007). Simulations
were invariant in the streamwise direction, so that the barotropic instability would
not influence evolution. It was observed that the inertial instability redistributes linear
momentum in a manner that yields an inertially stable final state, suppressing regions
of negative potential vorticity.

Plougonven & Zeitlin (2009) investigated the development of inertial instability
for a hyperbolic tangent mixing layer in a rotating stratified fluid. The barotropic
instability was ignored by exploring modes that were invariant in the streamwise
direction. Analytical solutions for the linear stability of the problem were derived in
addition to exploration of nonlinear evolution of inertial instability and the fluctuating
baroclinicity of the final state. For inviscid flow, growth rates were shown analytically
to tend towards maximal values when k3→∞. The expression also allowed for easy
computation of the most unstable vertical wavenumber for inertially unstable viscous
flows. Previous investigations into the vertical scale selection associated with inertial
instability include Dunkerton (1981), Griffiths (2003) and Kloosterziel & Carnevale
(2008). Dunkerton (1981) and Griffiths (2003) both focused on zonal equatorial flows
with the former exploring the scale selection for linear disturbances, and the latter
exploring nonlinear scale selection. Griffiths observed a secondary Kelvin–Helmholtz
instability which increased the vertical length scale in comparison to the linear scale.
Kloosterziel & Carnevale (2008) explored a zonal flow in an f -plane as opposed to the
equatorial β-plane. For large Re, the preferred vertical wavenumber was found to scale
as k3 ∝ Re1/3.

The three-dimensional stability of a Kármán vortex sheet, symmetric double row,
and single row of vortices was explored in a stratified and rotating fluid by Deloncle,
Billant & Chomaz (2011). For the non-rotating stratified Kármán vortex sheet, zigzag-
type instabilities were realized for sufficiently close vortex rows. When rotational
effects were included, cyclonic vortices were found to have less bend than anticyclonic
vortices. In the rapid rotation regime, growth rates were found scale like Ro/(bFrh)

where b denotes spacing between adjacent vortices in the same row. The result is
consistent with quasi-geostrophic scaling laws.

In this paper, the stability of the horizontal mixing layer is explored with the
influence of both stratification and rotation for fully three-dimensional perturbations.
In § 2 we formulate the eigenvalue problem. In § 3 we introduce theory related to
horizontal vorticity fluctuations to aid in explaining the stability of the shear layer. In
§ 4 we explore the effects of stratification and rotation on eigenvalues to infer various
asymptotic regimes of the flow. Lastly, in § 5 we explore the effects of stratification
and rotation on eigenmodes and their underlying vortex dynamics with a focus on
buoyancy effects.
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2. Formulation
The governing equations for Boussinesq incompressible flow in a rotating coordinate

system are given here with dimensional quantities denoted by superscript ∗:

∂u∗i
∂t∗
+ u∗j

∂u∗i
∂x∗j
+ εi3k2Ω∗u∗k =−

1
ρ∗0

∂p∗

∂x∗i
− ρ

∗g∗

ρ∗0
δi3 + ν∗ ∂

2u∗i
∂x∗j ∂x∗j

, (2.1)

∂u∗i
∂x∗i
= 0, (2.2)

∂ρ∗

∂t∗
+ u∗j

∂ρ∗

∂x∗j
= κ∗ ∂

2ρ∗

∂x∗j ∂x∗j
. (2.3)

The base state of interest is a barotropic hyperbolic tangent mixing layer of the form

〈u∗1〉 =
1U∗

2
tanh

(
2x∗2
δ∗ω

)
, (2.4)

with linear vertical stratification d〈ρ∗〉/dx∗3, Coriolis parameter f ∗ = 2Ω∗, vorticity
thickness δ∗ω and velocity difference 1U∗ as seen in figure 1. The mean pressure
field is chosen to exactly balance the effects of the mean Coriolis terms and the
mean buoyancy term from the momentum equations. The non-dimensional governing
equations and associated non-dimensional parameters and variables are as follows:

∂ui

∂t
+ uj

∂ui

∂xj
+ εi3k2Ωuk =− ∂p

∂xi
− Ribρδi3 + 1

Re

∂2ui

∂xj∂xj
, (2.5)

∂ui

∂xi
= 0, (2.6)

∂ρ

∂t
+ uj

∂ρ

∂xj
= 1

RePr

∂2ρ

∂xj∂xj
, (2.7)

Rib =− g∗

ρ∗0

d〈ρ∗〉
dx∗3

δ∗ω
2

1U∗2 =
N∗2δ∗ω

2

1U∗2 = Fr−2
h , 2Ω = Ro−1 = f ∗δ∗ω

1U∗
, (2.8)

Re= 1U∗δ∗ω
ν∗

, Pr = ν
∗

κ∗
, (2.9)

ui = u∗i
1U∗

, p= p∗

ρ∗01U∗2
, ρ = −ρ∗

δ∗ω d〈ρ∗〉/dx∗3
. (2.10)

Next, linearized evolution equations are derived for small amplitude perturbations
and given here:

∂u′i
∂t
+ 〈u1〉 ∂u′i

∂x1
+ u′2

d〈ui〉
dx2

δi1 + εi3k2Ωu′k =−
∂p′

∂xi
− Ribρ

′δi3 + 1
Re

∂2u′i
∂xj∂xj

, (2.11)

∂u′i
∂xi
= 0, (2.12)

∂ρ ′

∂t
+ 〈u1〉 ∂ρ

′

∂x1
− u′3 =

1
RePr

∂2ρ ′

∂xj∂xj
. (2.13)

Solutions are assumed to be wavelike in the streamwise and vertical directions with
the following functional form:[

u′i, p′, ρ ′
]
(x2) exp (ik1x1 + ik3x3 + σ t) . (2.14)
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Substituting into the linearized equations of motion and combining equations in a
manner similar to Deloncle et al. (2007), we obtain a generalized eigenvalue problem
of the following form after eliminating u′3 and p′ as variables:

A

u′1
u′2
ρ ′

= σB

u′1
u′2
ρ ′

 . (2.15)

The matrices A and B are shown in the following equations where k2 = k2
1 + k2

3,
D = d/dx2, ∆ = D2 − k2, U = 〈u1〉, ν = Re−1 and κ = (RePr)−1 are used for
compactness:

A=

 −2Ωk2 ik1

{
U∆− D2U + 2ΩD

}+ ν∆ −ik3RibD

ik1 (DU + UD− 2Ω)− ν∆D D2U + k2
1U + DUD− 2ΩD+ νik1∆ 0

−ik1 −D k1k3U + κik3∆


(2.16)

B =

 0 −∆ 0

−D ik1 0

0 0 ik3

 . (2.17)

Matrices A and B are discretized using rational Chebyshev basis functions. The
generalized eigenvalue problem is solved using the Intel MKL library and Fortran.
Since k3 appears in the equations only as k2

3 or k3ρ
′ (which can be absorbed by

definition into a new variable k3ρ
′) it is clear that the sign of k3 does not affect the

growth rate σ . On the other hand, examining det (A− σB) = 0 shows that changing
the sign of k1 changes the sign of σ . Also, Johnson (1963) established that unstable
modes cannot exist for |k1|> 1. Therefore, the stability of the flow field in the domain
of k1 ∈ [0, 1] and k3 ∈ [0,∞) may be studied without a loss of generality.

3. Evolution of horizontal vorticity fluctuations
The linearized inviscid fluctuating vorticity equations for the given base flow are as

follows, where sij = 1
2

(
ui,j + uj,i

)
and D̄/D̄t = ∂/∂t + 〈u1〉∂/∂x1:

D̄ω′i
D̄t
=−u′2

∂〈ωi〉
∂x2

δi3 +
(
ω′2δi1 + ω′1δi2

) 〈s12〉 + (〈ω3〉 + 2Ω) s′i3

+ εik3Ωω
′
k − Ribεij3

∂ρ ′

∂xj
. (3.1)

The behaviour of the inertial instability in either a strongly stratified or a
homogeneous fluid can be explained by looking at the inviscid linearized evolution
equations for the horizontal fluctuating vorticity components. They are given below,
letting S (x2) denote local mean shear which takes its maximum non-dimensional value
of 1 where x2 = 0, and noting that 〈ω3〉 (x2)=−S (x2):

D̄ω′1
D̄t
= ω

′
2

2
(S (x2)+ 2Ω)+ (2Ω − S (x2)) s′13 − Rib

∂ρ ′

∂x2
, (3.2)

D̄ω′2
D̄t
= ω

′
1

2
(S (x2)− 2Ω)+ (2Ω − S (x2)) s′23 + Rib

∂ρ ′

∂x1
. (3.3)



34 E. Arobone and S. Sarkar

The first term on the right-hand side of both equations (3.2) and (3.3) physically
represents the tilting of vorticity fluctuations by the mean strain combined with the
‘fictitious’ effect of coordinate system rotation on horizontal vorticity components. The
second term in both equations represents the tilting of mean flow absolute vorticity by
strain fluctuations. The third term represents vorticity generation via baroclinic torque.
The right-hand side can also be expressed in a more mathematically convenient form
in terms of fluctuating velocity gradients:

D̄ω′1
D̄t
=−S (x2)

∂u′3
∂x1
+ 2Ω

∂u′1
∂x3
− Rib

∂ρ ′

∂x2
, (3.4)

D̄ω′2
D̄t
= (2Ω − S (x2))

∂u′2
∂x3
+ Rib

∂ρ ′

∂x1
. (3.5)

For small k1 (relative to k3) or nearly streamwise invariant modes we can simplify
these equations:

D̄ω′1
D̄t
≈ 2Ωω′2 − Rib

∂ρ ′

∂x2
, (3.6)

D̄ω′2
D̄t
≈− (2Ω − S (x2)) ω

′
1 + Rib

∂ρ ′

∂x1
. (3.7)

Taking the material derivative of both sides gives

D̄2ω′1
D̄t2
≈ 2Ω

D̄ω′2
D̄t
− Rib

D̄

D̄t

[
∂ρ ′

∂x2

]
, (3.8)

D̄2ω′2
D̄t2
≈− (2Ω − S (x2))

D̄ω′1
D̄t
+ Rib

D̄

D̄t

[
∂ρ ′

∂x1

]
. (3.9)

Substituting the linearized evolution equations for horizontal density gradient and
vorticity we find:

D̄2ω′1
D̄t2
≈−2Ω (2Ω − S (x2)) ω

′
1 + Rib (2Ω + S (x2))

∂ρ ′

∂x1
− Rib

∂u′3
∂x2

, (3.10)

D̄2ω′2
D̄t2
≈−2Ω (2Ω − S (x2)) ω

′
2 + Rib (2Ω − S (x2))

∂ρ ′

∂x2
+ Rib

∂u′3
∂x1

. (3.11)

The first terms on the right-hand sides of (3.10) and (3.11) represent the inertial
instability and give its maximal growth rate σ = [−2Ω (2Ω − S)]1/2 in the case
of constant S. The remaining terms correspond to buoyancy effects. In particular,
the second terms represent the shearing and rotation of vorticity induced by density
gradients, and the third term represents the influence of isopycnal deformation.

4. Effect of stratification on growth rates
The following analysis is inviscid. The effects of viscosity and diffusion are

included for reference in appendices A and B. Growth rates for a strongly stratified
non-rotating shear layer are shown in figure 2(b) and agree well with figure 3(b) of
Deloncle et al. (2007) and their result that Ri−1/2

b k3 = Frhk3 is the appropriate self-
similar vertical scaling. If scaling is not performed then stability plots grow vertically
with a wavenumber band proportional to N. The growth rates for the homogenous case
are included in figure 2(a) for comparison. Weakly stratified cases, where Rib < O (1),
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FIGURE 2. Plots of growth rate for (a) the inviscid non-rotating homogeneous case and
(b) the non-rotating strongly stratified case where Rib = 4. The maximum growth rates are
observed when k3 = 0 and k1 = 0.44 with a growth rate of σ = 0.190 as in Deloncle et al.
(2007).

are found to be qualitatively similar to the unstratified cases as in Deloncle et al.
(2007) and will not be discussed.

4.1. Moderate rotation regime
Plots (b,c) from figure 3 show the effect of stratification on growth rates when
2Ω = 0.1. Plots (e,f ) show the same for 2Ω = 0.9, and plots (h,i) for 2Ω = 1.
These plots suggest that for Rib & 1, self-similarity of the form σ (k1, k3,Rib, 2Ω) =
σ
(

k1,Ri
−1/2
b k3, 2Ω

)
is observed. This result is consistent with the analysis of Billant

& Chomaz (2001), which states that self-similarity of strongly stratified flows holds in
a rotating coordinate system. Similar collapse when Rib > 1 was observed at all other
values of 2Ω explored in this analysis.

In figure 3(a–c), the inertial instability corresponds to the growth rates near the k3

axis, but away from the k1 axis. In the limit of k3→∞, growth rates for 2Ω = 0.1
approach the maximal inertial growth rate of

√−2Ω (2Ω − Smax) = 0.3 where Smax

is the maximal shear which takes the non-dimensional value of unity. Stratification
reduces the intensity of growth rates associated with the inertial instability for
moderate values of Ri−1/2

b k3. In the limit of k3 →∞, the cases with and without
stratification are equivalent, but this limit is not realized until very large values of
Ri−1/2

b k3, where the influence of stratification becomes negligible. Figure 3(d–f ) show
growth rates for unstratified, Rib = 1 and Rib = 10 cases, respectively, with stronger
anticyclonic rotation (2Ω = 0.9). In the unstratified case there are distinct regions
corresponding to the inertial and barotropic instabilities. In the stratified cases this
distinction is far less apparent, with growth rates showing little variation with respect
to Ri−1/2

b k3.
Stratification leads to a strong qualitative change in the zero absolute vorticity case

(2Ω = 1), a key result of this paper. We define the zero absolute vorticity case as
the case where absolute vorticity is zero at the inflection point. Figure 3(g–i) show
the growth rates associated with unstratified, Rib = 1 and Rib = 10 cases, respectively,
for 2Ω = 1. The inertial instability disappears when 2Ω = 1. Even though the inertial
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FIGURE 3. Contour plots of growth rate, with the three columns (left to right) corresponding
to Rib = 0, 1 and 10, respectively, and the three rows (top to bottom) corresponding to
2Ω = 0.1, 0.9 and 1, respectively.
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instability is suppressed, a far greater range of vertical wavenumbers is unstable than
when there is no rotation for strongly stratified flow. Comparison of σ = 0.12 contours
from figures 2(b) and 3(i) shows a much wider range of Ri−1/2

b k3 values associated
with this growth rate for the zero absolute vorticity case. Some modes remain unstable
even when Ri−1/2

b k3 ≈ 20 (not shown in the figure).
Looking at figure 3(a–i) we see that increasing anticyclonic rotation rates toward

the zero absolute vorticity state increases the range of k1 values associated with
inertial instability for both unstratified and strongly stratified cases. In the strongly
stratified cases, near the zero absolute vorticity state, the barotropic instability is
greatly modified. The distinction between growth rates associated with inertial and
barotropic modes is much less apparent for strongly stratified flow.

4.2. Rapid rotation regime

Plots (a–d) in figure 4 show growth rates for various rapid rotation rates. Figure 4(a,b)
show well-collapsed growth rates with respect to vertical scale 2|Ω̃|k3 = 2|(Ω−1/4)|k3

when rotation rates are 2Ω = −4 and 2Ω = 5 respectively. While slight differences
are seen in figure 4(c,d) at slower rotation rates, collapse is still reasonably good.
Scaling was found to be better when vertical wavenumbers were scaled using 2|Ω̃|
instead of 2|Ω|. This scaling is the difference in angular velocity with respect
to Ω = 1/4, which is the most destabilizing rotation rate as seen in (3.10) and
(3.11) for S = 1. Plots (a–d) in figure 5 show similar collapse for strongly stratified
flow. However, the numerical values of rotation rate required for such collapse are
higher when the stratification is large. It is worth noting the associated vertical scale
is 2|Ω̃|Ri−1/2

b k3 ∼ (f /N) k3, which agrees with the results of Smyth & McWilliams
(1998) when Ω̃ is large. Some asymmetry with respect to the sign of Ω̃ is observed
for the cyclonic case (c) and anticyclonic case (d) from figure 5. As the rapidly
rotating regime is approached, the anticyclonic case has a wider range of unstable
vertical wavenumbers than the cyclonic case with equivalent |Ω̃|. As in Smyth &
McWilliams (1998), we find that rotation rates do not have to be very rapid to be
well-approximated by the rapidly rotating strongly stratified regime. Rapid rotation
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FIGURE 5. Contour plots of growth rate in a strongly stratified case (Rib = 10) in the rapidly
rotating regime. Shown for (a) the 2Ω = −14 case, (b) the 2Ω = 15 case, (c) the 2Ω = −3
case and (d) the 2Ω = 4 case.

leads to (3.10) and (3.11) taking the following form for small k1 modes:

D̄2ω′1
D̄t2
≈−4Ω2ω′1 + Rib2Ω

∂ρ ′

∂x1
− Rib

∂u′3
∂x2

, (4.1)

D̄2ω′2
D̄t2
≈−4Ω2ω′2 + Rib2Ω

∂ρ ′

∂x2
+ Rib

∂u′3
∂x1

. (4.2)

Equations (4.1) and (4.2) imply that when stratification is negligible, horizontal
vorticity is attenuated and, correspondingly, figure 4 shows that strong stabilization is
observed for modes with k1 . 2|Ω̃|k3 for a rapidly rotating homogeneous fluid. No
such effect is observed in the presence of strong stratification as seen in figure 5
implying that the second and/or third terms in (4.1) and (4.2) offset the strongly
stabilizing effect of the first term.

5. Eigenmodes
Figure 6 shows new variables n, s and θ and their relationship to the physical

coordinate system presented in figure 1. These variables simplify visualization of
eigenmodes. Introducing characteristic variable Ks = k1x1 + k3x3 allows solutions to
be represented in two-dimensional form where a flow variable φ has the functional
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Line of sight

FIGURE 6. The phase variable s, measuring distance along the k-axis. Planes are displayed in
a manner such that the normal vector has a positive vertical component so that visualization is
more straightforward.

form φ (x2, s) = Re
[
φ (x2) exp (iKs)

]
. Solutions are wavelike with wavenumber K =√

k2
1 + k2

3 and oriented with an angle θ = tan−1 (k1/k3) between the x3 direction
and the wavenumber vector, k = k1e1 + k3e3, where e1 and e3 are unit vectors in
x1 and x3 directions, respectively. Because k1 and k3 are non-negative, increasing
s corresponds to increasing x1 and/or x3. The vector normal to the wavenumber
vector in the x1–x3 plane is denoted by n. Two new flow variables, normal
vorticity fluctuations, ω′n = ω′ini =−ω′1 cos θ+ω′3 sin θ , and normal velocity fluctuations,
u′n = u′ini = −u′1 cos θ + u′3 sin θ , are introduced to visualize unstable modes in the new
coordinates. For inertial modes, k1 is small in comparison to k3, meaning n∼−e1 and
k∼ e3.

The base state contains no available potential energy, therefore the overall effect of
buoyancy on vertical fluctuations is stabilizing. However, certain physical mechanisms,
one example is the zigzag instability of Billant & Chomaz (2000), can result in
faster growing modes than possible in an unstratified fluid. It is worth noting that
u′3 = u′s cos θ + u′n sin θ so that, for an inclination θ , the normal velocity u′n leads to
vertical motion. Even if ρ ′ has the same sign as u′3, implying that the buoyancy term in
the vertical momentum equation has a stabilizing effect on vertical fluctuations, ρ ′ can
have a different sign than u′s or u′n. Thus, buoyancy may have a stabilizing effect on u′s
and destabilizing effect on u′n or vice versa, while still stabilizing vertical motion.

5.1. Strongly stratified non-rotating regime
Figure 7 shows the form of barotropic modes with non-zero k3 for a non-rotating
strongly stratified case. Figure 7(c) shows quasi-streamwise parcels of buoyant fluid
with large lateral spread. Density fluctuations in these parcels are maintained by
vertical fluctuations due to jets of u′n in the shear region as seen in figure 7(b). It
is apparent that u′n and ρ ′ are of the same sign so that the effect of stratification
is stabilizing on u′n fluctuations. Figure 7(a,d) show an array of alternating jets that
are oriented in the lateral direction (x2) outside of the shear region, but inclined with
respect to the vertical and streamwise directions within the shear region. The physics
driving this instability can be illustrated through the following arguments. A flow field
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FIGURE 7. (Colour online available at journals.cambridge.org/flm) Plots of (a) ω′n, (b) u′n,
(c) ρ ′ and (d) velocity vectors for a barotropic mode from a non-rotating case with strong
stratification, Rib = 10, 2Ω = 0, k1 = 0.3, k3 = 1.7 and θ = 10.0◦.

begins with alternating layers of heavy and light fluid on top of one another that
are not infinite, but spread far beyond the shear region as observed in figure 7(c).
Lateral variation in density within the layers of buoyant fluid results in currents with
u′2 directed towards and away from the shear region as seen in figure 7(d). Heavy
parcels approach the shear region with slight negative vertical velocity, while light
parcels approach the shear region with slight positive vertical velocity. As the currents
induced by ω′n enter the shear region they encounter buoyant quasi-streamwise currents
increasing their density anomaly, resulting in larger vertical velocity magnitudes until
exiting the shear region on the opposite side of the buoyant layer. These quasi-
lateral currents induce vertical shear

(
∂u′2/∂x3 ∼ ∂u′2/∂s

)
, as seen in figure 7(d), which

then acts to generate ω′2 through tilting of mean vertical vorticity. Tilting of the ω′1
contained in the currents by the mean shear also leads to ω′2 formation. The resulting
ω′2 coincides with the quasi-streamwise jets observed in figure 7(b).

The density structures observed in figure 7 are reminiscent of density intrusions
observed in the experiments of Ivey & Corcos (1982), Thorpe (1982), Browand,
Guyomar & Yoon (1987) and Liu, Maxworthy & Spedding (1987) and the numerical
simulations of Basak & Sarkar (2006). The mechanism proposed in these works
involves vertical mixing that leads to tongues of downward-propagating heavier fluid
encountering tongues of upward-propagating lighter fluid and then spreading laterally
similarly to gravity currents. The arguments provided in the previous paragraph
referring to the eigenmode described in figure 7 offer an illustration of a linear
mechanism that generates layers of buoyant fluid. These density structures could lead
to a periodic array of non-turbulent density intrusions outside of the shear region
where vertical mean vorticity is negligible.

http://journals.cambridge.org/flm
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FIGURE 8. (Colour online) Plots of (a) ω′n, (b) u′n and (c) velocity vectors for an inertial mode
in a weak anticyclonic case without stratification, Rib = 0, 2Ω = 0.1, k1 = 0.1, k3 = 4 and
θ = 1.43◦.

5.2. Moderate rotation regime
Figure 8 shows an inertial mode in a homogeneous fluid with fairly weak anticyclonic
rotation (2Ω = 0.1). Since θ = 1.43◦ the plane is quasi-vertical, therefore we can
make the approximations ω′n ∼ −ω′1 and ∂u′n/∂s ∼ −ω′2 to infer horizontal vorticity
fluctuations from figure 8(a,b). Parcels of fluid with like-signed ω′1 and ω′2 occupy
the region where |x2| < 0.5. For 0 < 2Ω < S (x2), the condition of inertial instability,
(3.6) and (3.7) show that ω′1 and ω′2 must have the same sign for growth of the
instability, otherwise mean shear cannot intensify horizontal vorticity fluctuations via
vortex stretching. Figure 8(c) shows velocity vectors corresponding to the ω′n field
from 8(a) to aid in visualization. It is clear that positive (negative) ω′n corresponds to
counterclockwise (clockwise) rotation in the (−x2, s) plane. In later figures, velocity
vectors are included for eigenmodes when it is more difficult to infer velocities from
ω′n plots.

Figure 9 shows an inertial mode with the same anticyclonic rotation rate but in
a strongly stratified fluid. The lateral spread of vorticity fluctuations has increased
considerably for inertial modes in a strongly stratified fluid compared to the
homogeneous case in figure 8. Looking at the region of positive ω′n from figure 9(a)
and corresponding density fluctuations from figure 9(c) it is clear that the vertical
motion induced by ω′n has the same sign as the density field such that buoyancy
stabilizes ω′n fluctuations. The normal component of the baroclinic term of (3.1) is
shown in figure 9(d), further illustrating the stabilizing effect of buoyancy on ω′n.
Similarly, looking at regions of positive u′n from figure 9(b) and corresponding density
fluctuations from figure 9(c) the stabilizing effect of buoyancy on u′n can be deduced.
Density fluctuations are generated by both ω′n and u′n implying that buoyancy plays a
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FIGURE 9. (Colour online) Plots of (a) ω′n, (b) u′n, (c) ρ ′ and (d) the normal component of the
baroclinic term from (3.1) for an inertial mode in a weak anticyclonic case with stratification,
Rib = 10, 2Ω = 0.1, k1 = 0.1, k3 = 25.3 and θ = 0.23◦.
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FIGURE 10. (Colour online) Plots of (a) ω′n and (b) u′n for a near-zero absolute vorticity case
without stratification, Rib = 0, 2Ω = 0.95, k1 = 0.444, k3 = 4 and θ = 6.33◦.

stabilizing role, inhibiting generation of horizontal vorticity fluctuations via baroclinic
torque.

Figure 10 shows an inertial mode in a homogeneous fluid with nearly zero absolute
mean vorticity at the inflection point (2Ω = 0.95). As with the weak anticyclonic
cases presented in figures 8 and 9, we observe regions of like-signed ω′1 and ω′2.
The lateral spread of the vorticity fluctuations is small because the local value of
−2Ω (2Ω − S (x2)) has positive values only at x2 ∼ 0 where S > 2Ω > 0. The small
lateral spread of the unstable region leads to a large angle of inclination for ω′n
structures with respect to the x2 direction as compared with the weaker anticyclonic
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FIGURE 11. (Colour online) Plots of (a) ω′n, (b) u′n and (c) ρ ′ for a barotropic mode from a
zero absolute vorticity case with stratification, Rib = 10, 2Ω = 1, k1 = 0.444, k3 = 25.3 and
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case in figure 8(a). Figure 11 shows a large k3 mode from the strongly stratified case
with zero absolute mean vorticity at the inflection point. A dramatic difference in
dynamics is observed between this mode and the inertial mode from figure 10. Density
fluctuations are generated by ω′n, but the u′n field in figure 11(b) has the opposite sign
to the ρ ′ field in figure 11(c). Therefore, u′n fluctuations are aligned with the buoyancy
force rather than opposed to it for the inertial mode in figure 9. This destabilizing
effect of buoyancy on u′n is in contrast to the stabilizing effect seen earlier in the weak
anticyclonic case. When 2Ω = S, the linearized fluctuating vorticity equations take the
following form at the inflection point where 〈u1〉 = 0,

∂ω′1
∂t
=
(

S

2
+Ω

)
ω′2 − Rib

∂ρ ′

∂x2
, (5.1)

∂ω′2
∂t
= Rib

∂ρ ′

∂x1
. (5.2)

Thus, for this base state, unstratified flow with zero absolute vorticity contains no
mechanism to generate ω′2, which is why the zero absolute vorticity state tends to
stabilize barotropic modes in homogeneous fluids as noted in § 4.

The buoyancy-driven instability in the case of zero absolute vorticity can be
explained as follows. Quasi-streamwise vortices indicated by ω′n in figure 11(a)
distort isopycnals such that positively buoyant fluid is on one side of the vortices
and negatively buoyant fluid is on the other, as observed in figure 11(c). The
slight inclination of the quasi-streamwise vortices in the vertical direction, due to
the small vertical component of n, leads to the associated density gradient having
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a slight streamwise component ∂ρ ′/∂x1 which in turn leads to baroclinic formation
of lateral vorticity, ω′2, according to (5.2). The formation of ω′2 is reflected by the
velocity gradient, ∂u′n/∂s ∼ −∂u′1/∂x3, seen in figure 11(b). The lateral vorticity, ω′2,
is then transferred to the quasi-streamwise vorticity, ω′1 ∼ −ω′n, via coordinate system
rotation and strain-induced tilting, according to (5.1), closing the creation cycle for this
disturbance. An important point is that without a slight vertical component in n, there
is no mechanism to generate ω′2 fluctuations.

The contours for eigenmodes in figures 8–11 show a change in inclination angle
with respect to the x2 direction from positive to negative as rotation rate increases.
The sign change occurs near the zero absolute vorticity state. This phenomenon can
be explained through analysis of the buoyancy-driven instability present when absolute
vorticity is nearly zero. Equation (5.2) implies that, in order for modes to grow in
the zero absolute vorticity state, baroclinic torque must generate ω′2 fluctuations. More
precisely, the product of ω′2 and (5.2) implies that ∂ρ ′/∂x1 must have the same sign
as ω′2 for growth of ω′2ω

′
2. Because the base state has no baroclinicity, there is no net

enstrophy production and baroclinic torque therefore inhibits ω′1 fluctuations, i.e. the
product of ω′1 and (5.1) implies that ∂ρ ′/∂x2 must have the same sign as ω′1 for
suppression of ω′1ω

′
1. Owing to the small tilt of k in the positive streamwise direction

(x1), ∂ρ ′/∂x1 and ∂ρ ′/∂x3 have the same sign. In order for ω′1 fluctuations to grow, ω′1
and ω′2 must have the same sign, since the first term on the right-hand side of (5.1)
must be a source. Thus, isocontours of ρ ′ in the x2–x3 plane should have a negative
angle (∂ρ ′/∂x2 and ∂ρ ′/∂x3 of the same sign) as observed in figure 11. Similar analysis
of the weak anticyclonic case yields a positive angle.

5.3. Rapid rotation regime
Figure 12 shows modes from a rapidly rotating and strongly stratified case. Thermal
wind balance explains many of the differences between this case and the non-rotating
strongly stratified modes seen in figure 7 with horizontal density variations correlating
appropriately with the observed vertical shear. From figure 12(b,d) we observe
that regions of positive (negative) u′n correlate with regions of negative (positive)
u′s implying that associated regions contain negative (positive) u′1. By examining
figure 12(b–d), the signs of both ∂u′1/∂x3 and ∂ρ ′/∂x2 can be determined near the
inflection point. Positive values of ∂u′1/∂x3 are found to correlate with negative values
of ∂ρ ′/∂x2 and vice versa as expected from thermal wind balance.

6. Conclusions
The three-dimensional instability of a stratified and rotating horizontally oriented

hyperbolic shear layer has been investigated. For weak to moderate rotation rates,
stratification was found to stabilize the inertial instability. The distinction between
growth rates associated with inertial and barotropic modes lessened for strongly
stratified flow as the zero absolute vorticity state was approached. For strongly
stratified flow with zero absolute vorticity at the inflection point, the vertical
wavenumber band associated with barotropic instability significantly widened in
comparison to the non-rotating case.

Rapid rotation and/or strong stratification was found to result in self-similarity of
growth rates when the vertical wavenumber of perturbations was scaled appropriately.
For unstratified rapidly rotating cases, such self-similarity was found when vertical
wavenumbers were scaled as 2|Ω̃|k3/S where 2Ω̃ = 2 (Ω − 1/4) corresponds to the
deviation with respect to the most destabilizing rotation rate. While the difference
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FIGURE 12. (Colour online) Plots of (a) ω′n, (b) u′n, (c) ρ ′ and (d) velocity vectors for a
barotropic mode from a rapidly rotating case with strong stratification, Rib = 10, 2Ω = −2,
k1 = 0.3, k3 = 0.4 and θ = 36.9◦.

between Ω and Ω̃ is not significant in geostrophic flows, the difference is appreciable
for less rapidly rotating cases such as submesoscale shear flows where 2 |Ω| /S is
not particularly large. This scaling is consistent with the Taylor–Proudman theorem in
the limit of |Ω| →∞, where only k3 = 0 modes are unstable. For strongly stratified
rapidly rotating cases, self-similarity of growth rates required vertical wavenumbers
to scale as 2|Ω̃|k3/N. This result is consistent with quasi-geostrophy for very large
2|Ω|/S and N/S, but the distinction between Ω and Ω̃ is still non-negligible in the
submesoscale regime. Rapid rotation was also found to stabilize low k1, high k3 modes
in an unstratified fluid. Such stabilization is not observed in the presence of strong
stratification.

Analysis of eigenmodes provided insight regarding the underlying physics of the
inertial instability and barotropic instability in a rotating strongly stratified fluid for
small amplitude perturbations. Analysis of a non-rotating strongly stratified barotropic
mode showed a potential linear mechanism for generation of density intrusions.
For weakly anticyclonic flow, quasi-streamwise vortices associated with the inertial
instability were suppressed via baroclinic torque when stratification was strong. For
the strongly stratified zero absolute vorticity case, density anomalies generated by
quasi-streamwise vortices with a small vertical inclination led to baroclinic formation
of lateral vorticity which, through tilting by system rotation and strain, sustains
the quasi-streamwise vortices. This mechanism is fundamentally different than the
mechanism driving barotropic modes when only rotation or stratification effects are
included. Rapid rotation was found to modify the strongly stratified barotropic mode in
a manner consistent with thermal wind balance.
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FIGURE 13. (Colour online) Effect of Re on (a) growth rates associated with inertial
instability and (b) collapsed growth rates based on (A 1) where Rib = 1, 2Ω = 0.1, Pr = 1
and k1 = 0.05.

In a follow-up paper the nonlinear evolution of the stratified and rotating horizontal
shear layer will be explored using direct numerical simulation and comparisons will be
made between linear and nonlinear physics.
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Appendix A. Effect of viscosity
The effects of Re are important to consider, because viscosity sets the vertical length

scale at which the inertial instability occurs. For inviscid flows, the inertial instability
tends to its maximal growth rate in the limit of k3→∞. The effect of viscosity on
the inertial instability for large Re is rather straight-forward as seen in figure 13, with
the viscous growth rates being well-approximated by the following relation when the
right-hand side is non-negative,

σ (k1, k3,Rib, 2Ω,Re)≈ σ (k1, k3,Rib, 2Ω,Re=∞)− k2
3

Re
. (A 1)

This relation can be obtained from substitution of (2.14) into the linearized
momentum equations in (2.11) and assuming large vertical gradients. For moderate
Re, the effect of viscosity for moderate k3 values is non-negligible and the horizontal
terms of the Laplacian are relevant. In the context of high Re flows, viscosity appears
to simply attenuate high k3 modes with growth rates given by (A 1).

Appendix B. Effect of diffusion
The effects of modifying Pr on both the inertial and barotropic instabilities are

shown in figure 14. Low Pr (high mass diffusion) flows behave more like unstratified
flows at small scales (large k3), with smoother density profiles, consistent with the
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results presented in figure 14. The inertial instability is destabilized as mass diffusion
increases (Pr decreases) as seen in figure 14(a). The barotropic stability, on the
other hand, is stabilized as mass diffusion increases as seen in figure 14(b). This is
due to the fact that stratification tends to stabilize the inertial instability, but strong
stratification is responsible for reducing the selectivity of shear instability in stratified
flows.
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