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Winter 2014 
MEASUREMENT ERROR ANALYSIS AND STATISTICS 

Prof. R.A. de Callafon 
 

 

IN THIS LECTURE: 

• Types of Measurements 

• Common Terms In Measurements And Error Analysis 

• Sensor Components in the Measurement Chain 

transducers, conditioners, converters, amplifiers, filters 

• Error Analysis: Types of errors and Numerical Integration 

• Error Analysis: Statistical Framework  

• Propagation of Errors 

• Linear Regression & Least Squares 

• Error Analysis in Your Report 
 

 



 

MAE175a Error Analysis – R.A. de  Callafon – Page 2 

REFERENCES USED FOR THIS LECTURE 

 

[1] Beers, E.Y., Introduction to the Theory of Error, 2nd Ed., Addison Wesley, 1962. 

[2] Beyer, W. H. CRC Standard Mathematical Tables, 28th Ed. Boca Raton, FL: CRC 

Press, 1987. 

[3] Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: 

McGraw-Hill, 1992. 

[4] Steinhaus, H. Mathematical Snapshots, 3rd Ed. New York: Dover, 1999.  

[5] Taylor, J.L. Fundamentals of Measurement Error, NEFF instrument Corp., 1988. 

[6] Zuwaylit, F.H., General Applied Statistics, 3rd Ed., Addison Wesley, 1979. 
 



 

MAE175a Error Analysis – R.A. de  Callafon – Page 3 

 

 

 

 

 

 

TYPES OF MEASUREMENTS 
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TYPES OF MEASUREMENTS 

 

Direct measurement: comparison of an unknown quantity with a standard assumed to 

remain constant. 

  

Indirect measurement: characterization of a phenomenon or property in terms of a 

functional relationship between measured quantities and 

quantities that are accessible to measurement. 

 

 

Usually an event cannot be measured directly but causes an electrical or physical signal, 

that is measured or interpreted.  This leads to the concept of transduction of events and 

transducers.   
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TYPES OF MEASUREMENTS  

 

 

A transducer converts one form of energy to another form of energy.  Usually a 

transducer is considered to be a device that converts a given form of energy to an 

electrical signal.   

 

A fundamental rule for a transducer: measuring device or method should not alter the 

event being measured! 

 

  

energy drawn from measured system  ≤  1

100
 measuring energy 

 

 

 

More on transducers when we discuss sensor components
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COMMON TERMS IN MEASUREMENTS AND ERROR ANALYSIS 
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COMMON TERMS ASSOCIATED WITH MEASUREMENTS AND ERROR: 

 

Accuracy: how closely a measured value approximates the real value. 

 

Precision:   how closely measured values cluster around a best estimate of the real 

value.  A precise measurement has a small standard deviation, but can 

be of low accuracy! 

 

Resolution: the level or amplitude of the smallest change in measured value.  

 

In general, instruments change their output in a stepwise fashion, and the relationship 

between the minimum step size and the full scale output is referred to as resolution. 

 

Threshold:   the minimum change in input that causes a change in output. 

 

Repeatability: agreement between measurements taken under identical conditions.  

Given as 1% of Full Scale Output (FSO). 

 

Reproducibility: agreement between different measurements of the same phenomenum. 
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EXAMPLE: measurement of a temperature 
 

 

A little history: 

 

Daniel Gabriel Fahrenheit (1686-1736) devoted most of his life to creating 

precision meteorological instruments. Fahrenheit invented the mercury 

thermometer in 1714, and later discovered the effect of pressure on the boiling 

point of liquids. Fahrenheit sought to create a practical temperature scale in 

which 0 corresponded with the coldest temperature normally encountered in Western 

Europe and 100 corresponded to the hottest temperature.  

 

In 1742, Anders Celsius (1701-1744) created an inverted centigrade 

temperature scale in which 100 represented the boiling point of water (373.15 

K) and 0 represented the freezing point (273.15 K) at 1 Atm. 

 

 

Fahrenheit adjusted his temperature scale so that 32 represented the freezing point of 

water and 212 represented the boiling point of water (373.15 K). 

 

Which temperature scale makes more sense?
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EXAMPLE: measurement of temperature of freezing water 

 

Let the actual temperature be 32°F, consider the following measurements: 

 

 

32.11 36.21 32.5 34.51 32.11 

31.92 35.93 31.5 30.05 31.92 

32.01 36.03 32.0 33.05 32.01 

32.03 35.99 32.5 31.12 42.03 

31.98 36.02 31.5 30.87 31.98 

31.89 35.98 32.0 33.65 31.89 

accurate 

and precise 

with 

relative 

high 

resolution 

precise 

with 

relative 

high 

resolution 

but not 

accurate 

accurate 

but less 

precise due 

to low 

resolution 

of 0.5°F 

 less 

precise but 

most likely 

accurate 

with 

relative 

high 

resolution 

? 
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EXAMPLE: measurement of a temperature (SOLUTION) 

 

Let the actual temperature be 32°F, consider the following measurements: 

 

 

32.11 36.21 32.5 34.51 32.11 

31.92 35.93 31.5 30.05 31.92 

32.01 36.03 32.0 33.05 32.01 

32.03 35.99 32.5 31.12 42.03 

31.98 36.02 31.5 30.87 31.98 

31.89 35.98 32.0 33.65 31.89 

accurate 

and precise 

with 

relative 

high 

resolution 

precise 

with 

relative 

high 

resolution 

but not 

accurate 

accurate 

but less 

precise due 

to low 

resolution 

of 0.5°F 

 less 

precise but 

most likely 

accurate 

with 

relative 

high 

resolution 

accurate, 

not precise 

(due to 

outlier at 

42.03) with 

high 

resolution 

 

Error characterization is a combination of 

• mean value (accuracy) and variation (precision, resolution) 
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COMMON TERMS ASSOCIATED WITH MEASUREMENTS AND ERROR:  
 

Hysteresis:  difference in output between measurements of increasing and 

decreasing input. 

 

Hysteresis will yield different measurements in case the input increases or decreases and 

this error is bad for measurements! 

 

Linearity: deviation of a response curve (or calibration curve) from a straight 

line, given in ± % FSO. 

 

Linearity makes it easy to find a relation between measured quantity and resulting output 

signal: a linear relation. 

 

Conformance: degree of correspondence between nonlinear input/output relationship 

and theoretical curve. 

 

 

Offset:   output for 0 input level. 
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EXAMPLE: measuring temperature with a thermocouple 

 

Thermocouple generates voltage depending on temperature, then the following 

characteristics indicate: 

 

       

linearity   non-linearity     hysteresis 

without    with 

offset   offset 

 

Most (good) sensors have the following static 

characteristic curve: 

 

I.E. Linear over a certain range with a small offset. 
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SENSOR COMPONENTS IN THE MEASUREMENT CHAIN  
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SENSOR COMPONENTS INTHE MEASUREMENT CHAIN 

 

Many quantities can be measured directly, most events however 

are measured indirectly (indirect measurement) 

Examples are: temperature, pressure, force, acceleration, speed, flow rate, etc.  

 

The general process of an indirect measurement is shown schematically in the following 

figure: 

 

 

 

 

 

most important element: the sensor (transduces and conditions the `event to measure’, so 

it can be processed by the data acquisition system) 
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SENSOR COMPONENTS 

 

Measuring a signal often involves many components: 

• transducer (sometimes also called, `the sensor’) 

converts one form of energy to another form of energy (electricity) 

• power source 

needed to supply (electric) energy 

• amplifiers 

to amplify the signals being measured before using them 

• filters 

to get rid of unwanted (high or low frequent) disturbances 

• possible multiplexers and converters 

in case of digital data acquisition systems 

 

Following is summary of abovementioned components to review the measurement chain. 

signal conditioning 
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 SENSOR COMPONENTS 

 

Transducers/sensors 

 

Active (generate their own energy). Examples: 

• thermocouples 

• piezoelectric sensors 

 

 

  

 Passive (require additional energy source). Examples:  

• strain gage 

• Hall effect sensor 

• platinum resistance temp. gage 



 

MAE175a Error Analysis – R.A. de  Callafon – Page 17 

SENSOR COMPONENTS 

 

Power source 

Provides excitation for passive gages, suppresses sensor zero. 

 

Characteristics:  

(1) operating mode (const. Voltage or const. Current)  

(2) line and load regulation spec. 

(3) ripple on source (Voltage or current ripple) 

(4) zero suppression range 

(5) loading or stability 
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SENSOR COMPONENTS 

 

Amplifier 

- typically used to maximize measurement resolution by scaling sensor voltage range to 

full analog-to-digital converter (ADC) range 

- compensates for differences between sensor’s zero reference potential and data 

acquisition system’s zero potential -- generally a differential amplifier acts on 

difference between input lead. 

 

 

Characteristics:   

(1) Input electrical characteristics  

(impedance, capacitance)  

(2) Design type  

(single ended, differential, instrumental) 

(3) Dynamic parameters  

(bandwidth, slew rate, settling time, overshoot) 

(4) Max. input voltage and gain 
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SENSOR COMPONENTS 

 

Anti-Aliasing Filter 

- Limits the frequency content of a sampled signal typically by a low pass filtering. 

Example: eliminate (alternate) high frequency noise by dedicated low pass filter. 

- The term “anti-aliasing” is used because failure to select  

the correct sampling rate creates aliasing effects. 

aliasing = slow sampling of a high frequency signal  

makes it appear as a low frequency signal.  

 

Characteristics:  

(1) filter type (Bessel, Butterworth, Chebyshev) 

(2) pass band or stop band parameters 

(3) dynamic parameters (settling time, overshoot) 

Sine signal (blue) sampled 

at a high frequency (green) 

and a low frequency (red) 
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SENSOR COMPONENTS 

Analog-to-Digital Converter (ADC)   

converts an analog signal (voltage) to digital  

information (numbers) by a direct or indirect  

comparison of the signal to a known reference.  

Characteristics:  

(1) Conversion techniques: 

 Digital Ramp (see figure) 

, Successive Approximation 

 or Flash ADC  

(2) Conversion rate 

 points/second 

(3) Full scale conversion voltage  

(4) Resolution 

number of bits for full scale, ex: 8, 10, 12 bits will yield 2
8
, 2

10
, 2

12
 parts of full scale 

Sine signal (blue) sampled at a high 

frequency with a 4 bit resolution (green) 
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SENSOR COMPONENTS 

 

Zero Order Hold Circuitry 

Holds signal constant during the time the ADC takes to digitize an analog 

signal and/or to convert a digital signal back into a continuous signal. 

 

Multiplexer Circuitry 

Switch to connect N different sensor input channels to one 

data measuring equipment (ADC). 

 

Characteristics: 

(1) switching rate  

(2) cross-talk. 
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ERROR ANALYSIS: TYPES OF ERRORS AND NUMERICAL 

INTEGRATION  
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ERROR ANALYSIS 

 

Error is defined as the difference between event to measure and quantified event. This 

error can characterized as the absolute difference.  

 

 

 

 

 

Usually, relative measures are being used: 

 

Error in % of reading ≡
Error

System Output
×100  

Error in % of Full Scale (FS) ≡
Error

FS Output
×100 
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ERROR ANALYSIS 

 

(FOUR) TYPES OF ERRORS: 

 

(1) Intrinsic Errors: errors inherent with the measurement chain 

(a) sensor accuracy (or “inaccuracy”) 

(b) linearity and conformance 

(c) hysteresis 

(d) offset 

(e) noise 

(f) repeatability 

(g) resolution 

(h) threshold 

 

All these errors are due to the different components in the measurement chain. 
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ERROR ANALYSIS 

 

(FOUR) TYPES OF ERRORS: 

 

(2) Application Related Errors: errors associated with the use of sensors. 

(a) Spatial errors  

 (proper location of sensor(s) or use of multiple sensors) 

(b) Interaction errors  

(size of sensor if too big: affects measurement) 

(c) Probe errors 

(orientation of sensor) 

(d) Temperature effects  

(changes resistance) 
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ERROR ANALYSIS 

 

(FOUR) TYPES OF ERRORS: 

  

(3) Interface Errors: errors due to interfacing measurement chain components 

(a) Cabling (resistance, impedance, capacitance, etc.) 

(b) Loading (electrical or mechanical load) 

(c) Common mode voltage 

(d) Static cross-talk (multiplexed systems) 

 

(4) Sampling and Approximation Errors: errors due discretization of analog signals 

(a) Finite time sampling 

(b) Sampling distribution error (improper sampling rate) 

 (c) Stabilization error (due to sensor response time) 

 (d) Approximation error (due to finite # points, integration) 
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ERRORS ANALYSIS: NUMERICAL INTEGRATION (Riemann sums) 

Consider a measurement that is found via an integration: 

 

 

where x is measured at n discrete points ai , i=1,2,…,n on the interval [a,b], then 

integration can be done via: 

 

(1) Riemann sums using left, right or middle points 
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ERRORS ANALYSIS: NUMERICAL INTEGRATION (trapezoidal and Simpson) 

Consider a measurement that is found via an integration: 

 

 

where x is measured at n discrete points ai , i=1,2,…,n on the interval [a,b], then 

integration can also be done via: 

 

(2) Combination : the Trapezoidal rule (line or 1st order approximation) or 

Simpson’s rule (parabolic or 2nd order approximation) 

                                   

                     

 

 

 

 

 

 

 

 

Pictures courtesy of Stefan Warner and Steven R. Costenoble, Dept. of Mathematics, Hofstar University and Lawrence S. Hush, Dept. 

of Mathematics, University of Tennessee, Knoxville.
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ERRORS ANALYSIS: NUMERICAL INTEGRATION (Results) 

 

Each integration method introduces errors that can be bounded: 

 

 

Trapezoidal Rule Error Bound: Consider n points over [a,b] and suppose that the 

second derivative of f is continuous on [a, b] with |f(2)(x)| < M for all x in [a, b]. Then  

 

      
 

Midpoint Rule Error Bound: Consider n points over [a,b] and suppose that the second 

derivative of f is continuous on [a, b] with |f(2)(x)| < M for all x in [a, b]. Then 

 

      
 

Simpson's Rule Error Bound: Consider n points over [a,b] and suppose that the fourth 

derivative of f is continuous on [a, b] with |f(4)(x)| < M for all x in [a, b]. Then  
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ERROR ANALYSIS: STATISTICAL FRAMEWORK 

 

 

 



 

MAE175a Error Analysis – R.A. de  Callafon – Page 31 

ERROR ANALYSIS (Statistical Framework) 

 

There are two essential components of measurement error:  

(a) Bias error (related to the mean value or accuracy) 

(b) Random error (related to the variation in data due to precision and resolution) 

For the case of a constant value of the event to measure, these two main components are 

illustrated in the figure of the probability density function: 

 

probability density function 
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ERROR ANALYSIS (Statistical Framework) 

The fixed difference between the true value and the average of all repeated measurements, 

M , is the bias error, whereas the deviation of individual measurements from the average 

M  are the random errors. Bounds Ml and Mr indicate confidence interval for M  

 

 

 

 

 

 

 

 

The “bell shaped” probability density function above shows that  

measurements near the average are more probable than far from it.  

It gives insight in the `spread’ of the random effect of the measurements. 
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ERROR ANALYSIS (Statistical Framework) 

 

The statistical framework allows the uncertainty associated with any measurement to be 

described in a probability density function or a confidence interval that are functions of 

both bias and random errors. 

 

Example 

To estimate the bias error, we apply a constant input and take n measurements.  Then the 

bias error can then be estimated via 

 

Bi = e =
Σei

n  

 

which is nothing else than simply taking the average of the samples/measurements.  

 

Since this estimate is obtained from n samples:  

• a probable band for the true average error can be established using the t-statistic (t-

distribution function) 

• With information on probability density function we can formulate confidence 

intervals for our measurement.  
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SOME STATISTICS 

 

All measurements are in error, and the purpose of error analysis is to quantify these errors.  

For random errors we can use statistics. 

 

 

The idea is to characterize the bias (mean) and the spread (variance) of the measurement 

to characterize the quality of the measurement. 

 

If we use n observations, the error at the ith observation is  

ei = f iT( )− f1  
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where  f1 is the known input or know quantity to measure 

SOME STATISTICS - terminology 

 

Population = all elements of measured quantity – finite (N) or infinite (∞). 

Sample = n measurements of the population.  Sample is representative of population if: 

(a) sample can be characterized 

(b) relationship between sample parameters and population parameters is known. 

Central tendency (of population) 

(a) median 

(b) mean, µ 

Dispersion parameters (of population) 

(a) deviation:  di = ei − µ , µ =  population mean 

(b) variance:  σ
2

=
Σdi

2

N
 

(c) standard deviation:  σ  



 

MAE175a Error Analysis – R.A. de  Callafon – Page 36 

SOME STATISTICS – mean/average and median 

 

For the whole population of measurements we have the population parameters based on a 

total of N measurements.  For a sample of n measurements (since the whole population 

may not be available) we have sample parameters. In general, one wants to obtain the 

population statistics from the sample statistics. 

 

A summary of those is as follows: 

 

Central tendency   Population  Sample 

 

Mean/average:   µ ≡
Σei

N
  e ≡

Σei

n
 

   ⇒ Σ ei − e ( )= 0  

 

Median:  middle pt., i.e. same # of pts. above and below median 

Also called Sample Mean 
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SOME STATISTICS – deviation, variance and standard deviation 

 

Dispersion tendency  Population  Sample 

 

Deviation:   di = ei − µ   di = ei − e  

However,   Σdi = 0   Σdi = 0  

so we can define 

Variance:  σ 2
≡

Σdi

2

N
=

Σ ei − µ( )
2

N
  ˆ σ 2 ≡

Σ ei − e ( )
n

 

Std. Deviation:  σ ≡
Σ ei − µ( )

2

N
  ˆ σ ≡

Σ ei − e ( )
2

n
 

To determine the sample standard deviation ˆ σ  during a measurement, without having to 

store all observations, we can use the recursive formulae: 

 

ˆ σ =
Σei

2

w
− e 

2 

 
  

 

1/ 2

=
Σei

2 − Σei

n

 

 
  

 

1/ 2

. 

Also called Sample Variance 
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SOME STATISTICS – estimate of probability density function 

 

• The statistical properties of a population are fully characterized by its probability 

density function (that may be a function of  µ and σ  as defined before) 

• If the frequency (no. of occurrences) of the errors is plotted as a function of error 

amplitude, an estimate of the probability density function is obtained! 

 

Example: measurement with a mean value µ=1 and a standard deviation σ =0.1: 

 

Histogram (blue) 

gives estimate of the 

probability density 

function (red) and 

shows mean and spread 

of measurement errors.



 

MAE175a Error Analysis – R.A. de  Callafon – Page 39 

SOME STATISTICS – normal or Gaussian distribution 

 

Many populations exhibit a Normal (or Gaussian) distribution with a Gaussian 

Probability Density Function. For such a 

distribution, the probability distribution has a `bell 

shaped’ character.  

 

 

 

 

Characteristics of Gaussian or Normal distribution:  

(1) Fully characterized µ and σ  

(2) Symmetric around the mean µ 

(3) area under curve = 1 (as for ALL probability density functions!) 

(4) probability density approaches 0 for larger values and σ  determines “how fast” 



 

MAE175a Error Analysis – R.A. de  Callafon – Page 40 

SOME STATISTICS – normal or Gaussian distribution 

 

 

The probability that a measurement occurs between ±σ,  ± 2σ,  ± 3σ  is the following: 

     P −σ ≤ e ≤ σ( ) = 0.683 

     P −2σ ≤ e ≤ 2σ( ) = 0.954  

     P −3σ ≤ e ≤ 3σ( ) = 0.997  

Thus, for example, there is a 99.7% probability that the error for a normally distributed 

population (or sample) is within 3 standard deviations from the mean.  Thus, the 

standard deviation is a measure of dispersion used with the normal distribution. 
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SOME STATISTICS – normalized distribution 

 

Normalized z-variant: 

In order to calculate the probability that the population error lies between e1 and e2  we 

use Standardized Normal/Gaussian Distribution characterized by µ = 0 and σ  = 1. 

 

Any measurement/variable e with a Normal/Gaussian Distribution with µ and σ  can be 

given a Standardized Normal/Gaussian Distribution characterized by µ = 0 and σ  = 1: 

 

define 
zi =

ei − µ

σ   as a `new’ random variable and called the Normalized z-variant 

 

this gives µ z = 0,   σ z

2
= 1 , so normalized and then the normalized Gaussian probability 

density function f z( ) =
1

2π
e

−z
2

/ 2
dz∫  (tabulated on page 59) can be used for calculations!  
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SOME STATISTICS – example of confidence intervals via normalized distribution 

Example 

20 observations are made for an instrument calibration.  Assume 

    e = µ = 0.0117  

    ˆ σ 2 = σ 2
= 0.0119 

    ⇒      σ = 0.1091 

Determine the 95% CONFIDENCE INTERVAL, This means, compute emin = e1 and emax 

= e2 such that 95% of the observations will lie in this interval. 

For 95% probability see Standard Normalized Distribution table on page 59. Table lists 

only probability for P(0<z<a), but with symmetry of P(z) we now 95/2 = 47.5% = 0.475. 

From tale we observe a=1.96, so for normalized z-variant we have 

  ⇒ z = ±1.96  

  z =
ei − µ

σ
⇒ eiσzi + µ ⇒        e1 = −0.202  

  and  e2 = 0.225 
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SOME STATISTICS – properties of mean estimation 

Take a set of n samples from population, with sample averages e j .  Now, take the average 

of all sample means.  This average is called the expected value of the sample mean, and 

is equal to µ : 

     e = E e ( ) = µ . 

Now, the standard deviation of the distribution of sample means is the standard deviation 

of the sample mean: 

σe =
σ

n

N − n

N −1

 
 

 
 

1/2

“finite population correction” 

If   n ≤
N

10
  or  N → ∞  then  σe ≈

σ

n
⇒ σ = n ˆ σ  

Interesting Fact: for n ≥ 30    e  is normally distributed even if the population is not 

(central limit theorem). Since e  is normally distributed, we can write (normalization): 

z =
e − µ

σe 

=
e − µ

σ / n . 
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SOME STATISTICS – example of mean estimation 

 

Example 

 

Compute 95% CONFIDENCE INTERVAL for µ if you know that the sample mean 

e = 0.0117, on the basis of n=20 samples from a population with σ = 0.1. 

 

 95% ⇒ 95/2=47.5% = 0.475 for P(0<z<a)  

with z -table on page 59,  P(0<z<a) = 0.475 for a=1.96 

⇒ z= ± 1.96 

 Work out the problem yourself! 

 

 

NOTE: The above example assumes knowledge of the population standard deviation σ .  

Usually, this is not available, but we are estimating this via the sample variance… 
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SOME STATISTICS – properties of variance estimation 

 

It can be shown that if all possible samples of size n are taken from a population and each 

of these is used to compute the sample variance ˆ σ 2 , then the expected value of the 

sample variance is:   

E ˆ σ 2( )=
n −1

n
σ2

= σ 2
−

σ 2

n  

thus the expected value of sample variance is not σ2
, but

σ 2

n
 less than the population 

variance! For small n there is an error, which is adjusted by adjusted sample variance: 

s
2

=
n

n − 1
ˆ σ 2 =

Σ ei − e ( )
2

n −1  

So, instead of ˆ σ 2 ≡
Σ ei − e ( )

n
 (as we saw before) we use the estimate: 

 s
2

=
n

n −1
ˆ σ 2 =

Σ ei − e ( )
2

n −1
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SOME STATISTICS – t-distribution 

Sample average e with adjusted sample standard deviation s can be related to the 

population mean µ  via a so-called “t-distribution”: t =
e i − µ

s

n

 ,     s =
Σ ei − e ( )

2

n −1

 

 
 

 

 
 

1/2

 

NOTES:  

• This is again a normalization of the statistical variable e (your measurement) 

• To get the normalized t-distribution, one has to subtract the mean value µ and divide 

by the adjusted sample standard deviation s and multiply by square root of n. 

• The degrees of freedom (d.f.) defined by d.f. = n −1 , where n = number of samples, 

determines the shape of the t-probability density function:  

 

shape of t-probability density function 

Φdf(t), where df = degrees of freedom 
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SOME STATISTICS – t-distribution 

 

 

General trend for t-distribution:  

The larger the d.f. = n-1 (degrees of freedom), the closer the t-distribution resembles a 

(normalized) Normal distribution. Hence for large n (n>30) you can simply work with 

Normal distribution! 

 

Table 

For smaller values (typically d.f.<30), the probability density function of the t distribution 

differs from the normal distribution, but t-distribution is a standard distribution that is 

listed in tables. See (inverse) t-distribution table on page 60. 
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SOME STATISTICS – t-distribution 

 

Example:   

Compute 95% CONFIDENCE INTERVAL for µ if you know that: the sample mean 

012.0=e  and adjusted sample variance s = 0.11 on the basis of n=20 samples from a 

population. 

 

With this information we have d.f. = 19 

95% ⇒ one tail of Inverse Standard t-distribution is 2.5% ⇒ need t.025 ⇒ from the t-table 

on page 60 we see:  ti = ±2.093 . Note: this is different from the 96.1±=iz  we found when 

using a Standard Normal Distribution! 

⇒  −2.093 <
e − µ

s / n
< 2.093 

∴−0.032 < µ < 0.056 . 
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SOME STATISTICS – properties of variance estimation 

 

Similarly, the population variance or standard deviation σ  can be related to the variance 

estimate (sample variance) by a so-called chi-square ( x
2
) distribution. This can be done 

can for normally distributed samples: 

 

x
2

=
Σ ei − e ( )

2

σ 2   used with d.f. = n −1 . 

 

With given d.f., from the x
2  distribution we have 

a > x
2

> b⇒ a >
Σ ei − e ( )

2

σ 2 > b  

∴
Σ ei − e ( )

a
< σ 2 <

Σ ei − e ( )2

b  
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SOME STATISTICS – summary 

Sample average:     e =
Σei

n
 

Sample variance:     ˆ σ 2 =
Σ ei − e ( )

2

n
 

Adjusted sample variance:   s
2

=
Σ ei − e ( )

2

n − 1
 

Degrees of freedom:    df = n −1  

Estimate for µ :     e − tα ,df

s

n

 
 

 
 

< µ < e + tα ,df

s

n

 
 

 
   

Estimate for σ
2
     

Σ ei − e ( )
2

a
< σ 2

<
Σ ei − e ( )

2

b
  

where α  = probability 

  d.f. = degree of freedom 

  tα ,df  = t-distribution for α ,df  

  a, b from x
2
 distribution 
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PROPAGATION OF RANDOM ERRORS 

 

Q:  What is the total accuracy δF  of a measured system if the measurement depends on 

n  parameters being measured, i.e.: 

 

    F = f m1,m2, ... ,mn( ) 

 

A:  Form a Taylor-series expansion we have 

n

n

m
m

f
m

m

f
m

m

f
F ∂

∂

∂
++∂

∂

∂
+∂

∂

∂
=∂ ...2

2

1

1

 

Since the im∂ ’s are random variables, we can use: 

δF = ±
∂ f

∂m1

 

 
  

 
 

2

δm1

2
+

∂ f

∂m2

 

 
  

 
 

2

δm2

2
+... +

∂ f

∂mn

 

 
  

 
 

2

δmn

2
 

 
 

 

 
 

1/ 2

 

 

thus, one can add errors add in an RMS (root mean square) sense! 
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LINEAR REGRESSION 

 

 

Assumptions:   

(1) more measurements than 

needed for curve 

(2) only random errors 

(3) independent measurements 

 

Y = aX + b = regression 

equation  

a, b  = regression coefficients. 

 

 

The idea is to capture the measurements in a linear regression model Y = aX + b, where a, 

b  are the  regression coefficients to be determined. 

 

Methods for getting Y = aX + b: 

(1)  graphic method (“eyeball”):  works OK, but subjective. 

(2)  least squares 
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LINEAR REGRESSION – least squares 

Assume errors occurred only in the Y measurement, then measurements should satisfy: 

Y1 = a X1 + b + E1 

Y2 = a X2 + b +  E2 

: 

Yn = a Xn + b +  En 

Short hand notation in matrix form: 

Y = X [a b]
T
 + E 

With 

Y = [ Y1 ; Y2 ; .. ; Yn ] := [ Y1 Y2 .. Yn ]
T
 

X = [X1 1 ; X2 1 ; .. ;  Xn 1] 

E = [ E1 ; E2 ; .. ; En ] 
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LINEAR REGRESSION – least squares 

Least Squares Estimation: 

Find the parameter  [a b] such that ||E||2 is minimized, where 

||E||2 = tr{E
T
E} 

Solution to Least Squares: 

1. Convex optimization (minimum of a quadratic function) 

2. Orthogonal projection (to find minimum error norm) 

Both solutions are the same… 

LINEAR REGRESSION – least squares 

Consider  

Y = X [a b]
T
 + E 

 

To find the parameter  [a b] via optimization of  ||E||2 = tr{E
T
E}: 

tr{E
T
E} = tr{[Y

T
 – X

T
 [a b]][Y – X [a b]

T
]} 



 

MAE175a Error Analysis – R.A. de  Callafon – Page 55 

LINEAR REGRESSION – least squares 

Setting  d||E||2/d[a b] = 0 will give the optimal solution: 

d||E||2/d[a b] = [Y
T
 – [a b] X

T
]X = Y

T
 X – [a b] X

T
X = 0 

Solving for [a b] yields: 

[a b] = Y
T
X [X

T
X]

-1
 

 

To find the parameter [a b] via orthogonal projection, smallest distance E between Y = 

X [a b]
T
 and Y = X [a b]

T
 + E is found by orthogonal projection of Y onto X [a b]

T
. This 

projection makes E orthogonal to X so choose error E such that X
T
E = 0:  

X
T
 Y = X

T
 X [a b]

T
 + X

T
 E = X

T
 X [a b]

T
 

making 

[a b] = Y
T
X [X

T
X]

-1 
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LINEAR REGRESSION – least squares 

 

 Standard error of the estimate: SYX =
Σy2 − bΣxy

n − 2
 

 Correlation coefficient:   r =
Σxy

Σx
2
Σy

2  

The correlation coefficient for a population infers correlation between X and Y, but not for 

samples, except to within some uncertainty.  Tables allow one to decide the significance 

of r for samples with degree-of-freedom defined as df = n - 2, to various probabilities. 
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LINEAR REGRESSION – least squares 

 

 

Unexplained variation: Y − ′ Y ( )2  

 

Explained variation: ′ Y − Y ( )
2  

 

Coefficient of determination: 

   r
2

=
Σ ′ Y − Y ( )

2

Σ Y − Y ( )
2   

 

Correlation coefficient:  r 

r  has the same sign as b 
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ERROR ANALYSIS IN YOUR REPORT 
 

Typical Procedure: 

 

• Experiments in lab will require you to estimate certain (physical) parameters 

• Experiments need to be performed several times 

 

Error Analysis in Report Should Include (all that applies): 

 

• Estimate of mean and standard deviation of parameter estimates 

 

• Confidence interval of parameter estimate (based on t-distribution) 

 

• Indication of error sources in experiments (what is causing errors?) 

o Intrinsic & Application Related Errors 

o Integration Errors 

 

• Error Propagation 

o Especially if a parameters estimate is based on several measurements 

o Indicate how errors propagate (using Taylor series approximation) 
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Standard Normal Distribution Table 

 
a 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 

NOTE: Each entry of the table contains the value of P(0<z<a), where rows = first decimal 

value of a and columns = second decimal value of a 
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Inverse T-Distribution Table 

 
df 0.1 0.05 0.025 0.01 0.005 0.001 0.0005 

1 3.078 6.314 12.706 31.821 63.656 318.289 636.578 

2 1.886 2.920 4.303 6.965 9.925 22.328 31.600 

3 1.638 2.353 3.182 4.541 5.841 10.214 12.924 

4 1.533 2.132 2.776 3.747 4.604 7.173 8.610 

5 1.476 2.015 2.571 3.365 4.032 5.894 6.869 

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959 

7 1.415 1.895 2.365 2.998 3.499 4.785 5.408 

8 1.397 1.860 2.306 2.896 3.355 4.501 5.041 

9 1.383 1.833 2.262 2.821 3.250 4.297 4.781 

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587 

11 1.363 1.796 2.201 2.718 3.106 4.025 4.437 

12 1.356 1.782 2.179 2.681 3.055 3.930 4.318 

13 1.350 1.771 2.160 2.650 3.012 3.852 4.221 

14 1.345 1.761 2.145 2.624 2.977 3.787 4.140 

15 1.341 1.753 2.131 2.602 2.947 3.733 4.073 

16 1.337 1.746 2.120 2.583 2.921 3.686 4.015 

17 1.333 1.740 2.110 2.567 2.898 3.646 3.965 

18 1.330 1.734 2.101 2.552 2.878 3.610 3.922 

19 1.328 1.729 2.093 2.539 2.861 3.579 3.883 

20 1.325 1.725 2.086 2.528 2.845 3.552 3.850 

21 1.323 1.721 2.080 2.518 2.831 3.527 3.819 

22 1.321 1.717 2.074 2.508 2.819 3.505 3.792 

23 1.319 1.714 2.069 2.500 2.807 3.485 3.768 

24 1.318 1.711 2.064 2.492 2.797 3.467 3.745 

25 1.316 1.708 2.060 2.485 2.787 3.450 3.725 

26 1.315 1.706 2.056 2.479 2.779 3.435 3.707 

27 1.314 1.703 2.052 2.473 2.771 3.421 3.689 

28 1.313 1.701 2.048 2.467 2.763 3.408 3.674 

29 1.311 1.699 2.045 2.462 2.756 3.396 3.660 

30 1.310 1.697 2.042 2.457 2.750 3.385 3.646 

60 1.296 1.671 2.000 2.390 2.660 3.232 3.460 

Infinity 1.282 1.645 1.960 2.326 2.576 3.091 3.291 

NOTE: Each entry in the table contains the value of tαααα, where rows = degrees of freedom 

and columns = P(t> tαααα). 

END OF LECTURE 


