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1 Aim and Procedure of Experiment

1.1 Aim of experiment

The moment gyroscope system is a (rigid) mechanical system that consists of a rotating
masses mounted in several gimbals. Gyroscopes are used for angular position control of
(small) satellites by applying torques via direct-acting, reaction or gyroscopic drive mecha-
nizations within the gyroscope. Each gimbal creates a single Degree Of Freedom (DOF) of an
angular position and the moment gyroscope in the laboratory can be configured such that 2
simultaneous input torques can be applied to alter 4 different angular output measurements.
In addition, the gyroscope in the laboratory allows for certain DOF’s to be constrained via
(electromechanical) brakes to simplify the dynamic analysis and control of the gyroscope.

The aim of this control experiment is to model and control the 2 angu-
lar positions of the inner and outer gymbal of the moment gyroscope
by applying a single torque on the rotor drum.

The modeling is used to predict and model the (linearized) dynamic behavior of the
gyroscope. The control is used to accurately position two different angular positions over
a small range of the gyroscope. More background information on the dynamic modeling
is given in Section 2. Laboratory experiments to estimate model parameters and validate
the model are given in Section 3. Background information on the control design is given in
Section 4. A summary on the contents of the laboratory report is given in Section 5.

1.2 Laboratory procedure

The experiment needs to be completed within 3 laboratory session of 3 hours each. During
the experiment you are asked to formulate and validate a dynamic models of the gyro-
scope using a specific Single motor Input and a Single encoder Output (SISO) and develop
a linear SISO control algorithm that allows accurate positioning of a specific angular po-
sition. Since the dynamic behavior of the gyroscope is inherently non-linear, only small
variations of the angular position are considered, but you are also asked to investigate the
sensitivity/robustness of your controller for larger angular variations. While performing your
experiments during lab hours, it is recommended to follow the order of the tasks listed below.

• first week

– Introduction to ECP software used for experiments and controller implementation.

– Read this handout and get familiar with the background theory and lab experi-
ments.

– Consider the following SISO gyroscope configuration. Put Gyroscope in per-
pendicular position. On control box, turn electromechanical break axis 3 OFF,
electromechanical break axis 4 ON. In ECP, turn virtual break axis 2 ON.

– DO NOT initialize any rotor speed in ECP. With rotor motor 1 as input and en-
coder 3 as output (use open_loop_motor1.alg template) propose and perform
open-loop experiments several times (min. 5) to estimate the unknown parame-
ter(s) of the SISO transfer function G31(s) in (6).
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– Think about using encoder 3 velocity as an output for model validation. For
the parameter estimation and model validation, keep in mind that G31(s) (with
velocity output) can be written as a standard first order system as in (7).

– Validate the model G31(s) via comparison of a measured and a simulated open-
loop step response using maelab script file.

– With a validated model G31(s), design a PD or PID-controller (with maelab script
file) satisfying the design requirements of no steady-state error and less than 25%
overshoot.

– With ECP: implement the controller using template_axis3_control.alg and
perform closed-loop experiments several times (min. 5) to estimate overshoot
and settling time of your designed controller.

• week 2

– Consider now the following SISO gyroscope configuration. Put Gyroscope in
perpendicular position. On control box, turn electromechanical break axis 3 ON,
electromechanical break axis 4 OFF. In ECP, turn virtual break axis 2 OFF and
initialize rotor speed to the speed specified in your config.txt

– With rotor motor 2 as input and encoder 2 as output (use now the template
open_loop_motor2.alg) propose and perform open-loop experiments several times
(min. 5) to estimate the unknown parameters of the SISO transfer function G22(s)
in (9). For the parameter estimation and model validation, keep in mind that
G22(s) can be written as a standard second order system as in (16).

– Validate the model G22(s) via comparison of a measured and a simulated open-
loop step response using maelab script file.

– With a validated model G22(s), design a PD or PID-controller (with maelab script
file) satisfying the design requirements of no steady-state error and less than 25%
overshoot.

– With ECP: implement the controller using template_axis2_control.alg and
perform closed-loop experiments several times (min. 5) to estimate overshoot
and settling time of your designed controller.

– Report how much the nutation frequency (resonant frequency) of the moment
gyroscope has been improved in terms of increase of frequency and damping ratio.

• week 3

– Consider again the following SISO gyroscope configuration. Put Gyroscope in
perpendicular position. On control box, turn electromechanical break axis 3 ON,
electromechanical break axis 4 OFF. In ECP, turn virtual break axis 2 OFF and
initialize rotor speed to the speed specified in your config.txt

– With rotor motor 2 as input and encoder 4 as output (again use the template
open_loop_motor2.alg) propose and perform open-loop experiments several times
(min. 5) to estimate the unknown parameters of the SISO transfer function G42(s)
in (9).
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– Think about using encoder 4 velocity as an output for model validation. For
the parameter estimation and model validation, keep in mind that G42(s) (with
velocity output) can be written as a standard second order system as in (16).

– Validate the model G42(s) via comparison of a measured and a simulated open-
loop step response using maelab script file.

– With a validated model G42(s), design a PD or PID-controller (with maelab script
file) satisfying the design requirements of no steady-state error and less than 25%
overshoot.

– With ECP: implement the controller using template_axis4_control.alg and
perform closed-loop experiments several times (min. 5) to estimate overshoot
and settling time of your designed controller.

– Report how much the nutation frequency (resonant frequency) of the moment
gyroscope has been improved in terms of increase of frequency and damping ratio.
Report the settling time of the recession of the gyrocope (movement around axis
4).

2 Background Theory on Modeling

2.1 Modeling of the gyroscope

2.1.1 Definition of variables

motor 2 with
encoder 2
encoder 3

rotor (body D)
rotor drum (body C)
brake (axis 3)
motor 1 with encoder 1
inner gimbal (body B)
outer gimbal (body A)

encoder 4 with
brake (axis 4)

T1
θ1

T2

θ2

T3
θ3

T4
θ4

x1

x2

x3

Figure 1: Picture of moment gyroscope (left) and schematics with variables (right).

The gyroscope depicted in Figure 1 consist of 4 (rigid) rotating masses. The 4 rigid bodies
each have a angular position θ relative to their rotating gimbal axis and an overview of the
definition of the rigid bodies has also been given in Table 2.1.1.

For the derivation of a dynamic model we assume the gyroscope to be symmetric and the
center of the rigid bodies to all lie at the center of body D (the rotor). As a result, only the
rotational dynamics needs to be taken into account. For the rotational or angular position
θi, i = 1, 2, 3, 4 of each rigid body, we adopt the following convention.
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body definition angular position inertia

A outer gimbal θ4 IA

B inner gimbal θ3 IB

C rotor drum θ2 IC

D rotor θ1 ID

Table 1: Overview of rigid body elements in gyroscope

2.1.2 Conventions for angular position

• The angular position θ1 of the rotor (body D) is not of importance. We will only be

considering the angular velocity ω1 = θ̇1.

• The angular position θ2 of the rotor drum (body C) is set to θ2 = 0 if the rotor drum
(body C) is perpendicular to the inner gimbal (body B).

• The angular position θ3 of the inner gimbal (body B) is set to θ3 = 0 if the inner gimbal
(body B) is perpendicular to the outer gimbal (body A).

• Since the outer gimbal (body A) is able to rotate freely and the gyroscope is assumed
to be symmetric, θ4 can be reset to θ4 = 0 at any angular position of the outer gimbal
(body A).

Since each rigid body might be able to rotate along a 3 dimensional axis, we must consider
the inertia I, J and K of each rigid body respectively along x1, x2 or x3 axis. This defines
the inertia Ib, with b = A,B,C or D in Table 2.1.1 as

Ib =



Ib 0 0
0 Jb 0
0 0 Kb


 , b = body A,B,C or D

where Ib denotes the inertia along the x1-axis, Jb denotes the inertia along the x2 axis and Kb

denotes the inertia along the x3 axis for b = A,B,C,D. Note that only moments of inertia
are considered, while products on inertia are considered to be zero due to the symmetric
nature of the gyroscope.

The angular position of the 4 rigid bodies in the gyroscope can be changed by 2 internal
torques and labeled T1 and T2 in Figure 1. The 2 internal torques T1 and T2 are generated
by small DC motors that apply a torque to respectively to the rotor (body D) and the rotor
drum (body C). Torque T1 will make the rotor spin like a wheel around its (perpendicular)
axis 1, whereas torque T2 will make the rotor drum spin around the (longitudinal) axis 2.

2.1.3 Non-linear dynamics of gyroscope

Since both T1 and T2 are applied internally on a rigid body of the gyroscope, each torque will
have a counteracting torque on another rigid body. By inspecting the mechanical connections
in the schematics of the gyroscope in Figure 1, the following simple observations can be made:
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• Depending on the angular position θ2 and θ3, application of the torque T1 on the rotor
(body D) will for example result in a direct counteracting torque T3 causing rotation
of the inner gimbal (body B) and/or a direct counteracting torque T4 causing rotation
of the outer gimbal (body A).

• The angular position of θ2 can be changed by application of T2 on the rotor drum
(body C). Depending on the angular position θ3, application of the torque T2 on the
rotor drum (body C) will for example result in a direct counteracting torque T4 causing

rotation of the outer gimbal (body A). Interestingly, when ω1 = θ̇1 6= 0, rotation of the
outer gimbal (body A) is possible even if θ3 = 0 due to an (indirect) moment caused
by a Coriolis force (change in angular momentum).

On the basis of these simple observations, it is clear that the relationship between the
internal torques T1, T2 and the angular positions θi and velocities ωi = θ̇i, i = 1, 2, 3, 4 will
formulate the equations of motion of the gyroscope. The equations of motions can be derived
using Lagrange’s equations or Kane’s method and will result in a set of coupled (non-linear)
differential equations of the form

T1 = f1(θ2, θ3, ω2, ω3, ω4, ω̇1, ω̇3, ω̇4)
T2 = f2(θ2, θ3, ω1, ω3, ω4, ω̇1, ω̇2)
0 = f3(θ2, θ3, ω1, ω2, ω3, ω4, ω̇1, ω̇3, ω̇4)
0 = f4(θ2, θ3, ω1, ω2, ω3, ω4, ω̇1, ω̇2, ω̇3, ω̇4)

(1)

in which the torques T1 and T2 are considered as input signals. The full derivation of the
(non-linear) equations of motion can be found in the Model 750 Control Moment Gyroscope
Manual. It can be noted here that the equations of motion do not depend on θ1 and θ4, as
the angular position θ1 of the rotor (body D) and the angular position θ4 of the outer gimbal
(body A) is irrelevant for the dynamic behavior of the gyroscope.

2.1.4 Linearized dynamics of gyroscope

Considering only (small) perturbations around the angular velocity ω1 = θ̇1 of the rotor
(body D), the angular position θ2 of the rotor drum (body C) and the angular position θ3 of
the inner gimbal (body B) allows for a significant simplification of the (non-linear) equations
of motion. In case we assume an operating point of the gyroscope with

ω1 = Ω
θ2 = θ̄2
θ3 = θ̄3
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the equations of motion in (1) reduce to

JDω̇1 = T1 − JD cos θ̄2ω̇3 − JD sin θ̄2 cos θ̄3ω̇4

(IC + ID)ω̇2 = T2 − JDΩ sin θ̄2ω3 + JDΩcos θ̄2 cos θ̄3ω4 + (IC + ID) sin θ̄3ω̇4

(JB + JC + JD − (JC + JD − ID −KC) sin
2 θ̄2)ω̇3 =

−JD cos θ̄2ω̇1 + JDΩ sin θ̄2ω2 − JDΩ sin θ̄2 sin θ̄3ω4 − sin θ̄2 cos θ̄2 cos θ̄3

(ID +KA +KB +KC + (JC + JD − ID −KC) sin
2 θ̄2+

(IB + IC −KB −KC − (JC + JD − ID −KC) sin
2 θ̄2) sin

2 θ̄3)ω̇4 =
−JD sin θ̄2 cos θ̄3ω̇1 − JDΩcos θ̄2 cos θ̄3ω2 + (IC + ID) sin θ̄3ω̇2+
JDΩ sin θ̄2 sin θ̄3ω3 − (JC + JD − ID −KC) sin θ̄2 cos θ̄2 cos θ̄3ω̇3

(2)

Although the equations in (2) look complicated, they have all been written in the form where
the inertia times angular acceleration equals the sum of torques:

Iθ̈i =
∑

T

reflecting 2nd Newton’s law for rotational motion. The coupled set of (linear) differential
equations are useful in determining the linear dynamic model of the gyroscope for special
cases.

2.1.5 Linear dynamics for special case in laboratory experiment

To further simplify the dynamical model of the gyroscope, we consider several special cases
on the basis of an operating point of the gyroscope given by

ω1 = Ω
θ2 = θ̄2 = 0
θ3 = θ̄3 = 0

(3)

where zero angles are defined according to the convention defined on page 5 of this laboratory
handout. With the operating point defined in (3), special cases of the dynamics of the
gyroscope are found by applying some of the (electromechanical) brakes for either axis 3
(rotation of outer gimbal) or axis 4 (rotation of inner gimbal) of the gyroscope.

In case none of the brakes are used, both the inner and outer gimbals are able to rotate
freely. With the operating point defined in (3), the linearized equations of motion in (2)
reduce to

JDω̇1 = T1 − JDω̇3

(IC + ID)ω̇2 = T2 + JDΩω4

(JB + JC + JD)ω̇3 = −JDω̇1

(ID +KA +KB +KC)ω̇4 = −JDΩω2

(4)

and formulate a set of couple linear (second order) differential equations. This can also be
written as a set of coupled first order differential equations by definition of the state vector:

x(t) =
[
θ2(t) θ3(t) θ4(t) ω1(t) ω2(t) ω3(t) ω4(t)

]T

and the input : u(t) =
[
T1(t) T2(t)

]T

7



formulating the state space model

ẋ(t) = Ax(t) +Bu(t), with

A =




0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 JDΩ

IC+ID

0 0 0 0 0 0 0
0 0 0 0 −JDΩ

ID+KA+KB+KC

0 0




, B =




0 0
0 0
0 0

JB+JC+JD
JD(JB+JC)

0

0 1
IC+ID

−1
JB+JC

0

0 0




(5)

The result is a 7th order state space model. Computing the eigenvalues of the state
matrix A results in the following pole locations:

• 2 poles at 0 due to the rigid body mode. The rigid body mode is due to free rotation
θ3 of the inner gimbal (body B) as a result of a direct counteracting torque T3 caused
by torque T1 to rotate the rotor (body D).

• 3 additional poles at 0 due to the kinematic differential equations.

• 2 complex poles that models the oscillatory behaviour that couples the rotor drum
(body C) rotation with the rotation of the outer gimbal (body A). The resonance
frequency ωn found from the complex pole pair located at ±jωn is called the nutation
frequency of the gyroscope in rad/s.

Instead of writing a state space model (5), the linearized equations (4) can also be used
to write a transfer function representation between the angular positions and applied torques
via Laplace transform. Some of the resulting transfer function are

θ2(s) = G22(s)T2(s), G22(s) =
ID +KA +KB +KC

(IC + ID)(ID +KA +KB +KC)s2 + Ω2J2
D

θ3(s) = G31(s)T1(s), G31(s) = − 1

(JB + JC)s2
= −K

s2

θ4(s) = G42(s)T2(s), G42(s) =
−ΩJD

(IC + ID)(ID +KA +KB +KC)s3 + Ω2J2
Ds

The transfer function G31(s) is the relation between θ3(s) of the inner gymbal (body B) and
the applied torque T1(s) on the rotor (body D) and indicates a simple rigid body motion (2
poles at origin) due to free rotation θ3 of the inner gimbal (body B). Transfer function G22(s)
is the relationship between torque T2 and the resulting angular position θ2 of the rotor drum
(body C).

2.2 Gyroscope dynamics for weekly lab experiment

Week 1: application of axis 4 brake

During week 1 of the experiments, you will be engaging axis 4 brake to eliminate the ro-
tational freedom θ4 of the outer gymbal (body A). By setting ω4 = ω̇4 = 0, the linearized
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equations in (4) for the operating point (3) reduce to

JDω̇1 = T1 − JDω̇3

(IC + ID)ω̇2 = T2

(JB + JC + JD)ω̇3 = −JDω̇1

The equations can be rewritten into transfer function format

θ1(s) = G11(s)T1(s), G11(s) =
JB + JC + JD

JD(JB + JC)s2

θ2(s) = G22(s)T2(s), G22(s) =
1

(IC + ID)s2

θ3(s) = G31(s)T1(s), G31(s) =
−1

(JB + JC)s2

(6)

and indicate the lack of a nutation frequency ωn (11) in the transfer function models. In
addition, it can be observed that:

• The transfer functions do not depend on ω1 = Ω and one can set ω1 = 0 (zero initial
rotor speed).

• The equation for ω2 is completely decoupled from the other two equations involving
ω1 and ω3. Hence, we can also eliminate the rotational freedom θ2 of the rotor drum
(body C) without influencing the transfer functions G11(s) or G31(s) in (6).

Setting ω1 = 0 by setting zero initial rotor speed in ECP and eliminating the rotational
freedom θ2 of the rotor drum (body C) by enabling the virtual brake in ECP will be done
during our week 1 experiments. As a result, all transfer functions in (6) can be written in
the general form

θi(s) = Gi1(s)T1(s), Gi1(s) =
K0

s2 + β0s
, i = 1, 2, 3

where a gain K0 is used to model the gain (amplification) and an extra β0 (inverse time
constant) can be used to model additional damping in the rigid model. Interestingly, if we
measure the angular velocity ωi(t) =

d
dt
θi(t), i = 1, 2, 3 we see that the transfer functions

reduce to

ωi(s) = s ·Gi1(s)T1(s), s ·Gi1(s) =
K0

s+ β0

, i = 1, 2, 3 (7)

making the relation between the input torque T1(t) and the angular velocity ωi(t) a simple
first order system.

Week 2 & 3: application of axis 3 brake

During week 2 and 3 you will be engaging the axis 3 brake to eliminate the rotational freedom
θ3 of the inner gimbal (body B). This configuration is useful in week 2 for examining and

demonstrating the nutation frequency, provided θ̇1 = ω1 = Ω > 0, by observing the angular
position θ2 of the rotor drum (body C). In addition, this configuration is useful in week 3
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to study the gyroscopic torque action, provided θ̇1 = ω1 = Ω > 0. In this case, the angular
position θ4 of the outer gimbal (body A) can be controlled by changing the angular position
θ2 of the rotor drum (body C) with a torgue T )2 generated by motor 2.

By setting ω3 = ω̇3 = 0, the linearized equations in (4) for the operating point (3) reduce
to

JDω̇1 = T1

(IC + ID)ω̇2 = T2 + JDΩω4

(ID +KA +KB +KC)ω̇4 = −JDΩω2

(8)

Since the last two equations in (8) have not changed compared to (4), the transfer functions
from T2(s) to θ2(s) and θ4(s) remain the same. The resulting transfer functions for this case
can be written as

θ1(s) = G11(s)T1(s), G11(s) =
1

JDs2

θ2(s) = G22(s)T2(s), G22(s) =
ID +KA +KB +KC

(IC + ID)(ID +KA +KB +KC)s2 + Ω2J2
D

θ4(s) = G42(s)T2(s), G42(s) =
−ΩJD

(IC + ID)(ID +KA +KB +KC)s3 + Ω2J2
Ds

(9)

It can be observed that the first equation is independent from the other equations. As a
result, the rotor speed ω1(s) = sθ1(s) may be controlled independently via the torque T1

generated by the rotor motor 1 via a model s·G11(s) that is a simple integrator. We choose to

control θ̇1(t) = ω1(t) to fixed value ω1(t) = Ω > 0 in our week 2 & 3 laboratory experiments.
With the fixed rotor speed ω1(t) = Ω > 0 the transfer function G22(s) can be written as

a standard second order system

θ2(s) = G22(s)T2(s), G22(s) = K1 ·
ω2
n

s2 + 2β1ωns+ ω2
n

(10)

where K1 denotes a gain (amplification) and an extra β1 (damping ratio) can be used to
model additional damping in the gyroscope. This makes the relation between the input
torque T2(t) and the angular velocity ω2(t) a simple second order system. In this second
order system we have two (complex conjugate) poles that model the (undamped) nutation
frequency ωn of the gyroscope (theoretically) given by

ωn =
ΩJD√

(IC + ID)(ID +KA +KB +KC)
(11)

and depends only on specific body inertia and the (fixed) rotor speed ω1(t) = Ω > 0.
Transfer function G42(s), relating the torque T2(s) and the angular position θ4(s) of the

outer gimbal (body A), exhibits the same complex pole pair with the nutation frequency
ωn in (11). In addition, there is a pole at 0 (integrator) that causes θ4 eventually to ramp
(up/down) linearly whenever a constant torque T2 is applied, making

G42(s) = K2 ·
ω2
n

s2 + 2β2ωns+ ω2
n

· 1
s
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where again a K2 is used to denote a gain (amplification) in the system and an extra β2

(damping ratio) can be used to model additional damping in the gyroscope. Interestingly, if
we measure the angular velocity ω4(t) =

d
dt
θ4(t) during our week 3 experiment, we see that

the transfer function reduces to

ω4(s) = s ·G42(s)T2(s), s ·G42(s) = K2 ·
ω2
n

s2 + 2β2ωns+ ω2
n

(12)

making the relation between the input torque T2(t) and the angular velocity ω4(t) again a
simple second order system.

2.3 Dynamic response of first order and second order systems

As indicated in the previous section, measuring the angular velocity ωi(t) = d
dt
θi(t), i =

1, 2, 3 during our first week laboratory experiment enables us the describe the gyroscope
dynamics with a simple 1st order system given in (7). In week 2, measuring the angular
position θ2(s) allows us the describe the gyroscope dynamics with a standard 2nd order
system given in (10). And finally, measuring the angular velocity ω4(t) =

d
dt
θ4(t) during our

third week laboratory experiment again allows us the describe the gyroscope dynamics with
a standard 2nd order system given in (12).

To estimate the model parameters (week 1: K0, β0, week 2: K1, ωn, β1 and week 3:
K2, ωn, β2) we will perform simple dynamic experiments in which we measure the step
response of the gyroscope. In order to understand how to obtain the model parameters
from the step response, we first need to write down the actual step response as a function
of the (unknown) model parameters. Given the dynamics of s · Gi1(s) in the 1st week and
G22(a) and ·G42(s) in the 2nd and thrid week laboratory experiments, we only need to know
the step response of a (standard) first and second order system. The results are summarized
below.

First consider a 1st order system with a transfer function

y(s) = G(s)u(s), G(s) =
K

s+ β
, i = 1, 2, 3

then a step input u(t) = U, t ≥ 0 of size U results in the output response

y(t) =
K

β
· U ·

[
1− e−βt

]
(13)

The result follows directly from inverse Laplace transform of

y(s) = G(s) · U
s
=

KU

s+ β
· 1
s

Secondly, consider a 2nd order system with a transfer function

G(s) =
Kω2

n

s2 + 2βωns+ ω2
n
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then a step input u(t) = U, t ≥ 0 of size U on the 2nd order system results in the output
response

y(t) = K · U ·
[
1− e−βωnt sin(ωdt + φ)

]
(14)

where
ωd = ωn

√
1− β2 damped resonance frequency in rad/s

φ = tan−1

√
1− β2

β
phase shift of response in rad

The computation of the step responses in (13) and (14) can be used to determine the unknown
model parameter (week 1: K0, β0, week 2: K1, ωn, β1 and week 3: K2, ωn, β2) using simple
step response experiments during the laboratory.

3 Laboratory Experiments

3.1 Estimation of model parameters

For the completion of the dynamical model of the gyroscope, basically all the moments of
inertia (Jb, Ib and Kb, b = A,B,C,D) would have to be determined. However, for some
of the special cases discussed in Section 2.1.5, only a subset of all the moments of inertia
needs to be determined to find the transfer function models. Moreover, the transfer function
models can be reduced down to simple 1st and 2nd order transfer functions as indicated in
(7) for week 1, (10) for week 2 and (12) for the week 3 experiments in the lab. As a result,
only the lump sum or ratio of certain moments of inertia are relevant to find the coefficients
of a particular (first and second order) transfer function of the gyroscope given. These
coefficients are the model parameters you would have to estimate during your laboratory
experiments and they will be determined with simple step response experiments.

To find the coefficients of a particular (first order) transfer function of the gyroscope,
consider a transfer function of a standard 1st order system

G(s) =
K

s+ β
(15)

similar as in (7), where K denotes a gain, β is inverse time constant that models (possible)
damping of the rigid body mode of the gyroscope. With this transfer function, a Voltage
step input u(t) of size U will results in the analytic solution given in (13).

Using the analytic solution given in (13) and

d

dt
y(t)

∣∣∣∣∣
t=0

= K · Ue−βt
∣∣∣
t=0

= K · U

along with the typical step response y(t) of a lightly damped velocity response of a rigid
body system indicated in Figure 2, it can be seen that the gain K and the (inverse time
constant) β can be estimated via

K̂ =
1

U
· d

dt
y(t)

∣∣∣∣∣
t=0
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Figure 2: Step response of (velocity) of lightly damped gyroscope system with rigid body
motion

and knowing that the (velocity) limt→∞ y(t) = y∞ = K
β
· U we find

β̂ =
K̂

y∞
· U

To find the coefficients of a particular (second order) transfer function of the gyroscope,
consider a transfer function of a standard 2nd order system

G(s) =
Kω2

n

s2 + 2βωns+ ω2
n

(16)

similar as in (10) and (12) where K denotes a gain, ωn indicates the (undamped) nutation
frequency as in (11) and 0 ≤ β < 1 is a damping ratio that models (possible) damping of
the nutation mode of the gyroscope. With this transfer function, a Voltage step input u(t)
of size U will results in the analytic solution given in (14).

Using the analytic solution given in (14) and the typical step response y(t) of a lightly
damped second order system indicated in Figure 3, it can be seen that ωd and the product
of βωn can be estimated via

ω̂d = 2π
n

tn − t0

β̂ωn =
1

tn − t0
ln

(
y0 − y∞
yn − y∞

)
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Figure 3: Step response of lightly damped coupled gyroscope system with nutation frequency.

and as a result, ωn, β and K in (16) can be estimated by

ω̂n =
√
ω̂2
d + (β̂ωn)2

β̂ =
β̂ωn

ω̂n

K̂ =
y∞
U

As a result, simple step response experiments will allow you to directly estimate the coeffi-
cients of the second order transfer function.

When conducting your (step response) experiments in the lab to find the model parame-
ters unknown model parameters (week 1: K0, β0, week 2: K1, ωn, β1 and week 3: K2, ωn, β2)
keep the following items in mind:

• One has to realize that each of the transfer functions given in Section 2.1.5 relates
torque (measured in Nm) to angular position (measured in rad/s). Since we apply
torque via Voltage applied to a DC-motor and measure angular position in encoder
counts, each transfer function will have a different gain K0, K1 and K2 with the units
encoder counts/Voltage.

• Perform (step response) experiments and the estimation of the unknown model pa-
rameters several times (at least 5 times) to allow for statistical analysis. Mean value,
standard deviation and confidence intervals (based on t-distribution) will have to be
part of your report.
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3.2 Validation of model

In order to validate the model parameters that you are estimating, one should compare
measured data with data simulated by your model. Validation of the model is crucial before
continuing with the design of a controller and can be done by editing the models.m file and
running the maelab.m script file available on the computer in the laboratory.

Keep in mind that you will use a transfer function model (week 1: Gi1(s), week 2: G22(s)
and week 3: G42(s)) to design your controller. With an invalid or invalidated model, the
controller cannot be designed reliably. Consider the following items for the validation of your
model:

• Propose experiments and the signals to be measured to validate your models that you
are constructing.

• You can simulate the step response of your model (week 1: Gi1(s), week 2: G22(s)
and week 3: G42(s)) with the maelab.m script file. All you need to do is modify the
model parameters (week 1: K0, β0, week 2: K1, ωn, β1 and week 3: K2, ωn, β2) in the
file models.m available on the computer in the laboratory.

• Which signals do you need to save, in order to be able to simulate data with your
model and to compare simulated data with measured data? Think about input and
output signals.

• For the week 2 & 3 experiments, ensure that the measured (damped) nutation frequency

ωn =
ΩJD√

(IC + ID)(ID +KA +KB +KC)

of the gyroscope is close to the (damped) nutation frequency of your model.

• Comment on how good the model is able to simulate the measured data. Give sugges-
tions in case you need to adjust the model parameters in your report.

In order to compare a measurement with a simulation, you have to save your measured
data of your relevant dynamic experiments in a text file (extension .txt) via the export
raw data option in the ECP software. Do not start the filename with a number and make
sure you save your data under your working directory! Subsequently you have to prepare
the text file of the saved data so that it can be read it into Matlab. This is done by the
following editing steps:

1. First line in text file: Comment out the first line with a %

2. Second line in text file: Enter dummy= before the opening bracket [

3. Last line in text file: Put a semicolon ; behind the closing bracket ]

4. After last line in text file: define time t, input u and output y by selecting the ap-
propriate columns from the dummy variable. For example, if you have selected to save
the control effort (input u) and the encoder 1 position (output y), this can be done by
adding the following lines to the end of the text file:
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t=dummy(:,2);
y=dummy(:,a); % select the right column with the variable a

u=dummy(:,b); % select the right column with the variable b
clear dummy;

5. Save the raw text file as a file with the extension .m

The result is a Matlab script file that can be run from Matlab. When you run the file,
the time vector t, the input signal u and the output signal y are available in the Matlab
workspace for plotting and comparison purposes to validate your model. The script file
maelab.m can also directly read the data files for comparison purposes and the editing steps
above are only necessary if you like to plot the data individually in Matlab to create figures
for your report.

4 Design of Feedback Control for Gyroscope

4.1 Control specification

You are asked to design a control algorithm for the three different (special) cases of the
gyroscope system as discussed in Section 2.1.5. In order of complexity, control algorithms
should be designed on the basis of a model of the gyroscope for the following situations:

1. Week 1: Axis 4 brake with feedback of encoder 3 to motor 1
Design a PD feedback controller that uses θ3 (encoder 3) as measurement and T1 (motor
1) as control effort that positions the inner gymbal (body B) as fast as possible. Show,
by making 10 to 20 degree steps on the command signal that θ3 settles with less than
25% overshoot.

2. Week 2: Axis 3 brake with feedback of encoder 2 to motor 2
Design a P or PD- feedback controller that uses θ2 (encoder 2) as measurement and T2

(motor 2) as control effort that positions the inner gymbal (body B) as fast as possible.
Show, by making 10 to 20 degree steps on the command signal that θ2 settles with less
than 25% overshoot.

3. Week 3: Axis 3 brake with feedback of encoder 4 to motor 2
Design a feedback controller that uses θ4 (encoder 4) as measurement and T2 (motor
2) as control effort that positions the outer gymbal (body A) as fast as possible. Show,
by making 10 to 20 degree steps on the command signal that θ4 settles with less than
25% overshoot.

4.2 Programming the control algorithm

In the ECP software of the gyroscope control system, control algorithms are specified by means
of simple programs that are compiled and downloaded to the DSP. The control algorithms
is made up of three distinct sections:
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• Definition segment – used to assign (internal) variable g1 till q100 to the user variables
defined in the definition segment. Variables can include servo gain and measurements
to be saved for control and each line should be formatted according to the example:

#define gain_1 q2 ; assigns gain_1 to the (internal) variable q2

Next to the 100 internal variables there are 8 global variables that cannot be defined:

cmd1_pos ; the commanded position (reference) for encoder 1

cmd2_pos ; the commanded position (reference) for encoder 2
enc1_pos ; encoder 1 output
enc2_pos ; encoder 2 output

enc3_pos ; encoder 3 output
enc4_pos ; encoder 4 output
control_effort1 ; the input to motor 1

control_effort2 ; the input to motor 2

• Variable initialization segment – used to assign numerical values to the variables defined
in the definition segment. Lines should be formatted according to the example

gain_1=0.78 ; assigns the value 0.78 to variable gain_1 = q2

• Servo loop or real-time execution segment – this segment starts with a begin and ends
with an end statement. All code between the begin and end statement will be executed
every sample period for real-time control implementation. A simple PD controller can
be implemented with a code similar to

begin
control_effort2=Kp*(cmd_pos-enc2_pos)+Kd*(enc2_pos-past_enc2_pos)

past_enc2_pos=enc2_pos
end

Note that the code is case insensitive.

4.3 Design of controllers

For the design of the P-controller, heuristic tuning rules such as Ziegler and Nichols can be
used. Alternatively, with the knowledge of the transfer function model of the gyroscope, a
stabilizing controller can be found via the root-locus method or with the frequency domain
method. Irrespective of the method you use to design your control algorithm, address the
following items in your report:

• Explain the method you use to design your controller and how you evaluate the stability
of your closed-loop system. Specifically mention the amplitude and phase margin
of your control design.
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• Give a well motivated choice for the values of kp and kd of your PD-controller. Explain
the improvements in damping and reduction of overshoot you have obtained by the
use of a PD-controller.

• Is the PD-controller able to position θ2 without any steady state error? Give an
explanation of your results in terms of the resulting steady state error and explain why
you had to choose a PID controller to get rid of the steady state error.

In case a steady state error is still present in your closed-loop step response, an additional
integral action in the controller is able to reduce steady state errors. For that purpose, the
PD-controller is extended to a PID-controller. For the design of a PID-controller give a
well motivated choice for the values of kp, kd and ki of your PID-controller in your report.
Explain the reduction in steady-state error by the use of a PID-controller.

4.4 Sensitivity analysis

Once you have designed a properly working feedback controller, you should check the sensi-
tivity of the feedback system. Since the controller is based on a model that assumes small
variations around the operating point (3), you are asked to make perturbations of the operat-
ing point (3) and verify the stability and performance of your designed feedback controllers.
Be careful, the feedback system might become unstable and in that case you
should turn off the controller as soon as possible.
Address the following items in your report:

• How sensitive is your designed feedback system to changes in θ3 and ω1 = Ω? Create
a table/graph comparing settling time and overshoot as a function of θ3 and ω1 = Ω.

• How sensitive is your designed feedback system to control parameter variations? Make
10% variations in your designed control parameters and observe changes in settling
time and overshoot.

• Do you have an explanation for the sensitivity to the various parameters? Comment
on the quality requirements of the model.

5 Laboratory Report

By the end of the gyrocope control experiment you should have estimated (with error analy-
sis) and validated the parameters of a dynamic model of the gyroscope for the various cases.
You should also have a stabilizing feedback controllers for the three different gyroscope con-
figurations studied during the 3 weeks of experiments.

The results of your laboratory work have to be reported in a coherent written report.
The report will be graded on the layout and the contents that should (at least) contain the
following items:

• Estimation and error analysis of parameters in the model of the gyroscope system.

• Comparing dynamic experiments with dynamic model simulations.
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• Design procedure for PD, PID (or state feedback) controller on the basis of a dynamic
model of the system to be controlled

• Implementation of feedback controllers and comparing closed-loop dynamic experi-
ments with closed-loop dynamic model simulations

• Sensitivity (robustness) analysis by (closed-loop) experiments that examine settling
time and overshoot variations due to changes in operating point variations

In addition, refer to the questions posed throughout this laboratory handout. Make sure to
include your answers to these questions in the appropriate sections of your laboratory report.

— end of laboratory handout —
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