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Abstract

Recently introduced methods of iterative identification and control design
are directed towards the design of high performing and robust control sys-
tems. These methods show the necessity of identifying approximate models
from closed loop plant experiments. In this paper a method is proposed to ap-
proximately identify normalized coprime plant factors from closed loop data.
The fact that normalized plant factors are estimated gives specific advantages
both from an identification and from a robust control design point of view.
It will be shown that the proposed method leads to identified models that are
specifically accurate around the bandwidth of the closed loop system. The iden-
tification procedure fits very naturally into a recently developed the iterative
identification/control design scheme based on H∞ robustness optimization.

1 Introduction

Recently it has been motivated that the problem of designing a high performance

control system for a plant with unknown dynamics through separate stages of (ap-

proximate) identification and model based control design requires iterative schemes
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to solve the problem [19, 20, 28, 31, 30, 41, 24]. In these iterative schemes each iden-

tification is based on new data collected while the plant is controlled by the latest

compensator. Each new nominal model is used to design an improved compensator,

which replaces the old compensator, in order to improve the performance of the

controlled plant.

A few iterative schemes proposed in literature have been based on the prediction error

identification method, together with LQG control design [41, 12, 14]. In [19, 20, 28, 29,

31] iterative schemes have been worked out, employing a Youla parametrization of the

plant, and thus dealing with coprime factorizations in both identification and control

design stage; as control design methods an H∞ robustness optimization procedure of

[23, 4] is applied in [28, 29, 31], while in [19, 20] the IMC-design method is employed.

Alternatively, in [21] the identification and control design are based on covariance

data. In [19] the IMC-design method is employed, and the identification step is

replaced by a model reduction based on full plant knowledge. Alternatively, in [25] an

iteration is used to build prefilters for a control-relevant prediction error identification

from one open-loop dataset. For a general background and a more extensive overview

and comparison of different iterative schemes the reader is referred to [10, 1, 36].

One of the central aspects in almost all iterative schemes is the fact that the iden-

tification of a control-relevant plant model has to be performed under closed loop

experimental conditions. Standard identification methods have not been able to pro-

vide satisfactory models for plants operating in closed loop, except for the case that

input/output dynamics and noise characterictics can be modelled exactly.

Recently introduced approaches to the closed loop identification problem [16, 27, 19,

28, 34, 36] show the possibility of also identifying approximate models, where the

approximation criterion (if the number of data tends to infinity) becomes explicit,

i.e. it becomes independent of the - unknown - noise disturbance on the data. This

has opened the possibility to identify approximate models from closed loop data,

where the approximation criterion explicitly can be ”controlled” by the user, despite

a lack of knowledge about the noise characteristics. In the corresponding iterative

schemes of identification and control design this approximation criterion then is tuned

to generate a control-relevant plant model. The identification methods considered in

the iterative procedures presented in [28, 29, 19] employ a plant representation in

terms of a coprime factorization P = ND−1, while in [28, 29] the two plant factors

N , D are separately identified from closed-loop data.

Coprime factor plant descriptions play an important role in control theory. The

parametrization of the set of all controllers that stabilize a given plant greatly facili-

tates the design of controllers [39]. The special class of normalized coprime factoriza-
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tions has its applications in design methods [23, 4] and robustness margins [38, 9, 26].

If we have only plant input-output data at our disposal, then a relevant question be-

comes how to model the normalized coprime plant factors as good as possible. In this
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Fig. 1: Feedback configuration

paper we will focus on the problem of identifying normalized coprime plant factors

on the basis of closed loop experimental data.

As an experimental situation we will consider the feedback configuration as depicted

in Fig. 1, where P0 is an LTI-(linear time-invariant), possibly unstable plant, H0 a

stable LTI disturbance filter, e0 a sequence of identically distributed independent ran-

dom variables and C an LTI-(possibly unstable) controller. The external signals r1,r2

can either be considered as external reference (setpoint) signals, or as (unmeasurable)

disturbances. In general we will assume to have available only measurements of the

input and output signals u and y, and knowledge of the controller C that has been

implemented. We will also regularly refer to the artificial signal r(t) := r1(t)+Cr2(t).

First we will discuss some preliminaries about normalized coprime factorizations and

their relevance in control design. In section 3 a generalized framework is presented

for closed loop identification of coprime factorizations. Next we present a multi-

step algorithm for identification of normalized factors. In section 5 we will analyse

the corresponding asymptotic identification criterion, and we will discuss the close

relation with robustness margins in a gap-metric sense, being specifically relevant for

the consecutive control design. In section 6 we will show the experimental results

that were obtained when applying the identification algorithm to experimental data

obtained from the radial servo-mechanism in a Compact Disc player.

RH∞ will denote the set of real rational transfer functions in H∞, analytic on and

outside the unit circle; IR[z−1] is the ring of (finite degree) polynomials in the inde-

terminate z−1 and q is the forward shift operator: qu(t) = u(t + 1).
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2 Preliminaries

Considering the feedback structure as depicted in figure 1 we will state that C stabi-

lizes the plant P0 if the mapping from col(r1, r2) to col(y, u) is stable, being equivalent

to T (P0, C) ∈ RH∞ with

T (P0, C) =

⎡
⎣ P0

I

⎤
⎦ [I + CP0]

−1
[

C I
]
. (1)

Consider any LTI system P , then (following [39]) P has a right coprime factorization

(r.c.f.) (N, D) over RH∞ if there exist U, V, N, D ∈ RH∞ such that

P (z) = N(z)D−1(z); UN + V D = I. (2)

In addition a right coprime factorization (Nn, Dn) of P is called normalized if it

satisfies

NT
n (z−1)Nn(z) + DT

n (z−1)Dn(z) = I. (3)

Dual definitions exist for left coprime factorizations (l.c.f.).

One of the properties of normalized coprime factors is that they form a decompo-

sition of the system P in minimal order (stable) factors. In other words, if the

plant has McMillan degree np, then normalized coprime factors of P will also have

McMillan degree np
1. In the scalar case this implies that there will always ex-

ist polynomials a, b, f ∈ IR[z−1] of degree np such that Nn = f(z−1)−1b(z−1) and

Dn = f(z−1)−1a(z−1).

In robust stability analysis normalized coprime factors play an important role in

robustness issues with respect to several perturbation classes of systems. One of the

important ones, is a perturbation class that is induced by the gap-metric [9]. This

gap-metric between two (possibly non-stable) systems P1, P2 is defined as δP1, P2) =

max{�δ(P1, P2), �δ(P2, P1)}, with

�δ(P1, P2) := inf
U∈RH∞

∥∥∥∥∥∥

⎡
⎣ N1

D1

⎤
⎦ −

⎡
⎣ N2

D2

⎤
⎦ U

∥∥∥∥∥∥
∞

, (4)

where (N1, D1), (N2, D2) are normalized r.c.f.’s of P1, P2 respectively.

The relevance of normalized coprime factors in robustness issues is illustrated in the

following robustness result.

1In the exceptional case that P contains all-pass factors, (one of) the normalized coprime factors
will have McMillan degree < np, see [33].
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Proposition 2.1 ([9]) Let P̂ be a plant model that is stabilized by the controller C,

and consider the following two classes of systems:

Pgap(P̂ , γ) := {P | δ(P, P̂ ) ≤ γ}, (5)

Pdgap(P̂ , γ) := {P | �δ(P, P̂ ) ≤ γ}. (6)

Then for either of the two classes of systems, the result holds that a controller C will

stabilize all elements if and only if ‖T (P̂ , C)‖∞ < γ−1.

This result shows that when we would have access to normalized coprime factors of a

plant model, together with an error bound on these (estimated) factors (in the form

of error bounds on the mismatches ∆N and ∆D), then immediate results follow for

the robust stability of the plant.

On one hand, this result may not seem to be too striking, since a similar situation

can be reached by any hard-bounded uncertainty on the system’s transfer function,

and application of the small gain theorem. However the ability to deal with unstable

plants and the interpretation of the related uncertainty description in terms of the

gap-metric are considered to be specific advantages. The latter aspect being moti-

vated by the fact that closed loop properties of two systems will be close whenever

their distance in terms of the gap metric is small.

The control design method of [4, 23] is directed towards optimizing this same ro-

bustness margin as discussed above. This control design method is characterized

by

C = arg min
C̃∈C

‖V1T (P̂ , C̃)V2‖∞ (7)

with V1, V2 user-chosen stable weighting functions and C an appropriate class of

controllers considered. This control design is utilized in the iterative identifica-

tion/control design scheme of [28, 29, 31].

3 Closed loop identification of coprime factoriza-

tions

3.1 Closed loop identification

The closed loop identification problem is not straighforwardly solvable in the predic-

tion error framework in the case that one is not sure that exact models of the plant

and its disturbances can be obtained in the form of a consistent estimate of P0 and

H0. And even in this case results are restricted to the situation of a stable plant
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P0, [22]. What we would like to find - based on signal measurements - is a model

P̂ of a possibly unstable plant P0 such that there exists an explicit approximation

criterion J(P0, P̂ ) indicating the way in which P0 has been approximated (at least

asymptotically in the number of data), while J(P0, P̂ ) is independent of the unknown

noise disturbance on the data.

Additionally one would like to be able to tune this approximation criterion to get an

approximation of P0 that is desirable in view of the control design to be performed.

This explicit tuning of the approximation criterion is possible within the classical

framework only when open-loop experiments can be performed.

Let’s consider a few alternatives to deal with this closed-loop approximate identifica-

tion problem, assuming the signal r is available from measurements2:

• If we know the controller C, we could do the following:

Consider a parametrized model P (θ), θ ∈ Θ, and identify θ through:

ε(t, θ) = y(t) − P (θ)

1 + P (θ)C
r(t) (8)

by least squares minimization of the prediction error ε(t, θ).

This first alternative leads to a complicatedly parametrized model set, and as

a result it is not attractive, although it provides us with a consistent estimate

of P irrespective of the noise modelling, and with an explicit approximation

criterion. However attention has to be restricted to stable plants.

• Identify transfer functions

Hyr =
P

1 + PC
and Hur =

1

1 + PC

as black box transfer functions Ĥyr, Ĥur, then an estimate of P can be obtained

as P̂ = ĤyrĤ
−1
ur .

This method shows a decomposition of the problem in two parts, actually de-

composing the system into two separate (high) order factors, sensitivity function

and plant-times-sensitivity function. In this setting it will be hard to ”control”

the order of the model to be identified, as the quotient of the two estimated

transfer functions Ĥyr, Ĥur will generally not cancel the common dynamics

that are present in both functions. As a result the model order will become

unnecessarily high.

2Similar results follow if either r1 or r2 are available from measurements.
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• As a third alternative we can first identify Hur as a black box transfer function

Ĥur, and consecutively identify P from:

ε(t, θ) = y(t) − P (θ)ûr(t) with ûr(t) := Ĥurr(t).

This method is presented in [34]. It also uses a decomposition of the plant P in

two factors as in the previous method, now requiring a very accurate estimate

of Hur in the first step. An explicit approximation criterion can be formulated.

If, as in the last two methods, the plant is represented as a quotient of two factors

of which estimates can be obtained from data, it is advantageous to let these factors

have the minimal order, thus avoiding the problem that the resulting plant model has

an excessive order, caused by non-cancelling terms with redundant dynamics. This

will be discussed in the next subsection.

3.2 A generalized framework

We will now present a generalized framework for identification of coprime plant factors

from closed loop data, allowing the situation to identify unstable models for unstable

plants. It will be shown to have close connections to the Youla-parametrization, as

employed in the identification schemes as proposed in [16, 27, 28, 19].

Let us consider the notation3

S0(z) = (I + C(z)P0(z))−1 and (9)

W0(z) = (I + P0(z)C(z))−1. (10)

Then we can write the system’s equations as4

y(t) = P0(q)S0(q)r(t) + W0(q)H0(q)e0(t) (11)

u(t) = S0(q)r(t) − C(q)W0(q)H0(q)e0(t). (12)

Note also that

r(t) = r1(t) + C(q)r2(t) = u(t) + C(q)y(t). (13)

Using knowledge of C(q), together with measurements of u and y, we can simply

”reconstruct” the reference signal r in (13). So in stead of a measurable signal r, we

can equally well deal with the situation that y, u are measurable and C is known.

3The main part of the paper is directed towards multivariable systems, and so we distinguish
between output and input sensitivity.

4Note that we have employed the relations W0P0 = P0S0 and S0C = CW0.
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It can easily be verified from (11),(12) that the signal {u(t) + C(q)y(t)} is uncorre-

lated with {e0(t)} provided that r is uncorrelated with e0. This shows with equations

(11),(12) that the identification problem of identifying the transfer function from

signal r to col(y, u) is an ”open loop”-type of identification problem, since r is uncor-

related with the noise terms dependent on e0. The corresponding factorization of P0

that can be estimated in this way is the factorization (P0S0, S0), i.e. P0 = (P0S0)·S−1
0 ,

as also employed in e.g. [42].

However this is only one of the many factorizations that can be identified from closed

loop data in this way. By introducing an auxiliary signal

x(t) := F (q)r(t) = F (q)(u(t) + C(q)y(t)) (14)

with F (z) a fixed stable rational transfer function, we can rewrite the system’s rela-

tions as

y(t) = P0(q)S0(q)F (q)−1x(t) + W0(q)H0(q)e0(t) (15)

u(t) = S0(q)F (q)−1x(t) − C(q)W0(q)H0(q)e0(t), (16)

and thus we have obtained another factorization of P0 in terms of the factors

(P0S0F
−1, S0F

−1). Since we can reconstruct the signal x from measurement data,

these factors can also be identified from data, as in the situation considered above,

provided of course that the factors themselves are stable. We will now characterize

the freedom that is present in choosing this filter F .

Proposition 3.1 Consider a data generating system according to (11),(12), such

that C stabilizes P0, and let F (z) be a rational transfer function defining

x(t) = F (q)(u(t) + C(q)y(t)). (17)

Let the controller C have a left coprime factorization (D̃c, Ñc). Then the following

two expressions are equivalent

a. the mappings col(y, u) → x and x → col(y, u) are stable;

b. F (z) = WD̃c with W any stable and stably invertible rational transfer function.

The proof of this Proposition is added in the appendix.

Note that stability of the mappings mentioned under (a) is required in order to guar-

antee that we obtain a bounded signal x as an input in our identification procedure,

and that the factors to be estimated are stable, so we are able to apply the standard

(open-loop) prediction error methods and analysis thereof.
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Note also that all factorizations of P0 that are induced by these different choices of F

reflect factorizations of which the stable factors can be identified from input/output

data, cf. equations (15),(16).

The construction of the signal x is schematically depicted in Figure 2. Here we

have employed (13) which clearly shows that x is uncorrelated with e0 provided the

external signals are also uncorrelated with e0.
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Fig. 2: Identification of coprime factors from closed loop data.

For any choice of F satisfying the conditions of Proposition 3.1 the induced factor-

ization of P0 is right coprime, as shown next.

Proposition 3.2 Consider the situation of Proposition 3.1. For any choice of F =

WD̃c with W stable and stably invertible, the induced factorization of P0, given by

(P0S0F
−1, S0F

−1) is right coprime. �
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Proof: Let (X, Y ) be right Bezout factors of (N, D), i.e. XN +Y D = I, and denote

[X1 Y1] = W (D̃cD + ÑcN)[X Y ]. Then by employing (A.1) it can simply be verified

that X1, Y1 are stable and satisfy X1P0S0F
−1 + Y1S0F

−1 = I. �

We will exploit the freedom in the filter F , in order to tune the specific coprime

factors that can be estimated from closed loop data.

However become we start the discussion about the specifici choice of F we present

an alternative formulation for the freedom that is present in this choice of F , as

formulated in the following Proposition.

Proposition 3.3 The filter F yields stable mappings (y, u) → x and x → (y, u) if

and only if there exists an auxiliary system Px with rcf (Nx, Dx), stabilized by C, such

that F = (Dx + CNx)
−1. For all such F the induced factorization P0 = N0D

−1
0 is

right coprime.

Proof: Consider the situation of Proposition 3.1. First we show that for any C with

lcf D̃−1
c Ñc and any stable and stably invertible W there always exists a system Px

with rcf NxD
−1
x , being stabilized by C, such that W = [D̃cDx + ÑcNx]

−1.

Take a system Pa with rcf NaD
−1
a that is stabilized by C. With Lemma A.1 it

follows that D̃cDa + ÑcNa = Λ with Λ stable and stably invertible. Then choosing

Dx = DaΛ
−1W−1 and Nx = NaΛ

−1W−1 delivers the desired rcf of a system Px as

mentioned above.

Since F = WD̃c and substituting W = [D̃cDx + ÑcNx]
−1 it follows that F = [Dx +

CNx]
−1. �

Employing this specific characterization of F , the coprime plant factors that can be

identified from closed loop data satisfy
⎛
⎝ N0

D0

⎞
⎠ =

⎛
⎝ P0(I + CP0)

−1(I + CPx)Dx

(I + CP0)
−1(I + CPx)Dx

⎞
⎠ . (18)

Now the auxiliary system Px and its coprime factorization can act as a design variable

that can be chosen so as to reduce the redundant dynamics in both coprime factors

N0, D0.

In the next section we will show how we can exploit the freedom in choosing F, Nx

and Dx in order to arrive at an estimate of normalized coprime factors of the plant.

The representation of P0 in terms of the coprime factorization above, shows great

resemblance with the dual Youla-parametrization [16, 19, 27], i.e. the parametrization

of all plants that are stabilized by a given controller, as reflected in the following

proposition.
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Proposition 3.4 Let C be a controller with rcf (Nc, Dc), and let Px with rcf (Nx, Dx)

be any system that is stabilized by C. Then

(a) A plant P0 is stabilized by C if and only if there exists an R ∈ RH∞ such that

P0 = (Nx + DcR)(Dx − NcR)−1 (19)

is a right coprime factorization of P0.

(b) For any such P0, the corresponding stable transfer function R in (19) is uniquely

determined by

R = D−1
c (I + P0C)−1(P0 − Px)Dx. (20)

(c) The coprime factorization in (19) is uniquely determined by

Nx + DcR = P0(I + CP0)
−1(I + CPx)Dx (21)

Dx − NcR = (I + CP0)
−1(I + CPx)Dx (22)

Proof: The proof of part (a), which actually boils down to the Youla-parametrization,

is given in [6].

Part (b). With (19) it follows that P0[Dx −NcR] = Nx + DcR. This is equivalent to

[Dc+P0Nc]R = P0Dx−Nx which in turn is equivalent to [I +P0C]DcR = [P0−Px]Dx

which proves the result.

Part (c). Simply substituting the expression (20) for R shows that

⎡
⎣ N0

D0

⎤
⎦ :=

⎡
⎣ Nx + DcR

Dx − NcR

⎤
⎦ =

⎡
⎣ Nx + (I + P0C)−1(P0 − Px)Dx

Dx − C(I + P0C)−1(P0 − Px)Dx

⎤
⎦ (23)

=

⎡
⎣ Px + (I + P0C)−1(P0 − Px)

I − C(I + P0C)−1(P0 − Px)

⎤
⎦ Dx (24)

which proves the result, employing the relations C(I + P0C)−1 = (I + CP0)
−1C and

(I + P0C)−1P0 = P0(I + CP0)
−1. �

This result shows that the coprime factorization that is used in the Youla parametriza-

tion is exactly the same coprime factorization that we have constructed in the previous

section, by exploiting the freedom in the prefilter F , see Proposition 3.3.
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4 An algorithm for approximate identification of

normalized coprime factors

In order to obtain an approximation of a normalized coprime factorization of the

unknown plant P0 on the basis of closed loop experiments, similar as in [34], a pro-

cedure built up from two step, will be employed. These two steps can be formulated

as follows.

1. In the first step of the procedure, the coprime factors (N0,F , D0,F ) of (18)

that are accessible from closed loop data, will be shaped in such a way that

(N0,F , D0,F ) becomes (almost) normalized. The rationale behind this idea is

induced by the fact that the shape of the factorization (N0,F , D0,F ) depends

on the specific factorization (Nx, Dx) of the auxiliary model Px = NxD
−1
x used

in the filter F , see (18). From the ideal situation wherein the auxiliary model

Px satisfies Px = P0, it follows D0,F = Dx and N0,F = P0Dx = Nx from (18).

Consequently, the normalization of (N0,F , D0,F ) can be approached by letting

Px to be an accurate (inevitably high order) approximation of the plant P0 and

factorizing Px in a normalized rcf (Nx, Dx). In order to obtain such an accurate

auxiliary model Px, the following algorithm based on coprime factor estimation

can be proposed. A formal justification and analysis is postponed until the next

section.

To initialize the algorithm, consider an auxiliary model Px that is internally

stabilized by the known controller C. Now construct a normalized rcf (Nx, Dx)

of the auxiliary model Px. Procedures to compute a normalized rcf can for

example be found in [40] for continues time systems and [3] for discrete time

systems. Using this normalized rcf (Nx, Dx), compute the data filter

F (q) = (Dx(q) + C(q)Nx(q))
−1

according to Proposition 3.3 and simulate the auxiliary input

x(t) = F (q)
[

C(q) I
] ⎡

⎣ y(t)

u(t)

⎤
⎦

to be used for the identification. After this initialization, the algorithm reads

as follows.

1.a Use the signals x(t) and [y(t) u(t)]T in a (least squares) identification

algorithm with an output error model structure, minimizing ‖ε(t, θ)‖2 over
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θ, with

ε(t, θ) =

⎡
⎣ y(t)

u(t)

⎤
⎦ −

⎡
⎣ N(q, θ)

D(q, θ)

⎤
⎦ x(t) (25)

considering [y(t) u(t)]T as output signal and x(t) as input signal. The

factorization (N(q, θ), D(q, θ)) being estimated here, will be used only to

update and improve the auxiliary model Px. Therefore, high-order mod-

elling employing a parametrization based on orthonormal basis functions

in a linear regression scheme will be used. In this respect, the new method

of constructing orthogonal basis functions that contain system dynamics,

see [18, 37], has shown promising results for identification purposes [5].

1.b Compute the model P (q, θ) on the basis of the factorization (N(q, θ), D(q, θ))

being estimated by

P (q, θ) = N(q, θ)D(q, θ)−1

and update the auxiliary model simply by Px(q) = P (q, θ)

1.c Again construct a normalized rcf (Nx, Dx) of the auxiliary model Px, com-

pute the data filter

F (q) = (Dx(q) + C(q)Nx(q))
−1

according to Proposition 3.3 and simulate the auxiliary input

x(t) = F (q)
[

C(q) I
] ⎡

⎣ y(t)

u(t)

⎤
⎦ .

If the auxiliary model is satisfactory, the factorization (N0,F , D0,F ), which

is the relation between the simulated auxiliary signal x(t) and the signal

[y(t) u(t)]T , will be (almost) normalized and the second step of the proce-

dure can be invoked. Otherwise the steps 1.a till 1.c may be repeated to

improve the quality of the auxiliary model Px.

2. In the second step of the procedure, the simulated auxiliary signal x(t), coming

from the first step, and the signal [y(t) u(t)]T is used to perform an approximate

identification of the (almost) normalized factorization (N0,F , D0,F ) again using

an output error structure, where (N(q, θ), D(q, θ)) can be parametrized as

⎡
⎣ N(q, θ)

D(q, θ)

⎤
⎦ =

⎡
⎣ BN(q, θ)

BD(q, θ)

⎤
⎦ A(q, θ)−1
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where BN , BD and A are polynominal (matrices) of proper dimensions. In this

parametrization, where N(q, θ) and D(q, θ) have a common right divisor A(q, θ),

guarantees that the McMillan degree of the model P (q, θ) = N(q, θ)D−1(q, θ)

is determined by the polynominal matrices BN(q, θ) and BD(q, θ) only.

The parameter estimate is obtained by a least squares minimization [22] of the

filtered prediction error εf(t, θ) with εf(t, θ) = Lε(t, θ), and L ∈ RH(ny+nu)×(ny+nu)
∞ ,

decomposed as L = diag(Ly, Lu).

The result of the procedure proposed above is composed of a (possibly low order)

approximation (N(q, θ̂), D(q, θ̂)) and resulting model P (q, θ̂) = N(q, θ̂)D−1(q, θ̂) of

an (almost) normalized right coprime factorization (N0,F , D0,F ) of the plant P0. It

should be noted that the coprime factorizations (N0,F , D0,F ) that can be accessed

in this procedure can be made exactly normalized only in the situation that we

have exact knowledge of the plant P0. In the procedure presented above, this exact

knowledge of P0 has been replaced by a (very) high order accurate estimate of P0.

Note that the order of the ”high order” estimate of P (q, θ) in step 1.b may be strongly

dependent on the auxiliary model Px that is used in the filter F to construct the

auxiliary signal x(t). The more accurate this auxiliary model, the more common

dynamics is cancelled in the coprime factors (18), and consequently the easier the

factorization (N0,F , D0,F ) can be accurately described by a model of limited order.

This highly motivates the usage of an iterative repetition of steps 1.a till 1.c in the

algorithm presented above. Such an iterative procedure has also been applied in the

application example discussed in section 6.

5 Analysis of the algorithm

In order to explicitly write down the asymptotic identification criterion that has been

used in the final step of the algorithm, we write the related prediction error as

ε(t, θ) =

⎡
⎣ Ly 0

0 Lu

⎤
⎦

⎧⎨
⎩

⎡
⎣ y(t)

u(t)

⎤
⎦ −

⎡
⎣ N(θ)

D(θ)

⎤
⎦ x(t)

⎫⎬
⎭ (26)

=

⎡
⎣ Ly 0

0 Lu

⎤
⎦

⎧⎨
⎩

⎡
⎣ N0 − N(θ)

D0 − D(θ)

⎤
⎦ x(t) +

⎡
⎣ W0H0

−CW0H0

⎤
⎦ e0(t)

⎫⎬
⎭ (27)

with N0, D0 given by (24). As a result the asymptotic parameter estimate θ∗ =

plimN→∞ θ̂N is characterized by

θ∗ = arg min
θ

∫ π

−π

[
|N0(e

iω) − N(eiω, θ)|2|Ly(e
iω)|2 +
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+ |D0(e
iω) − D(eiω, θ)|2|Lu(e

iω)|2
]
· Φx(ω)dω (28)

with x(t) = D−1
x (I + CPx)

−1[u(t) + C(q)y(t)].

We will write this expression as

θ∗ = arg min
θ

∥∥∥∥∥∥

⎡
⎣ Ly[N0 − N(θ)]

Lu[D0 − D(θ)]

⎤
⎦ Hx

∥∥∥∥∥∥
2

(29)

where Hx is the monic stable spectral factor of Φx.

We will now write this identification criterion in terms of (exact) normalized coprime

factors of the considered plant.

Proposition 5.1 Consider the plant factors N0, D0 given by (24) to be identified

from data as in the final step of the algorithm presented before, employing an auxiliary

system Px = NxD
−1
x stabilized by C, with Nx, Dx a normalized rcf.

Using an output error model structure to identify N0, D0, as denoted in (25) with a

least squares identification criterion (29), the asymptotic parameter estimate θ∗ will

satisfy

θ∗ = arg min
θ

∥∥∥∥∥∥

⎡
⎣ Ly[N0,nQ − N(θ)]

Lu[D0,nQ − D(θ)]

⎤
⎦ Hx

∥∥∥∥∥∥
2

(30)

with N0,n, D0,n a normalized rcf of the plant P0 and Q the unique monic, stable and

stably invertible solution to

Q∗Q = R∗FR + R∗G + G∗R + I (31)

with

F = D∗
cDc + N∗

c Nc (32)

G = D∗
CNx − N∗

c Dx. (33)

Proof: Using the expressions (24) for N0 and D0 it follows that D∗
0D0 + N∗

0 N0 =

R∗FR + R∗G + G∗R + I. Since this expression is positive real, there exists a unique

Q, with Q, Q−1 ∈ RH∞ and Q monic satisfying (31). As a result it follows that

(N0Q
−1, D0Q

−1) is a normalized rcf of P0. �

If the first identification step (Steps 1-3) of identifying (N, D) is accurately enough

(Pn → P0), then in the second step of the procedure (Steps 4-6) , Px → P0, with

Nx, Dx a normalized rcf of Px. As Px → P0, applying (20) shows that R → 0, and the

R-dependent terms in (24) will vanish in the second identification step (Steps 4-6).

In terms of the matrix Q as used in the expression (30) this shows as follows.
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Proposition 5.2 Consider the situation of Proposition 5.1. Then

(a) ‖Q − I‖∞ → 0 as ‖Px − P0‖∞ → 0.

(b) ‖Q−1 − I‖∞ → 0 as ‖Px − P0‖∞ → 0.

Proof: Note that ‖Q∗Q − I‖∞ = ‖R∗AR + R∗B + B∗R‖∞. For ‖Px − P0‖∞ → 0 it

follows with (20) that ‖R‖∞ → 0 and so ‖Q∗Q − I‖∞ → 0.

If ‖Q∗Q − I‖∞ = 0, and using the restriction that Q, Q−1 ∈ RH∞ and Q monic, it

implies that Q = I.

Using continuity properties of Q as a function of R the result follows. �

Our result now shows a similar type of expression as in the original two-step method

of [34], with an approximation criterion in identification (30) that becomes very nice

in case Px = P0, and consequently Q = I, but that also shows the deviation of the

desired criterion as a result of a non-perfect first step.

Finally we will show the relation of the asymptotic identification criterion with a spe-

cific upper bound for a directed gap metric measure, which has direct implications for

robust stability properties of a controller to be designed on the basis of the identified

model.

For simplicity of notation and without loss of generality we will restrict attention to

the situation Ly = Lu = Hx = I.

We take as a starting point that our identification that has resulted in (30) provides

us with an α ∈ IR satisfying
∥∥∥∥∥∥

⎡
⎣ N0 − N(θ∗)

D0 − D(θ∗)

⎤
⎦
∥∥∥∥∥∥
∞

≤ α (34)

For the construction of this α one can apply an alternative identification procedure

that provides direct expressions and sometimes even minimization of the RH∞-error

in (30), see e.g. [17, 11, 13] for an approach in a worst-case deterministic setting, and

[7, 8, 15] for approaches that incorporate probabilistic aspects.

If we have this α avialable we can apply the following result.

Proposition 5.3 Consider the identification setup discussed before, and suppose that

we have available an expression

‖
⎡
⎣ N0

D0

⎤
⎦ −

⎡
⎣ N(θ∗)

D(θ∗)

⎤
⎦ ‖∞ ≤ α. (35)

Then �δ(P0, P (θ∗)) ≤ α‖Q−1‖∞ with Q defined as before.
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Proof: Combining (34) and (30) it follows that

‖
⎡
⎣ N0,n

D0,n

⎤
⎦ Q −

⎡
⎣ N(θ∗)

D(θ∗)

⎤
⎦ ‖∞‖Q−1‖∞ ≤ α‖Q−1‖∞ (36)

which leads us to

‖
⎡
⎣ N0,n

D0,n

⎤
⎦ −

⎡
⎣ N(θ∗)

D(θ∗)

⎤
⎦ Q−1‖∞ ≤ α‖Q−1‖∞. (37)

Using the definition of the directed gap-metric now shows the result. �

In terms of control design, on the basis of this model that is identified, the following

interesting result can now be formulated.

Proposition 5.4 Consider the control design scheme as discussed in [23, 2], char-

acterized by

CP̂ = arg min
C̃∈C

‖T (P̂ , C̃)‖∞ (38)

with P̂ = P (θ∗). If this controller satisfies

‖T (P̂ , CP̂ )‖∞ ≤ 1

α‖Q−1‖∞ (39)

then the plant P0 will be stabilized by CP̂ .

Proof: Follows directly using the robust stability results for uncertainty sets in the

directed gap metric, see Proposition 2.1. �

This proposition shows that we can test a priori whether the designed controller will

stabilize our plant, before actually implementing it. To this end we need an expression

for (an upper bound on) the RH∞-error that is made in the identification of coprime

factors, actually in both steps of the identification procedure.

Note that in this procedure there is no need to use a parametrization of the model

P (θ) in terms of normalized coprime factorizations. We have chosen the auxiliary

system in such a way that the plant factors that are identified are almost normalized,

and this is sufficient to obtain the given results reflecting robust stability properties.
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6 Application to a mechanical servo system

We will illustrate the proposed identification algorithm by applying it to real life data

obtained from experiments on the servo mechanism of a radial control loop, present

in a compact disc player. The radial servo mechanism uses a radial actuator which

consists of a permanent magnet/coil system mounted on the radial arm, in order to

position the laser spot orthogonally to the tracks of the compact disc. For a more

extensive description of this servo mechanism, we refer to [5, 32].

actuator

C

� �� ����+
+ −

+

+

+u yr1

v

�

�

� �
�

P0

track

Fig. 3: Block diagram of the radial conrtol loop

A simplified representation of the experimental set up of the radial control loop is

depicted in Figure 3, wherein P0 and C denote respectively the radial actuator and

the known controller. The radial servo mechanism is marginally stable, due to the

presence of a double integrator in the radial actuator P0. This experimental set up is

used to gather time sequences of 8192 points of the input u(t) to the radial actuator P0

and the disturbed track position error y(t) in closed loop, while exciting the control

loop only by a bandlimited (100Hz–10kHz) white noise signal r1(t), added on the

input u(t).

The results of applying the two steps of the procedure presented in section 4 are

shown in a couple of figures. Recall from section 4, that in the first step the aim is to

find an auxiliary model Px with a normalized rcf (Nx, Dx) used in the filter F , such

that the factorization (N0,F , D0,F ) of the actuator P0 becomes (almost) normalized.

This effect has been illustrated in Figure 4, where the result of the first step has been

depicted.

In Figure 4(a) an amplitude plot of a spectral estimate of the factors N0,F and D0,F ,

respectively denoted by N̂0,F and D̂0,F , along with the factorization Nx and Dx of a
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high (24th) order auxiliary model Px has been plotted. The result has been obtained

by running through the steps 1.a – 1.c only three times. Additionally, in Figure 4(b)

an evaluation of N0,F
∗N0,F +D0,F

∗D0,F using the spectral estimates N̂0,F and D̂0,F is

plotted to illustrate the fact that indeed the factorization (N0,F , D0,F ) of the actuator

P0 where we have access to, trough the signals x(t) and [y(t) u(t)]T is (almost)

normalized.

Finally, Figure 5 presents the result of a low (10th) order approximation of the

factorization (N0,F , D0,F ) of the actuator P0, which is the second step in the procedure

mentioned in section 4. In Figure 5(a) an amplitude plot of the obtained factorization

(N(θ̂), D(θ̂)) along with the spectral estimate of the factorization (N0,F , D0,F ) has

been draw. To be complete, an amplitude plot of the finally obtained 10th order model

P (θ̂) = N(θ̂)D−1(θ̂) along with a spectral estimate has been depicted in Figure 6(b).

Conclusions

In this paper it is shown that it is possible to identify (almost) normalized coprime

plant factors based on closed loop experiments. A general framework is given for

closed loop identification of coprime factorizations, and it is shown that the freedom

that is present in generating appropriate signals for identification can be exploited to

obtain (almost) normalized coprime plant factors from closed loop data. A resulting

multi-step algorithm is presented and the corresponding asymptotic bias expression is

shown to be specifically relevant for evaluating gap-metric distance measures between

plant and model. The identification algorithm is illustrated with results that are

obtained from closed loop experiments on an open loop unstable mechanical servo

system.
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Appendix

Lemma A.1 [39]. Consider rational transfer functions P0(z) with right coprime fac-

torization (N, D) and C(z) with left coprime factorization (D̃c, Ñc). Then T (P0, C) =⎡
⎣ P0

I

⎤
⎦ (I + CP0)

−1
[

C I
]

is stable if and only if D̃cD + ÑcN is stable and stably

invertible. �

Proof of Proposition 3.1.

(a) ⇒ (b). The mapping x → col(y, u) is characterized by the transfer function⎡
⎣ P0S0F

−1

S0F
−1

⎤
⎦. By writing

⎡
⎣ P0S0F

−1

S0F
−1

⎤
⎦ =

⎡
⎣ P0

I

⎤
⎦ (I + CP0)

−1F−1 and substituting a

right coprime factorization (N, D) for P0, and a left coprime factorization (D̃c, Ñc)

for C we get, after some manipulation, that
⎡
⎣ P0S0F

−1

S0F
−1

⎤
⎦ =

⎡
⎣ N

D

⎤
⎦ (D̃cD + ÑcN)−1D̃cF

−1. (A.1)

Premultiplication of the latter expression with the stable transfer function (D̃cD +

ÑcN)
[

X Y
]

with (X, Y ) right Bezout factors of (N, D) shows that D̃cF
−1 is im-

plied to be stable. As a result, D̃cF
−1 = W with W any stable transfer function.

With respect to the mapping col(y, u) → x, stability of F and FC implies stability

of W−1
[

D̃c Ñc

]
, which after postmultiplication with the left Bezout factors of

(D̃c, Ñc) implies that W−1 is stable.

This proves that F = W−1D̃c with W a stable and stably invertible transfer function.

(b) ⇒ (a). Stability of F and FC is straightforward. Stability of S0F
−1 and P0S0F

−1

follows from (A.1), using the fact that (D̃cD + ÑcN)−1 is stable (lemma A.1). �
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Fig. 4: Bode magnitude plots of the results in Step 1 of the procedure:

a: Identified 32nd order coprime

plant factors (Nx, Dx) of auxiliary

model Px (solid) and spectral es-

timates (N̂0,F , D̂0,F ) of the factor-

ization (N0,F , D0,F ) (dashed).

b: Plot of N̂∗
0,F N̂0,F +D̂∗

0,F D̂0,F using

the spectral estimates N̂0,F and

D̂0,F .
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Fig. 5: Bode plot of the results in Step 2 of the procedure: Identified 10th order

coprime factors (N̂, D̂) (solid) and spectral estimates (N̂0,F , D̂0,F ) (dashed)

of the factorization (N0,F , D0,F ).
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Fig. 6: Bode plot of the results in Step 2 of the procedure: Identified 10th order

model P̂ = N̂D̂−1 (solid) and spectral estimate N̂0,F D̂−1
0,F (dashed) of the

plant P0.
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